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Abstract—We present a new approach for matching sets of branching curvilinear structures that form graphs embedded in R2 or R3

and may be subject to deformations. Unlike earlier methods, ours does not rely on local appearance similarity nor does require a good

initial alignment. Furthermore, it can cope with non-linear deformations, topological differences, and partial graphs. To handle arbitrary

non-linear deformations, we use Gaussian process regressions to represent the geometrical mapping relating the two graphs. In the

absence of appearance information, we iteratively establish correspondences between points, update the mapping accordingly, and

use it to estimate where to find the most likely correspondences that will be used in the next step. To make the computation tractable for

large graphs, the set of new potential matches considered at each iteration is not selected at random as with many RANSAC-based

algorithms. Instead, we introduce a so-called Active Testing Search strategy that performs a priority search to favor the most likely

matches and speed-up the process. We demonstrate the effectiveness of our approach first on synthetic cases and then on

angiography data, retinal fundus images, and microscopy image stacks acquired at very different resolutions.

Index Terms—Graph matching, non-rigid registration, active testing search

Ç

1 INTRODUCTION

GRAPH-LIKE structures are pervasive in biomedical 2D
and 3D images. Examples are blood vessels, pulmo-

nary bronchi, or nerve fibers. They can be acquired at differ-
ent times and scales, or using different modalities, which
may result in vastly diverse image appearances. For exam-
ple, neuronal structures acquired using a light microscope
(LM), such as those in the upper row of Fig. 1, look radically
different when imaged using an electron microscope (EM)
that, as shown in the bottom row of Fig. 1, has a much
higher magnification. Nevertheless, registering them is
desirable in order to identify the same region in both images
and to combine the specific information each modality pro-
vides, in this case large-scale connectivity from the low-res-
olution data and fine details such as dendritic spines from
the high-resolution data.

This kind of drastic appearance change makes it impracti-
cal to use registration techniques that rely on maximizing
image similarity [26], [40], in particular when the images are
very different and when dealing with thin structures, such
as blood vessels or neuronal fibers. The lack of distinguish-
ing features of individual branching points or edges makes
the use of feature-based correspondence techniques equally

impractical. Since the graph geometrical and topological
structure may be the only property shared across modalities,
graph matching becomes the only effective registration
means. This also includes subgraph matching when the
images have been acquired at different resolutions.

Most existing techniques that attempt to do this rely on
matching euclidean or geodesic distances between graph
junction points [11], [16], [34], which is very sensitive to the
small length changes inherent to the biological structures
we consider. This may be valid for pulmonary vessels,
which undergo a smooth deformation, or retinal fundus
images that show only slight non-linearities produced
when the curved surface of the retina is viewed from differ-
ent viewpoints. Yet, when dealing with images acquired
using distinct modalities and at different resolutions, the
acquired structures exhibit significant topology changes, for
example, due to the failure of one of the methods to display
parts of the structure. Similarly, large non-linear deforma-
tions may occur because we work with a living specimen
and the acquisitions are separated in time or because the
deformation is introduced by the sample preparation or
handling process. We know of no current method that can
simultaneously handle all issues related to this kind of data:
non-linear deformation, unknown initial position and lack
of distinguishing local features.

We therefore propose a new approach for matching
graph structures embedded in either R2 or R3, which can
deal with these cases while being robust to topological dif-
ferences between the two graphs and even changes in the
distances between vertices. It requires no initial pose esti-
mate, can handle non-linear deformations, and does not
rely on local appearance or global distance matrices.
Instead, given graphs extracted from the two images or
image-stacks to be registered, we treat graph nodes as the
features to be matched. We model the geometric mapping
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from one data set to the other as a Gaussian Process Regres-
sion (GPR) whose predictions are progressively refined as
more correspondences are added. These predictions are in
turn used to explore the set of all possible correspondences
starting with the most likely ones, which allows conver-
gence at an acceptable computational cost even though no
appearance information is available. To make the computa-
tion tractable for large graphs, we introduce an active test-
ing search (ATS) strategy for speeding up the exploration of
the set of possible correspondences by first considering the
most likely ones.

We demonstrate the effectiveness of our technique on a
variety of registration problems including both synthetic and
real data of angiographies, retinal-fundus images acquired at
different times and different points of view, as well as neural
image-stacks acquired using different modalities.

This paper is an extended version of [30], that proposed
using Gaussian process regression for non-rigid matching
and [25], which introduced a preliminary version of the
active testing strategy [15]. The present paper combines
both previous contributions, provides a more thorough
mathematical justification of the active testing search tech-
nique, and includes a more extensive set of experiments
and comparisons with other methods.

2 RELATED WORK

Area-based registration techniques that maximize image
similarity criteria such as correlation or mutual-information
[26], [40] are not applicable in our context as they are not
designed to deal with truly different appearances and lim-
ited capture ranges. We therefore consider only techniques
that match graph structures across images, which we have
split into four major categories. In most cases described

below, only the branching points (nodes) extracted from the
input structures are used for matching, while the edges con-
necting them are ignored.

In the first class, the graph nodes are assumed to be
related by a low-dimensional geometric transform, such as a
rigid mapping, which can be instantiated from very few cor-
respondences. It is therefore feasible to hypothesize and test
random correspondences, as it is done in RANSAC [13].
However, as the number of transformation parameters or
graph nodes increases, the space of possible matches
becomes too large to explore randomly, and one has to resort
to methods like PROSAC [9] or Guided-MLESAC [37] that
reduce the search space through priors based on appear-
ance. When appearance information is not available, more
sophisticated search strategies have to be used, such as
accelerated hypothesis sampling with information derived
from the residual sorting [36]. Here, we propose to use an
active testing search strategy [15], [25], [35], which iteratively
selects the hypotheses that maximize the information gain,
allowing to rapidly progress towards the global minimum.

The second class of approaches typically requires a good
initial guess of the transformation to establish an initial esti-
mate of the correspondences, which are then progressively
refined. For rigid transformations, one of the earliest algo-
rithms is the iterative closest point (ICP) [4], later extended
to non-rigid transformations using techniques such as non-
rigid ICP [2], [20], or coherent point drift (CPD) [23]. In any
event, a good initial estimate is critical to prevent these
methods from falling into incorrect local minima.

The third class of methods relies on having a sufficiently
discriminative criterion for evaluating the pairwise compati-
bility of nodes, such as local appearance descriptors, or the
geometric compatibility of correspondence pairs [7], [12],

)d()c()b()a(

Fig. 1. Brain tissue at different resolutions. (a) Image stack acquired using a two-photon light microscope from live brain tissue at a 1 micrometer res-
olution and a smaller area of the same tissue imaged using an electron microscope, at a 20 nanometer resolution. The orange box in the top image
denotes the area from which the EM sample has been extracted. (b) Semi-automated delineation of some dendrites overlaid in magenta and manual
segmentation of an axon overlaid in green and a dendrite in yellow. (c) The segmented structures on a black background. Since the resolution is
much higher in the EM data, dendritic spines and synapses are clearly visible. (d) Graph representation of the neuronal structures. The red dots,
named “graph nodes”, are used for a coarse registration of the graphs. The white dots, named “edge points”, are used for fine alignment. This figure,
as with most others in this paper, is best viewed in color.
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[16], [18], [19], [38]. Global nodal matches are then estimated
using multidimensional optimization schemes such as grad-
uated assignment [16], spectral techniques [18], [19], [38] or
considering the graphs as an absorbing Markov chain [7].
Regarding compatibilities as binary tests, the largest consis-
tent set of matches corresponds to the maximum weighted
independent set or equivalently, to the maximum weighted
clique [12], [31]. Due to its high computational cost, the
method is only applicable to small graphs. For specific medi-
cal imaging applications, some authors have attempted to
register biological graphs we may find in structures like pul-
monary vessels [34], or the retina [1], [11]. Yet, while these
methods allow for a non-parametric formulation of the prob-
lem, they cannot be usedwhen appearance information is not
available and the inter-nodal distances vary due to non-linear
deformations, which is the casewe consider in this paper.

The final category involves methods that simultaneously
search for correspondences and estimate the transformation
parameters using a Kalman filter-like approach [6], [10],
[21], [28], [32], [33]. As soon as a few initial correspondences
have been established, the set of match hypotheses rapidly
reduced, making the search complexity manageable. How-
ever, these algorithms, like RANSAC, require an a priori
parametric model of the transformation whose parameters
are computed using the correspondences, and thus are diffi-
cult to generalise to arbitrary deformations. Similar limita-
tions are also shared by methods relying on implicit shape
models [14], [24]. In the Gaussian process regression frame-
work we propose, we also progressively reduce the number
of potential correspondences but, in contrast to previous
approaches, no a priori parametric deformation model is
required. Instead, the deformation is completely defined by
the correspondences and can therefore be completely
generic. We will demonstrate that this significantly enlarges
the applicability domain of our approach and improves the
accuracy of the results.

3 APPROACH

Let us assume we are given two graphs GA ¼ ðXA;EAÞ and
GB ¼ ðXB;EBÞ, such as the one of Fig. 1-right, extracted from
two images or image-stacks A and B. The Es denote the
graphs’ edges and the Xs their nodes—shown as red dots in

the figure—that are points in RD, where we assume
D 2 f2; 3g. The edges, in turn, are represented by dense sets

of points—shown as white dots in the figure—that form R2

or R3 paths connecting the nodes.
Our goal is to use these two graphs to find a geometrical

mapping m from A to B such thatmðxAi Þ is as close as possi-
ble to xBj in the least-squares sense assuming that xAi and xBj
are corresponding pixels or voxels.

If correspondences between points belonging to the two
graphs were given, we could directly use a Gaussian pro-
cess regression [27] to estimate a non-linear mapping that
would yield a prediction of m and its associated variance
[5]. In our case, however, the correspondences are initially
unavailable and cannot be established on the basis of local
image information because the A and B are too different in
appearance. In short, this means that we must rely only on
geometrical properties to simultaneously establish the
correspondences and estimate the underlying non-linear

transform. Since attempting to do this directly for all edge
points would be computationally intractable, our algorithm
goes through the following two steps:

1) Coarse alignment. We begin by only matching graph
nodes so that the resulting mapping is a combina-
tion of an affine deformation and a smooth non-
linear deformation. We initialize the search by ran-
domly picking D correspondences, which roughly
fixes relative scale and orientation, and using them
to instantiate a GPR. We then recursively refine it as

follows: Given some matches between GA and GB
nodes, the GPR serves to predict where other GA
nodes should map and restricts the set of potential
correspondences. Among these possibilities, we
select the most promising one based on geometric
or information gain criteria we will define in Sec-
tion 5, and use it to refine the GPR. Repeating this
procedure recursively until enough mutually con-
sistent correspondences have been established and
backtracking when necessary lets us quickly explore
the set of potential correspondences and recover an
approximate geometric mapping.

2) Fine alignment. Having been learned only from
potentially distant graph nodes, the above-mapping
is coarse. To refine it, we also establish correspond-
ences between points that form the edges connecting
the nodes in such a way that distances along these
edges, which we will refer to as geodesic distances,
are changed as little as possible between the two
graphs. Because there are many more such points
than nodes, this would be extremely expensive to do
from scratch. Therefore, we constrain the correspon-
dence candidates to edges between already matched
nodes and rely on a Hungarian algorithm [22] to per-
form the optimal assignment quickly.

In the remainder of this paper, we first outline the GPR
model that we use. We then introduce our procedures for
coarse and fine alignments. All the notations used in this
paper are summarized in Table 1.

4 GAUSSIAN PROCESS REGRESSION

Without loss of generality, let us assume that the elements
of XA and XB have been reordered so that the set

p ¼ fxAl $ xBl g1�l�nc denotes correspondences between

D-dimensional points from A and B respectively. Using the
GPR approach to non-linear regression and assuming
Gaussian i.i.d. noise of precision b in all coordinate values,

these correspondences can be used to predict that a point xB

in B corresponding to xA in A can be expected to be found
at a location with the following mean mpð�Þ and isotropic

variance s2
pð�Þ :
mpðxAÞ ¼ kTC�1p XB

p ; (1)

s2
pðxAÞ ¼ kðxA; xAÞ þ b�1 � kTC�1p k; (2)

where k is a kernel function, b�1 is the measurement noise
variance, Cp is the nc � nc symmetric matrix with elements

Ci;j ¼ kðxAi ; xAj Þ þ b�1di;j, k is the vector ½kðxA1 ; xAÞ; . . . ;
kðxAnc ; xAÞ�T , and XB

p is the nc �Dmatrix ½xB1 ; . . . ; xBnc �T .
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Among the different types of existing kernel functions
[27], we chose the widely used summation of a squared-
exponential, a constant term, and a linear term

kðxi; xjÞ ¼ u0 þ u1x
T
i xj þ u2 exp � u3

2
jjxi � xjjj2

� �
: (3)

Thus, the kernel of (3) models transformations as being
rigid with non-linear deformations. Such transformation
covers a wide range of situations in medical imaging
[11], [26], [33], [34].

Given this expression for k, the geometric mapping from
Eq. (1) can now be rewritten as

mpðxAÞ ¼
Xnc
i¼1

aikðxAi ; xAÞ

¼
Xnc
i¼1

ai
�
u0 þ u1

�
xAi

�T
xA

�

þ
Xnc
i¼1

ai u2exp � u3

2
jjxAi � xAjj2

� �
;

(4)

where ai is the ith row of the matrix C�1p XB
p . The first term of

Eq. (4), which contains the u0 and u1 hyperparameters, is a
linear function of the input coordinates while the second
one, which involves the u2 and u3, allows for additional non-
linear deformations.

Apart from the mapping mpð�Þ, we also need to evaluate
the mapping quality for any particular set of correspond-
ences p. Let us define a quality score as Sp 2 R, which is a
deterministic function. We use the following two methods
to evaluate the quality of a correspondence set:

– Assigned distance.We compute the minimum possible
total distance between mpðxAi Þ and points xBj 2 XB

for all 1 � i � nA

Sp ¼
XnA
i¼1

XnB
j¼1

Hi;j � dist
�
mp

�
xAi

�
; xBj

�
; (5)

where ‘dist’ is a euclidean distance and H is the
assignment matrix computed by the Hungarian
algorithm [22] which, given the distances between

all points mpðxAi Þ and xBj , iteratively calculates the

optimal assignment of correspondences between all
points, by minimizing Sp.

– Number of inliers.We compute the proportion of edge
and branching points in XA that are mapped near a

point in XB as

Sp ¼ jIjjXAj ;

I ¼ �
xBj j 9mp

�
xAi

�
; dist

�
mp

�
xAi

�
; xBj

�
< b�

1
2
�
:

(6)

Our experiments show that these two measures suffice to
recognize good sets of correspondences.

5 COARSE ALIGNMENT

Let XA ¼ fxA1 ; . . . ; xAnAg and XB ¼ fxB1 ; . . . ; xBnBg be the nodes
of our two graphs. Our first goal is to simultaneously

retrieve as many correspondences p ¼ fxA $ xBg as possi-
ble and to determine the underlying non-linear mapping

xB ¼ mpðxAÞ that best aligns them.
In this section, we present two different approaches for

doing this. The first one—Section 5.1—relies on first assign-
ing correspondences to nodes for which there are few to
choose from. The second—Section 5.2—uses a more sophis-
ticated strategy that ranks partial solutions and attempts to
extend the most promising ones first. We introduced the
first strategy in [30] and tested it successfully on relatively
small graphs. However, as will be shown in Section 7, its
computational requirements grows quickly with the num-
ber of graph nodes. The second strategy, while slightly
more complex, scales better.

5.1 Greedy Search

Let mpð�Þ be a GPR written using the formulation of Sec-
tion 4, which we instantiate by first selecting a set of D ran-
dom correspondences (line 1 in Algorithm 1)-–we set the
initial size of potential candidates to be the data points
dimensionality. This gives us an initial correspondence set
p0. We then iteratively construct sets of correspondences in
T rounds as follows.

Algorithm 1. Greedy Alignment (GA;GB;QQ;b;T ).

1: Initialize Correspondence Set:
p0  fxAi1 $ xBj1 ; . . . ; x

A
iD
$ xBjDg

2: for t ¼ 0; . . . ; T do
3: fmpt ; s

2
pt
g ¼ ComputeMapping(XA;XB;QQ;pt)

4: Spt ¼ QualityScoreðmpt ;bÞ
5: for i ¼ 1 . . .nA do
6: Bi = ComputeBoundary(mptðxAi Þ; s2

pt
ðxAi Þ;XB)

7: PotCandi ¼ fxBj ; xBj 2 XB ^ xBj 2 Big
8: end for
9: i� ¼ argminifjPotCandijg for jPotCandij 6¼ 0

10: if i� 6¼ ; then
11: xBj� ¼ PickRandomðPotCandi�Þ
12: ptþ1  pt [ fxAi� $ xBj�g
13: else
14: ptþ1  pt�1
15: end if
16: end for
17: return p� ¼ argmaxf1;...;TgSpt

TABLE 1
Summary of Notations Used in This Paper

Gaussian Process Regression

GA;GB Source and target graph

xi Point in RD

D ¼ f2; 3g Dimension of the input points

XA ¼ fxA1 ; . . . ; xAnAg Set of nodes from the source graph

XB ¼ fxB1 ; . . . ; xBnBg Set of nodes from the target graph

QQ ¼ fu0; u1; u2; u3g Set of GP hyperparameters
b Precision of the measurement noise
kðxi; xjÞ Kernel function
nc Number of correspondences

Active Test Search Algorithm

T ATS total number of iterations
pt Partial assignment selected at iteration t
Cpt Set of children of the tree node pt

Spt Quality score of assignment pt

VV ¼ fvvu
1 ;vv

u
0g Scoring noise model parameters
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1) At iteration t, we have a set of correspondences pt

from which we compute (line 3) the mapping mptð�Þ
and covariance s2

pt
ð:Þ using Eqs. (1) and (2).

2) For each unmatched node xAi 2 XA, we search for

potential correspondences xBj 2 XB in the bounded

region Bi determined by the predicted covariance

s2
pt
ðxAi Þ (lines 6-7). We use the Mahalanobis distance

to define the boundary:

M2 ¼ �
mpt

�
xAi

�� xBj
�T �

s2
pt

�
xAi

���1�
mpt

�
xAi

�� xBj
�
;

Bi ¼
�8xBj 2 XB jM2ðmptðxAi Þ; xBj Þ < 2g:

3) We choose the node xAi� with the smallest number of
potential candidates (line 9), and randomly pick one

of them to define the match xAi� $ xBj� , which we add

to the correspondence set pt (lines 11-12). If there is

no point from XB which satisfies the conditions to be
selected, we remove the last added correspondence
from pt and continue searching (line 14).

4) We take the quality score Spt to be the number of
inliers as defined in Eq. (6).

As described in Algorithm 1, this process uses a depth-
first search and is repeated T times, backtracking and select-
ing sets of correspondences of different sizes, unlike RAN-
SAC which uses a fixed set size at each iteration. We then
return the correspondence set p� with the highest score, and
its corresponding mp� . We also terminate if the inlier conse-
nus Spt becomes large enough. An example of this process
is shown in Fig. 2.

The process is controlled by the noise parameter b of
Eq. (2) and the vector QQ ¼ u0; u1; u2; u3f g containing the ker-
nel hyperparameters of Eq. (3). To avoid having to tune
these parameters for each new dataset, we center and scale

the XA and XB coordinates so that their average distance to
the origin is one and perform the computation on the scaled
data sets. As a result, we were able to use the same QQ for all
experiments described in Section 7.

To speed up the computation, we reject matches that
would produce large changes in geodesic distances, which
we define as the length of a path connecting the edges
between two graph nodes xi and xj. Given already estab-
lished correspondences p between graphs, then for each new
potential match, the geodesic distances from the new corre-
sponding points to the alreadymatched nodes in both graphs
have to be approximately proportional. We set the tolerance
for geodesic distance variations depending on the level of
deformations we expect to recover. Proceeding in this way,
the algorithm gains robustness against outliers, while avoid-
ing unnecessary checks, thus keeping a low complexity.
Note that geodesic distances are invariant to rotations, to the
bending of the branches, and to isometric changes.

5.2 Active Test Search

We have tested the algorithm described above on graphs
containing up to 100 nodes, for which the computation
takes more than 1,000 seconds in Matlab on an 4-Core
2.3 GHz 64-bit processor. Because the computational cost
grows exponentially with the number of nodes, it
becomes impractical for larger graphs.

We have therefore developed an alternative approach
that relies on the active testing search [15], [35]. This
involves progressively refining an approximate solution by
making a budgeted number of observations and computing
the posterior distribution over all potential solutions after
each test. The algorithm proceeds iteratively and at each
step selects the correspondence set expected to yield the
highest information gain based on all previous ones.

Fig. 2. Coarse alignment steps. The initial graph structures are depicted in the top left-most figure, the model graph in red and the target in blue.
Exploration of the search space starts by picking randomly two correspondences, highlighted in green, thus roughly fixing scale and orientation.
Then, the next match candidate is chosen among the nodes located inside the bounded regions, which are a function of the GPR predicted covarian-
ces, shown as black ellipses. Every correspondence added to the hypotheses set helps refining the mapping uncertainty. The final correspondence
set defines a coarse alignment of the graphs. Best viewed in color.
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In other words, this method does not perform a depth-
first search, such as the one described in Section 5.1, a tradi-
tional breadth-first search, but a priority search. For this
purpose, as new correspondences are added to partial solu-
tions, it maintains a sorted list of those which are most likely
to lead to a correct solution. It then attempts to extend these
first so that less likely candidates may never be extended at
all, saving computation time.

In addition, our ATS approach is adaptive and allows for
backtracking without hand-tuned pruning of the search
space. It is summarized in Algorithm 2 and we describe it in
more details below.

Algorithm 2. ATS Alignment (XA;XB;QQ;b;T;c).

1: Initialize Priority Queue:
Q Push

��
xAi1 $ xBj1 ; . . . ; x

A
iD
$ xBjD

�
; �
�

2: for t ¼ 1 . . .T do
3: fpt; �t ¼ Pop(Q)
4: fmpt ; s

2
pt
g ¼ ComputeMapping(XA;XB;QQ;pt)

5: Spt ¼ QualityScoreðmptÞ
6: if rðSptÞ > c then return p� ¼ pt end if
7: for pz 2 Cpt do
8: Q Push (pt; �pt rðSptÞ=jCpt j )
9: end for

10: end for
11: return p� ¼ argmaxf1;...;TgSpt

5.2.1 ATS—Coarse Alignment

ATS maintains a list of candidate correspondence sets,
where we denote the probability that the correspondence
set p is part of the correct mapping p� as �p. This list of can-
didates is handled by means of a priority queue Q (line 1 of
Algorithm 2), whose elements are ðp; �pÞ pairs sorted in
order of decreasing probability.

At first, we form all possible sets ofD pairs of correspond-
ences that can be used to initialize a mapping mpð�Þ. We
assume that each p from this initial set has equal probability �.

At each ATS iteration, t ¼ 0; . . . ; T , we want to select the
candidate set pt that is most likely to provide a good map-
ping. We therefore select the first element ðpt; �ptÞ of Q,
which is the one with highest likelihood, and then evaluate
the quality score Spt (line 5) to verify if it is indeed a good
mapping. Given that Spt can be noisy, we consider it to be a
random variable with a known noise model, i.e. the likeli-
hood model P ðSpt jp�Þ is assumed to be explicitly known
and is described in the following section.

To aggregate the information provided by the quality
score, we compute the posterior distribution of the correct
correspondences given the newly observed score.We further
refine our candidates by expanding the candidate set previ-
ously evaluated. In particular, from pt, we generate a new set

of candidate correspondences Cpt ¼ fpt [ fxA
i $ xB

j gj
xB
j 62 ptg, which contains all children of the current node,

where xA
i 62 pt is an additional element ofXA.

As in [15], [35], the posterior for any element p 2 Cpt can
be computed as

� / rðStÞ�pt
jCpt j

; (7)

where rðStÞ is the likelihood ratio (defined explicitly in the
following section). Intuitively, Eq. (7) is simply an applica-
tion of Bayes rule, where �pt is a prior, rðStÞ is the data-term
and dividing by jCpt j attributes equal a priori probability to
all the expanded candidates of pt.

This process is repeated T times or until the likelihood
ratio is higher than c. We then return the assignment p�

with the best score.

5.2.2 Quality Score Selection and Noise Model

To compute the quality score Sp for any set of correspond-
ences p we use the previously described assigned distance
of Eq. (5) and the number of inliers of Eq. (6). In particular,
we compute Sp using the assigned distance when the num-
ber of correspondences jpj is below a certain threshold g,
which we set to 5 in all experiments. Otherwise, we com-
pute Sp using the number of inliers. We found that combin-
ing two different quality functions provides more
informative scores for small and large sets of correspond-
ences. This is similar to the strategies employed in [6].

We consider the quality scores to be noisy random obser-
vations and assume the following observation model

P ðSp ¼ sjp�Þ ¼ N ðs;vvu
1Þ; if dðp;p�Þ ¼ 1

Nðs;vvu
0Þ; if dðp;p�Þ ¼ 0;

�
(8)

where p� is the correct set of correspondence assignments, u
is the number of correspondences in p,N are Gaussian prob-
ability distributions with parameters vvu

1 , vv
u
0 and dðp;p�Þ ¼ 1

if the correspondences of p respect p�, and 0 otherwise. From
thismodel, the likelihood ratio can be computed as

rðSpÞ ¼ N ðSp;vv
u
1Þ

N ðSp;vv
u
0Þ
: (9)

To learn the parameters of the Gaussian distributions
Nð�;vvu

1Þ andNð�;vvu
0Þ, we proceed as follows:

– True distribution. To estimate the parameters for
Nð�;vvu

1Þ, we synthetically generate L point clouds

XA such that nB > nA and fit a minimum spanning
tree to obtain the graph representation. The point

cloud XB is generated by applying random affine
transformations and a smaller amplitude non-linear

deformation to XA. This allows us to know exactly
the true correspondence p� and generate a set

ffXAgl; fXBgl;p�l gLl¼1. Then, we take subsets of the
full set of true correspondences p� and compute Sp.
Once all scores on all L generated sets are computed,
we estimate the Gaussian distribution parameters

fvvu
1gnAu¼1 ¼ fmu

1 ; s
u
1gnAu¼1. An example of the learned

probability densities can be seen in Fig. 3a.
– False distribution. Second, to learn the parameters for
Nð�;vvu

0Þ, we follow a similar sampling approach.
Given the number of possible incorrect correspond-
ences, for partial assignments that include many
assignments, i.e. when u is large, we construct sets of
incorrect correspondences p by starting from a sub-
set of p� and adding a few incorrectly matched
points. Proceeding in this manner, we take false
partial assignments which are close to the true
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correspondence p� because we expect to only
explore the higher depths of the search tree, that is,
high values of u, when our previous hypotheses are
correct. An example of such distribution is depicted
in Fig. 3b.

In practice, we have found the above process for learning the

parameters of the observation models to be effective and

robust. If enough training data with known correspondences

were available, we could learn more complex models for the

positive and negative distributions. In addition, even though

we use synthetically generated data sets, the same learned

parameters are good enough to be used across different experi-

ments in Section 7 and indicates that the parameters are robust

and valid for different tasks.

6 FINE ALIGNMENT

Given two graphs GA and GB, both coarse alignment algo-
rithms described above in Sections 5.1 and 5.2 return a set
of corresponding graph nodes p�, along with the corre-
sponding mappingmð�Þ ¼ mp� and the covariance estimator

s2ð�Þ ¼ s2
p� .

This set of matches p� relates the graph’s nodes and is
therefore coarse. Given that the nodes are connected by
paths,we can refine themapping by establishing correspond-
ences between edge points that lie on these paths.We assume
the node correspondences to be correct and only establish

new ones between points lying on paths linking matching
nodes.We proceed iteratively using the following steps:

1) For each pair of paths connected by corresponding
graph nodes, use the Hungarian algorithm [22],
guided by the current mapping mprð�Þ and covari-

ance estimator s2
pr
ð�Þ, to establish new matches prþ1

between the edge points of the two paths. Constrain
all the matches to have a consistent geodesic distance
with their respective graph nodes.

2) Given these new correspondences prþ1, reestimate

mprþ1ð�Þ and s2
prþ1ð�Þ.

3) Compute the quality of the resulting mapping Sprþ1
using the assigned distance function defined in Eq. (5).

4) If Sprþ1 > Spr , iterate. Otherwise, terminate and

return pr,mprð�Þ, and s2
pr
ð�Þ.

This yields a final expanded set of correspondences pfine, a

mapping mpfineð�Þ, and a covariance estimator s2
pfine
ð�Þ. Note

that we use the same GPR parameters QQ as before. The
whole process is illustrated by Fig. 4 and summarized in
Algorithm 3.

Algorithm 3. Fine Alignment (GA;GB;QQ;b;p�)

1: Initialize Correspondence Set fromCoarseAlignment:
pr ¼ p�

mpr ¼ mp� ; s
2
pr
¼ s2

p� ;
2: repeat
3: prþ1  OptimalAssignment(XA;XB;QQ;pr)
4: fmprþ1 ; s

2
prþ1g ¼ ComputeMapping(XA;XB;QQ;prþ1)

5: Sprþ1 ¼ QualityScore(mprþ1 )
6: until Sprþ1 � Spr

7: return pfine ¼ pr

7 EXPERIMENTS

We evaluate our approach on both synthetic and real data
and compare against state-of-the-art methods. In the
remainder of the paper we will refer to the methods

(c)(b)(a)

Fig. 3. Gaussian noise models for percentage of inliers. (a) Each curve
depicts the Gaussian noise model Nð�;vvu

1Þ for a given depth u of the
tree. (b) Similarly, each curve depicts the noise models for Nð�;vvu

0Þ. (c)
Likelihood ratio rð�Þ betweenNð�;vvu

1Þ andNð�;vvu
0Þ for each value of u.

Fig. 4. Fine alignment steps. Once a coarse alignment of the two graphs (model in red and target in blue) has been found, the algorithm starts match-
ing points lying on the edges. The assignments (depicted in green) are computed using the Hungarian algorithm and constrained by the graph topol-
ogy and GP predictions. After a few iterations, the warped structure (top) is completely aligned to the target graph. For each successive plot, we
zoom into a smaller region (bottom) to better show the algorithm at work. Best viewed in color.
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presented in Sections 5.1 and 5.2 as Greedy Search for Robust
Graph Matching (Greedy-RGM) and Active Testing Search
for Robust Graph Matching (ATS-RGM), respectively. We
will initially test all methods on synthetically generated data
with increasing levels of noise, non-rigid deformation, miss-
ing points and different initial conditions.Wewill then show
the performance of the algorithms on 2D and 3D biomedical
images, including retinal images, neuronal structures and
heart angiograms. The Gaussian Process parameters b and ui
should ideally be estimated from training data. However,
due to the limited amounts of available data in our applica-
tions, we will manually select these parameters once for all
experiments. We keep the problem of estimating them from
validation data as a possible future work direction.

We will compare our algorithm to several others for non-
rigid point matching and shape recovery. As representative
examples of point set registration we have chosen the origi-
nal iterative closest point [4], the Thin Plate Splines-Robust
Point Matching (TPS-RPM) [8], the coherent point drift [23]
and the recent Gaussian Mixture Model Registration
(GMMREG) proposed in [17]. As examples of graph match-
ing approaches, we have considered Spectral Matching
(SM) [18] and Integer Projected Fixed Point (IPFP) [19],
which can be combined, as well as Path Following Algo-
rithm (PATH) [39].1 The results of the coarse alignment
obtained by ATS-RGM and our previous Greedy-RGM ver-
sion are virtually the same, therefore only the results for
ATS-RGM are shown when comparing accuracy.

We ran all the algorithms on a 2.3 GHz four-Core 64-bit
machine with 8 GB RAM. Most of the aforementioned algo-
rithms are implemented using a combination of Matlab and
Mex-C++ functions. Similarly, we implemented the skeleton
of our approach in Matlab and used C++ for the most time-
consuming parts: the Gaussian process regression routines
and the active testing search.

7.1 Synthetic Experiments

To evaluate our approach against others, we generated pairs
of trees composed of a model tree computed as the minimum
spanning tree of N ¼ 50 randomly selected 2D points in a
2� 2 bounding box and target tree obtained by deforming it.
More specifically, let xi be the nodes of the model tree and
x0i those of the target tree. For all i from 1 toN , we write

x0i ¼ RðfÞ
Sx 0
0 Sy

� 	
xi þ Tx

Ty

� 	
þDðpdÞ þ �ðsnÞ; (10)

where the deformation includes the following components.

– Rotation, scaling, and translation. The target model is
rotated by an angle f, translated by Tx and Ty, and
scaled by Sx and Sy.

– Non-linear deformation. We add a non-linear warping
DðpdÞ defined as a linear combination of B-splines
whose control points are uniformly distributed in
the input space. Its magnitude is controlled by pd,
which specifies the amount of displacement of the
B-spline coefficients.

– Noise. We perturb the node locations of the target
graph by a zero mean Gaussian noise �ðsnÞ, where
sn is the standard deviation.

– Outliers. We produce outliers by randomly and inde-
pendently removing a percentage po of the total
number N of nodes from both the model and target
trees. As a result, some branches appear in one tree
and not the other.

We use the pairs of trees created in this manner as input to all

algorithms. To ensure a fair comparison, we either set the

required parameters to the values suggested in the correspond-

ing papers, or manually modified them in case they did not

provide good results. The exact values for these configuration

parameters are as follows:2

– ICP. Does not require extra parameters.
– TPS-RPM. We set the initial temperature Tinit to half

the maximum euclidean distance between the nodes
of the model tree, and the final temperature to Tfinal ¼
0:01 � Tinit. The remaining parameters are set to

�init
1 ¼ 1 and �init

2 ¼ 0:01, as suggested by the authors.
– GMMREG. We set the maximum number of itera-

tions to 10,000 with a ¼ 1 and b ¼ 2.
– CPD. We use a non-rigid configuration of the algo-

rithm for all the experiments. We set � ¼ 3, b ¼ 3
and outliers ¼ 0:2.

– SM and IPFP. We build the affinity matrix using the
description provided in [18]. As we do not have
appearance information, we set the label affinity term
Mða; aÞ to zero, making the matching score depend
solely on the pairwise geometric information. The

pairwise affinity is set to Mða; bÞ ¼ 4:5� ðdij�di0j0 Þ
2

2s2
d

if

jdij � di0j0 j < 3sd and zero otherwise.
– PATH. We build the graphs as suggested by the

authors for the application of “alignment of vessel
images”. We connect each node xi to all points xj

within a distance r, and each edge is assigned a
weight wi;j ¼ expð�jjxi � xjjj2Þ; 8xi; xj 2 X; jjxi � xjjj2 < r.
This is done for all nodes of both model and target
trees. In our case we set r ¼ 0:3 � dmax, where dmax is
the maximum euclidean distance between the points
of the model tree.

7.1.1 Performance Evaluation

We tested all algorithms for robustness to rotation, deforma-
tion, and topology changes by varying the geometric defor-
mation parameters of Eq. (10) as well as the percentage of
missing nodes p0. We performed four different independent
experiments. For each we generated 50 pairs of model and
target trees using the same set of parameters and a fixed
small change in scale and translation. In Experiment #1 we
evaluated the influence of noise on the points 2D locations
by sweeping the range sn 2 ½0; 0:04� and setting po ¼ 5%,
pd ¼ 0:2 and f ¼ p

6. In Experiment #2 we tested the behavior

of the algorithms against increasing levels of non-linear
deformation, varying the deformation parameter within the

1. All implementations were made available by respective authors,
except of ICP, which was made available by a third party and verified
to be a correct implementation of the algorithm.

2. Note that for ease of reference we are keeping the same parameter
notation here as in the original papers. While some of these parameters
are also used in our algorithm (i.e.: w, T , sd) their meaning are not nec-
essarily the same.
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range pd 2 ½0; 2�, and setting the rest of parameters to con-
stant values sn ¼ 0:005, po ¼ 5%, and f ¼ p

6. In Experiment #3,

we assessed the robustness of the algorithms to the presence
of outliers by randomly deleting a percentage po 2 ½0%; 90%�
of nodes in both trees and setting sn ¼ 0:005, pd ¼ 0:2 and
f ¼ p

6. Finally, in Experiment #4we tested the invariance of all

the methods to initial conditions by changing the orientation
of the target within f 2 ½�p;p� and fixing the rest of the
parameters to sn ¼ 0:005, po ¼ 5% and pd ¼ 0:2. To give sig-
nificance to the magnitudes of the experimental parameters
we consider, the images below each performance curve of
Fig. 5 show different samples of the same model graph and
different target graphs generated by varying the levels of
noise, deformation, outliers and rotation.

For each experimental parameter setting and each algo-
rithm, we computed the average percentage of correct
matches over 50 tree pairs and plot the results in Fig. 5.
Under favorable conditions, that is, relatively small graphs
with less than 50 nodes, uncorrupted data and purely affine
transformation, all methods exhibit similar performance.
However, when we progressively introduce artifacts the dif-
ferences become clear. For instance, it can be seen that CPD
deals poorly when there are missing parts or when the ini-
tial rotation is above 70 degrees, as stated in their paper.

Similarly, the rigid ICP can only find local solutions, even
when dealing with much smaller initial rotation angles.
Graph methods (PATH, SM+IPFP) are able to find global
solutions as they are invariant to initial conditions by
construction. However, as shown in the first row of Fig. 5,
they are very sensitive to modifications in the topology of
the graph. TPS-RPM and GMMREG underperform our
approach for each of the tests. In short, each one of the
competing methods can address some of the difficulties,
however only ours can handle all of them.

The results of Fig. 5 also indicate the suitability of using
our approach in sub-graph matching. The robustness of
our approach stems from the randomized search strategy,
that allows searching for a global minimum and makes the
algorithm insensitive to initial rotations. This is true for
both Greedy and active testing search. On the other hand,
the non-rigid transformation based on Gaussian process
regression provides robustness to large amounts of noise
and deformation.

7.1.2 Computational Cost

Finally, we compared the computational cost of the two
versions of our algorithm and RANSAC [13]. We gener-
ated a new set of experiments in which the new model

Fig. 5. Quantitative evaluation on synthetic data. Performance tests of all competing methods in different configurations of noise (Exp. #1), deforma-
tion (Exp. #2), outliers (Exp. #3) and rotation (Exp. #4). Curves represent the median of the correct correspondences percentage achieved by each
method. Below each result, we show the tree model used in the experiments (in blue) and corrupted illustrations of how each parameter affects the
transformed graph (in green).
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and target tree pairs are as before except for the fact that
we varied the number of nodes from 20 to 200 and per-
formed an affine transformation plus random noise of
small amplitude. As illustrated in Fig. 6, the computation
time grows much faster for both Greedy-RGM and RAN-
SAC than for ATS-RGM, which remains manageable.
Both versions of our algorithm (ATS-RGM and Greedy-
RGM) yield similar performance, only differing in the
time consumed to reach the global solution. Note that,
since the transformations are almost affine, the absolute
run-time value is lower than some of the real experiments
we consider in the next section.

Finally, we would like to point out that the purely local
methods, such as CPD and ICP, tend to be much faster and
can deal with thousands of points in reasonable amounts of
time. Yet, as we have seen in the fourth experiment of Fig. 5,
these algorithms require accurate initializations. On the
other hand, the graph matching methods, such as SM þ
IPFP or PATH, treat the problem as an integer quadratic
program (IQP) and hence are limited by the construction of
the pairwise score matrix whose size grows quadratically
with the number of nodes.

7.2 Real Data Experiments

We next present several examples of results obtained by
ATS-RGM and Greedy-RGM on real biomedical data sets.

The graphs were extracted semi-automatically using a
plugin [3] for the Fiji platform [29].

To evaluate the accuracy of the different methods in the
absence of ground truth, we assigned each node in the
deformed graphs—overlaid in red for our method and yel-
low for CPD on Figs. 7, 8d, 8e, and 8f—to its assumed match
in the target graph overlaid in blue. To this end, we use the
Hungarian algorithm to find it by taking the euclidean dis-
tance as the cost to minimize, while rejecting outlier
branches by setting a distance threshold defined ad hoc for
each of the data sets. We use this error measure since there
is no true correspondence between the sampled points
along the edges of the graphs. This error measure gives an
idea of the quality of the alignment.

In Table 2, we show these errors and the corresponding
computation times. For ATS-RGM and Greedy-RGM, we
distinguish the times required for coarse and fine align-
ment. We have not provided the error for IPFP and PATH
because these methods only give correspondence hypothe-
ses, and are unable to define a valid transformation without
an outlier rejection step.

In Fig. 7 we show registration results for retinal fundus
vascular graphs that are deformed from one image to the
next because the camera is looking fromdifferent viewpoints.
This produces distortions of the curved retinal surface’s pro-
jection, that are well modeled by an affine transform. Thus,
there is very little non-linearity in the deformation and these
results are similar to those of [11], even though the trees only
partially overlap. However, as the amount of spurious
branches is quite large, CPD fails to recover the correct shape.
In contrast, our approach can naturally handle such artifacts.

In the 2D X-ray angiography images of Fig. 8 the non-
linearities of the transformation are much more evident. As
shown in the zoomed-in area, our algorithm nevertheless
does a good job of recovering this more complex deforma-
tion and aligning the trees. Again, we assessed the perfor-
mance of the CPD on these images and observed that it
could not retrieve a correct solution unless a relatively accu-
rate initialization was provided. Even when we supplied
with our coarse transformation estimate, CPD could only
deal with small non-linearities.

Fig. 6. Computational Cost. Processing time required by RANSAC,
Greedy-RGM and ATS-RGM as a function of the number of nodes. We
computed the median of 20 experiments for each of the methods.

Fig. 7. Retinal fundus images used in [11]. Each row contains a single experiment. (a,b) Two images of the same retina taken from different view-
points, with the vascular trees overlaid in red and blue. (c) The first tree is overlaid in red over the second image after non-linear transformation, which
corresponds to the output of the Greedy-RGM coarse alignment. (d) Final result of our non-rigid registration: the graph from the first image is overlaid
in red over the second image. (e) Our result is superposed with the coherent point drift alignment, in yellow. (f) Detail of the rectangle in (e). Our algo-
rithm behaves well on this data set, while CPD fails to recover the correct shape because there are too many non-corresponding branches. Best
viewed in color.
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Next, we register two 3D data sets. A blood vessels net-
work in brain tissue is shown in Fig. 9. One of the 3D image
stacks is acquired using a two-photon microscope and the
other using bright-field microscopy after excision and
fixation. As the resulting segmentations are partially
aligned, the experiment’s difficulty consists in identifying
the non-linearities of the deformation. Our algorithm clearly

outperforms other state-of-art methods and provides results
similar to the CPD. In the zoomed image of Fig. 9e it is pos-
sible to appreciate it. Although CPD works well when the
initial conditions are favorable, it completely misaligns one
of the branches while our result respects the topology.

Finally, we register the 3D neuronal stacks extracted
from the brain tissue of Fig. 1 using light (LM) and electron

Fig. 8. Angiography images from a beating heart. (a) Two different images with extracted vascular trees overlaid in red. (b) Two other images taken
later in the heart cycle with extracted vascular trees overlaid in blue. (c) The original red trees are shown after the non-linear coarse alignment of the
tree nodes, obtained using our Greedy-RGM. (d) The resulting warped trees are overlaid in red after non-linear registration. Note that the trees—in
particular in the first example— have distinctly different topologies, which affects our algorithm very little. (e) Comparison with the result obtained
using non-linear coherent point drift, in yellow. (f) A zoom of a region of interest. Using the graph intrinsic geometry grants us robustness against ves-
sel bendings and outliers, achieving a better registration of the two shapes. Best viewed in color.

TABLE 2
Error: Geometric Error on Real Data Sets for the Proposed Approach and Other State of the Art Methods

Data Set ATS-RGM Greedy-RGM CPD [23] ICP [4] TPS-RPM [8] GMMREG [17]

Retina I Error (pix) 2.68 2.68 20.67� 20.04� 19.32� 21.30�
(Fig. 7 Top) Time (s) 1293.3 + 406.4 5998.9 + 336.8 580.2 24.3 4236.8 139.7
Retina II Error (pix) 2.94 2.51 20.45� 20.46� 17.79� 20.84�
(Fig. 7 Bot.) Time (s) 280.0 + 301.4 16353.1 + 261.2 468.5 67.9 5791.1 147.1
Angio I Error (pix) 1.16 1.05 2.95 9.77� 2.92 4.21
(Fig. 8 Top) Time (s) 307.8 + 129.4 1240.9 + 162.8 144.3 8.1 726.7 31.9
Angio II Error (pix) 1.57 1.81 3.42 4.84� 3.21 6.56
(Fig. 8 Bot.) Time (s) 167.9 + 77.2 112.0 + 95.4 68.8 5.0 327.0 21.1
Brain vessels Error (vox) 4.38 4.89 4.19 7.23 6.67 12.71
(Fig. 9) Time (s) 593.7 + 55.5 15029.1 + 19.9 37.1 30.9 334.8 31.2
Neuronal Error (mm) 0.05 0.07 0.25� 0.27� 0.20� 0.46�
(Fig. 10) Time (s) 42.4 + 15.8 116.1 + 18.2 22.2 28.2 28.5 22.4

Failed experiments (producing incorrect alignment) are marked with an *, see Fig. 7d or Fig. 10d for examples. Elapsed Time: Processing time for each method,
in seconds. For ATS-RGM and Greedy-RGM, we distinguish the timesrequired for coarse and fine alignment.

Fig. 9. Blood vessels in brain tissue. (a) Segmented two photon microscopy data. (b) Segmented bright-field optical microscopy data. (c) Registration
of structures using active testing search, in red. (d) Alignment using CPD, in yellow. (e) A view in detail at the results of both ATS-RGM and CPD.
Best viewed in color.
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(EM) microscopy, where the EM block is a small section of
the LM volume and has been non-linearly deformed due to
the extracting process. The intended application is to auto-
matically localize the EM volume in the corresponding part
of the LM volume. Even though the two images look
extremely different, our algorithm returns a valid deforma-
tion as shown in Fig. 10. No other method was able to
recover the correct alignment.

8 CONCLUSION

We have shown that our algorithm can match graphs
with neither appearance information nor initial pose esti-
mate, while allowing for partial matches and non-linear
deformations. This is made possible by using Gaussian
process regressions to model the geometric mapping
from one graph to another and using this mapping to
progressively constrain the search for correspondences
between graph nodes. Because this mapping is non-
parametric, we can effectively handle situations contain-
ing high levels of non-linear deformations with many
nodes and without assuming any particular transforma-
tion model beforehand.

For relatively small graphs a simple depth-first
approach to establishing the correspondences yields good
results. As the graphs become bigger, the set of all possi-
ble correspondences becomes too large and we therefore
proposed a more sophisticated approach that ranks par-
tial solutions and attempts to extend the most promising
ones first. This allows us to efficiently and correctly align
biological structures that are non-linearly transformed
and extracted with different techniques, without the need
of prealigning them. We have also shown in quantitative
experiments that our method consistently outperforms
state-of-the-art.

Yet, in cases where the number of points to match
exceeds a few thousands, the initial search space is exces-
sively large and it remains challenging to find promising
regions of the search space efficiently. For this reason, we
plan to investigate how appearance data can also be
included in our framework to provide more effective
strategies of exploring the search space. Similarly, in
cases where the model parameters used are very different
from the true structure, our efficient search method can
be ineffective. As such, we will also explore how to
estimate the parameters of our model in a exploration-
exploitation scenario.
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