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Abstract. Image segmentation is widely used as an initial phase of many image analysis tasks. It is often advanta-
geous to first group pixels into compact, edge-respecting superpixels, because these reduce the size of the segmentation
problem and thus the segmentation time by an order of magnitudes. In addition, features calculated from superpixel
regions are more robust than features calculated from fixed pixel neighborhoods. We present a fast and general multi-
class image segmentation method consisting of the following steps: (i) computation of superpixels; (ii) extraction of
superpixel-based descriptors; (iii) calculating image-based class probabilities in a supervised or unsupervised manner;
and (iv) regularized superpixel classification using Graph Cut. We apply this segmentation pipeline to five real-world
medical imaging applications and compare the results with three baseline methods — pixel-wise Graph Cut segmen-
tation, supertexton-based segmentation, and classical superpixel-based segmentation. On all datasets, we outperform
the baseline results. We also show that unsupervised segmentation is surprisingly efficient in many situations. Un-
supervised segmentation provide similar results to the supervised method, but does not require manually annotated
training data, which is often expensive to obtain.
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1 Introduction

Image segmentation is a key image processing task with a vast range of applications, especially
in biomedical imaging,1–3 including organ segmentation,4 object detection and extraction,5 or pre-
processing for feature extraction or object tracking.

Segmentation techniques6–8 have evolved from considering pixels independently to using infor-
mation from local neighborhoods via Markov Random Fields (MRF) and graph representations.9–12

Taking pixel neighborhoods into consideration improves the segmentation performance, at the cost
of increased computational complexity.

With the steadily growing number and spatial resolution of the images to be processed, we
need methods which are simultaneously fast and accurate. The size of microscopy images may
be up to 1010 pixels for a histology slice. Current segmentation techniques can be very slow,
specially if their computational complexity is not linear with respect to the number of pixels, as is
the case e.g. for many MRF optimization techniques. One way to address this issue is to work on
superpixels13 instead of pixels. Superpixels group neighboring pixels together on the basis of their
spatial and color similarity, and can be regarded as edge-preserving downsampling. Assuming
that class boundaries coincide with superpixel boundaries, this allows image segmentation to be
performed on the superpixel representation,14–16 which leads to huge computational savings. At
the same time, it is possible to use more reliable superpixel-based descriptors than standard fixed-
neighborhood descriptors.
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1.1 Previous work

Existing superpixel-based segmentation methods14, 17–20 usually consist of 3 steps: (i) compute suit-
able superpixels, preserving required details; (ii) extract superpixel appearance features ; (iii) use
a classifier to assign labels to superpixels and extend them to the whole image. The classification
can be performed by a standard classifier in a supervised14, 17, 19, 20 or unsupervised manner.15, 16, 21, 22

The extracted features include color,15, 22 texture,17, 19 and shape.14 It has been shown that super-
pixels can perform better than direct pixel-level segmentation, with lower demands on time and
resources.

In this work, we extend this classical segmentation pipeline by spatial regularization using
Graph Cut10 to encourage spatial continuity. The most similar previous work was done by Kitrun-
grotsakul,23 Kitrungrotsakul also uses superpixels and Graph Cuts, but is nevertheless focused on
a single application — binary single object segmentation. Briefly some other work in this field:
Puniyani22 uses a much simpler superpixel extraction method and much simpler edge terms. Ye24

uses mean shift clustering, and Hsu25 uses region merging, while Wang26 considers long-range
similarity-based interactions instead of interactions based on neighborhoods.

Our key contributions with respect to23 are as follows: First, we formulate the task as general
multi-class segmentation. Second, we propose a new formula for the edge weights based on dif-
ferences in model-based class probabilities. In experiments, this approach is shown to perform
better than traditional methods. Third, our method incorporates both unsupervised and supervised
modeling. Fourth, we include a comprehensive set of experiments that shows that our method can
be applied to four different applications with little adjustment.

1.2 Organization of this paper

This paper is organized as follows. Section 2 discusses the proposed methods. Section 3 presents
the applications, datasets and metrics used for the evaluation, as well as a description of the baseline
methods. Section 4 contains experiments on all datasets, and results.

2 Method

Let us have an input image I : Ω→ Rm defined on a pixel grid Ω ⊆ Zd. We shall decompose the
image pixels into superpixels, Ω =

⋃
s∈S Ωs, where Ωs denotes pixels belonging to a superpixel s

and S is a set of all superpixels. We will then try to find a superpixel segmentation function Y :
S → L, where L is a set of class labels. Superpixel segmentation Y can easily be interpolated to
all pixels by assigning its label to all pixels within a superpixel, yielding a pixel-level segmentation
function YΩ : Ω→ L. The scheme of the complete segmentation pipeline is presented in Figure 1.

2.1 Minimization problem

For each superpixel s ∈ S, we compute a vector of (color and texture) features xs ∈ X . We find
the superpixel classes ys = Y (s) from the maximum a posteriori (MAP) estimate

Y ∗ = arg max
Y

P (Y |X) = arg max
Y

p(X|Y ) · P (Y )

p(X)
(1)

where P (Y ) is the a priori probability of a specific segmentation (of all pixels) regardless of the
descriptors, and p(X|Y ) is the conditional density of the setX of all descriptors xs given the labels
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Figure 1 The scheme of the complete image segmentation pipeline with supervised and unsupervised learning.

Y , and p(X) is the marginal probability density function of X , which is constant for given image
I and independent on Y .

We express the spatial dependency of superpixel labels using a Markov random field and fac-
torize the term P (Y ) as follows

P (Y ) =
∏
s∈S

h(ys) ·
∏

(i,j)∈N⊆S2

R(yi, yj) (2)

The first term, h : L→ R, is the prior probability of each class, independent of position. The sec-
ond term R(yi, yj) describes the relation between the classes of neighboring superpixels, favoring
neighboring superpixel classes to be the same. The R can be learned from reference segmentation
or can be designed by the user. Because superpixel features xs are conditionally independent
given Y , equation (1) can be written as follows:

Y ∗= arg max
Y

∏
i∈S

(
p(xi|yi) · h(yi)

)
·
∏

(i,j)∈N

R(yi, yj) (3)

Applying the logarithm to equation (3), we obtain the widely used Potts model which can be
solved by Graph Cuts,9 where we minimize the sum of unary and pairwise potentials

Y ∗ = arg min
Y

∑
s

− log (p(xs|ys) · h(ys))︸ ︷︷ ︸
Us(ys)

+
∑

(i,j)∈N

− logR(yi, yj)︸ ︷︷ ︸
βwi,jB(yi,yj)

(4)
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input image N = 15 pixels N = 30 pixels N = 45 pixels

Figure 2 We show the input image (a) and its approximation using mean colors of the superpixels. The SLIC
superpixel regularization is r = 0.2, and the sizes are 15, 30 and 45 pixels.

where we have factorized the regularization into a global coefficient β, position-dependent weight
wij and a label-dependent part B. The unary term Us(ys) represents the observations (image) and
the a priori class probabilities, and the binary potential B : L2 → R leads to spatial regularization.
If training data for estimating R is not available, we set B(k, l) = Jk 6= lK.

2.2 Superpixel clustering

We use the Simple Linear Iterative Clustering27 (SLIC) algorithm to calculate the superpixels, so
that the superpixels are compact both in space and in color. The SLIC algorithm is an adaptation
of a widely-used k-means clustering algorithm. It uses a combined color and spatial distance

D = dc +
m

N2
· ds (5)

The color distance dc is a Euclidean distance calculated in the CIELAB color space, and ds is a
Euclidean distance measured in pixels. The superpixel centers are initially placed on a grid with
spacingN , and the search is limited to a 2N×2N region, which greatly reduces the computational
complexity. Instead of the user-provided parameter m, which can be seen as compensation for
superpixel size N , we will use a relative regularization parameter28 r ∈ (0, 1), with m2 = N3r2.

2.3 Feature space

We create a feature vector xs =
[
xcs x

t
s

]
for each superpixel s, containing color features xcs and

texture features xts.
17 The features (or descriptors) are normalized element-wise as x = x−µx

2(3σx+1)

where µ and σ are vectors of the means and standard deviations of each component over the whole
dataset.

Color features For each color channel Ic, we define a feature vector [µs(I
c), σs(I

c), Es(I
c),Ms(I

c)],
where the components are the mean, the standard deviation, the energy, and the median of that color
channel over the superpixel. To get the full color feature vector xcs, the vectors for all three color
channels are concatenated. The mean color feature is illustrated in Figure 2. A different color
spaces or a combination thereof can be used (e.g. RGB, HSV, Lab).18 In our experiments, we used
RGB color space.
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(a) (b) (c) (d)
Figure 3 Sample gray-scale image (Drosophila ovaries) (a) and responses to some Leung-Malik filter banks (b-d).

Texture features The Leung-Malik (LM)29 filterbank is a multi-scale, multi-orientation filter-
bank with 48 filters in total. It consists of the first and second derivatives of a Gaussian at 6
orientations; 8 Laplacians of Gaussian filters; and 4 Gaussians. To characterize the texture, we
compute the responses F c

j = Ic ∗ LMj , for each color channel independently17 (see Figure 3 for
examples). To achieve rotation invariance, we take for each pixel the maximum response over all
orientations, determining the orientation and thus reducing the number of features per channel to
18. As above, for each filter and each color channel, we calculate the mean, the standard deviation,
the energy, the median, and also the mean gradient amplitude Gs(F

c
j ) = 1/|Ωs|

∑
‖∇F c,j

s ‖. To get
the feature vector xts, the vectors [µs(F

c
j ), σs(F

c
j ), Es(F

c
j ),M(F c

j ), Gs(F
c
j )] are concatenated for

all j and for all color channels c.

2.4 Multi-class modeling

For each class k ∈ L, we define a model p(x|ys = k) for the feature vector probability density,
with parameters θk.

Gaussian mixture model In the unsupervised case, we use the Gaussian Mixture Model (GMM).22

We assume that for each class, the distribution on xs is normal: p(xs) =
∑

k∈L ρkN(xs;µk,Σk)
for ys = k. The overall probability p(xs) for unknown ys is therefore a mixture, with mixing
probabilities h(k), used in (3) and (4). Parameters µk, Σk, and h(k) are estimated using the
Expectation-Maximization (EM) algorithm.21 The basic scenario is an estimation of GMM for
each image independently. This can be used in the situation when each segmented image is dif-
ferent from the others. Another case is estimating GMM over a set of images where we expect a
similar appearance model. Both approaches are explored in Section 2.6.

Classifier-based model In the supervised case, we train a standard classifier such as Random
Forest, logistic regression, k-Nearest Neighbours (KNN), Support Vector Machine (SVM) or Gra-
dient Boost on a set of training examples. All these classifiers can produce the probability p(xi|ys),
which we require in equation (1). The class labels are usually provided pixel-wise in the training
data. We convert pixel labels to superpixel labels by taking the majority class. Superpixels, where
less than 98 % belong to a single class are ignored — this way we lose less than 5% of the training
instances while avoiding misleading training data.
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Figure 4 Visualization of superpixels (a) colored according to the computed unary potential Uk for classes k = 0, 1, 2

where the intensity of the green color reflects the potential. The class models were estimated from the image as
GMM where images (b-d) are background, gene activation and the non-activated disc, respectively.

2.5 Graph Cut — Potentials

Following (4), we set the unary potentials Uk
s . The visualization is presented in Figure 4 for an

example image where the GMM for 3 classes was learned using the EM algorithm.
From the training data, we can learn the probability p(k, l) of two superpixels belonging to

classes k and l being neighbors. Then we set the penalty as B(k, l) = − log(pk,l). In the case
of non-availability of labeled training data, we turn to the use of unsupervised learning e.g. the
Gaussian mixture model. We create the B(k, l) matrix uniformly with zeros on the diagonal and
with ones elsewhere.

2.6 Graph Cut — Edge weights

Let us turn our attention to the weights wij in (4), which we shall call edge weights, as they
correspond to edges between nodes of the graph in the Graph Cut method. In our case, the nodes
are superpixels. The idea is to penalize class boundaries between similar superpixels, and so
the potentials can be seen as global pasteurization and the weighted edges can be seen as local
regularization. Taking advantage of the rich superpixel descriptors, we show several formulas for
wij , three from the literature and one new formula. The weights are normalized by the Euclidean
distance dE(i, j) between the two object,10 in our case superpixel centers i, j ∈ S, to compensate
for nonuniformly distributed superpixels. The d̄SE is the mean Euclidean distance between all
neighbouring superpixels dE(i, j).

Spatial weighting is given bywi,j =
d̄SE

dE(i,j)
. It is the simplest case and it can be seen as a distance

weighted Potts model.

Color weighting Normalized color distance10, 30 is also often used, assuming that superpixels
with similar colors should be grouped together. We use the Euclidean distance dE(·, ·) of the
superpixel mean colors Īs in the RGB color space, normalized by its standard deviation σc over all
superpixel colours.

wi,j = exp

(
−dE(Īi, Īj)

2σ2
c

)
· d̄SE
dE(i, j)

(6)

We have observed that this approach works well for color images. For images without significant
color differences, it has similar values as a spatial edge weight above.
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Figure 5 The edge weights wi,j represent the intensities of the green lines (top row) with the resulting segmentation
(bottom row). The same U and B potentials are used. The reference segmentation is presented in Section 3.1.2.

Feature weighting Color distance is a special case of a distance between feature vectors. An-
other option is to take the Manhattan distance dM(·, ·) between the complete feature vectors26 xs,
normalized by their standard deviation σX over all superpixel features. We use Manhattan distance
because the order of elements in feature vectors may be arbitrary.

wi,j = exp

(
−dM(xi,xj)

2σ2
X

)
· d̄SE
dE(i, j)

(7)

The disadvantage of feature weighting is that it may give too much weight to irrelevant features.

Model weighting. A new edge weighting that we propose is based on the comparison of a pos-
teriori class probabilities derived from the learned model. The rationale is that the model ‘knows’
what is important for a particular application, by translating the high-dimensional feature vector
into a low-dimensional vector of |L| probabilities. We compute the l∞ (Tchebychev) distance
dT (·, ·), even other metrics can be used, between the vectors of (non-normalized) class probabili-
ties pks = p(xs|ys = k) · h(ys) ∝ P (ys = k|xs). The probability differences dT are normalized by
their standard deviation σp over all distances.

dT (pi, pj) = max
k

(
|pki − pkj |

)
wi,j = exp

(
−dT (pi, pj)

2σ2
p

)
· d̄SE
dE(i, j)

(8)

Figure 5 shows examples of the use of different edge weights. We see that the newly proposed
model weighting method works very well. See also Section 4.2.
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3 Datasets and baseline methods

We shall compare the performance of our method with existing algorithms for five different appli-
cations, described below. First, we introduce the datasets and their usage in biomedical imaging.
Then, we describe the baseline methods and the evaluation metrics.

3.1 Datasets and applications

3.1.1 Langerhans islets

Transplantation of Langerhans islets is a promising treatment for type I diabetes. The first ap-
plications is segmenting insulin-producing Langerhans islets1 from microscopy images into three
classes (islets, exocrine tissue, and background), which is required for evaluating the graft quality
before transplantation. The aim of this segmentation is to make automatic measurements of the
islet contents and of the purity of the samples, i.e. the ratio between the islet and the exocrine tissue
area. Here we only compare the purity results. Figure 6 shows four examples of these images with
expert segmentations.

Human islets were isolated from cadaver donors according to the protocol published in Ri-
cordi et al.31 There is a group of images consisting of 46 images from 4 independent donors,
together with complete annotation, and the purity was assigned by a medical expert. The images
were acquired using two different stereo microscopes (Olympus SZ60) equipped with the same
type of camera, but using different settings. We applied color normalization and nonuniform
background illumination compensation.32

The baseline method is called NPA,33 and it is a specialized clustering method for segmenting
Langerhans islets and exocrine tissue. It is based on over-clustering and cluster merging in HSV
color space with a small number task specific parameters. Purity computed from a segmentation is
compared with Expert Visual Assessment (EVA),33 which is the mean of the visual estimates from
five experts. We calculate the Pearson correlation coefficient and the mean absolute relative error
MARE = 1

N

∑N
i=1 |(PuEi − PuAi )|/PuEi , where PuE denotes purity estimated by the EVA method,

and PuA denotes purity computed from automatic segmentation.

3.1.2 Drosophila imaginal discs

Drosophila melanogaster, the fruit fly, is often used in biological research, due to its high genetic
similarity to humans,5, 34, 35 its rapid evolution, and its short life cycle. These features allow genetic
changes to be observed easily across generations. Imaginal discs are parts of the larvae from
which the adult body parts develop. The expression of about 6000 genes was imaged by RNA
in situ hybridization.36 Each gene was imaged a number of times for four imaginal disc types,
with the aim of determining the role of the gene in the development process.37 The disc anatomy
is represented by the gray-scale part of the image, with the gene expression in blue (Figure 7).
Segmentation of the disc is needed for the subsequent analysis, which consists of aligning all discs
of the same type, detecting the activations and processing them statistically.38 This dataset contains
several thousand images of imaginal discs of 4 types – wing, leg, eye and haltere, respectively.

1All work with animal and human tissues was performed in accordance with approval 712a/13 (G 13-04-10) issued
by the Ethics committee of the Institute for Clinical and Experimental Medicine and Thomayerova Hospital (Prague,
Czech Republic).
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Figure 6 Examples of RGB microscopy images of Langerhans islets (top row) and their expert segmentation (bottom
row) with islets in red and exocrine tissue in green. In the middle row, the class contours are shown as gray-scale lines,
superimposed over the original images.

The evaluation is done on 15 images of imaginal disc type 3 — eye, for which we have reference
segmentation.

3.1.3 Drosophila ovaries

Drosophila ovaries were imaged in 3D using fluorescence microscopy and fluorescently labeled
RNA probes, in order to study gene expression patterns during Drosophila oogenesis. The images
contain two channels, cellular anatomy and gene expression patterns. Only the cellular anatomy
channel is used here. Almost 20 thousand 3D volumes were acquired, from which the experts
extracted relevant 2D slices, each of them typically containing a few eggs, linked into a chain
(see Figure 8). We have reference segmentations for 75 cropped images of individual eggs and 15
additional complete slices. The final aim of this segmentation is to identify and segment individual
eggs, which will be further processed in a similar manner as the imaginal discs.38

The baseline method uses supertextons (texture descriptors computed on superpixels).17 It is
based on computing texture descriptors on superpixels, similar to this work, but it uses textons, a k-
nearest neighbour classifier on the supertexton dictionary, and there is no spatial regularization.

3.1.4 Histology slices

Histology slices are routinely used for diagnosing cancer and other diseases. Consecutive tissue
slices were stained with several different stains, e.g. hematoxylin and eosin (H&E), platelet en-
dothelial cell adhesion molecule (PECAM-1, also known as CD31), antigen KI-67 (Ki67), and pro-
Surfactant Protein C (proSPC), see Figure 9. High-resolution whole-slice images were acquired.
Segmentation is an initial step in automatic analysis, and is used to suppress the background, to
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Figure 7 Example of microscopy images of Drosophila imaginal discs (top row) and manual segmentations (bottom
row), with the gene activation class colored in red and the rest of the imaginal disc colored in green. In the middle row,
the class contours are shown as red and blue lines, superimposed over the original images.

support the alignment algorithm,39, 40 or to calculate the proportion of various tissue types. For
this task, no reference segmentation is available, so we can evaluate the segmentation results only
in terms of similarity among consecutive slices. The final task is to register all these slices to-
gether and to combine the information they provide, which is challenging due to large appearance
differences.40

3.1.5 Computed Tomography images of the human chest

The fifth application is in segmenting lungs in Computed Tomography images of the human chest
(see Figure 10). This is challenging due to the high noise and the presence of nodules inside
the lungs. The standard methods use thresholds and some sophisticated approaches.3 Some new
approaches have been explored, e.g. the use of Graph Cut at pixel level,41 which is not convenient
for large images, and the use of prior shape information.42 Here, we present just a few sample
images without expert annotation.

3.2 Common baseline segmentation methods

Together with the baseline methods specific for Langerhans islets and Drosophila ovaries, we in-
troduce two more general supervised segmentation methods which were used for experimental
comparison.

Weka segmentation with Graph Cut We implemented two segmentation methods based on
pixel-wise random forest classification43 using the Weka toolbox.4, 44 For the drosophila imaginal
discs and Langerhans islet microscopy images, we used HSV color channels as features. For
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Figure 8 Examples of microscopy images of Drosophila ovaries (top row), manual segmentations of individual eggs
into 4 classes (bottom row) — follicle cells (cyan), nurse cells (yellow), cytoplasm (red) and background (blue). The
same segmentations visualized as contours superimposed over the original images (middle row)

Figure 9 Sample images of lesion tissue in rows stained by four stains in columns— H&E, CD31, Ki67 and proSPC
— going from left to right.

the gray-scale drosophila ovary, we used the following texture features calculated from a small
neighborhood:44 mean, median, and a Sobel filter response. The classifier was trained using
reference pixel-level segmentation created by an expert. Regularization was applied to the resulting
probability maps generated from the classifier by Graph Cut45 to obtain the final segmentation. The
method is denoted as ‘Weka & GC(smoothness cost, edge cost)’ in Section 4.

Superpixel segmentation. We have also tested the method proposed here without Graph Cut
regularization, taking the classifier output directly as the final result. It is denoted as “our RF“
because it uses the random forest classifier.
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Figure 10 Computed Tomography images of the human chest.

Dataset
image color SLIC

Features
Classif. GC

size [px] space size [px] regul. / Model regul.
Langer. islets 2000 HSV 20 0.2 color RF (16 trees) 1.
imaginal disc 1600 RGB 25 0.25 color & texture RF (20 trees) 2.

ovary 1000 gray 15 0.35 texture RF (20 trees) 3.
histology 2400 RGB 35 0.2 color & texture GMM 3.

human lungs 800 gray 20 0.3 texture GMM 10.
Table 1 Default configuration of the segmentation parameters for each dataset together with the typical image size
for each dataset.

3.3 Segmentation quality criteria

We use standard evaluation measures for multi-class classification46 e.g. F1 score, accuracy,
precision, and recall. For images where we have ground truth segmentation (Langerhans Islets,
Drosophila imaginal discs and ovaries), we use also the adjusted Rand score or index (ARS),47

which is the corrected-for-chance version of the Rand index, which is a statistical measurement of
the similarity between two groupings. It counts the number of times that two objects are classified
into the same class or into different classes by the two methods. The adjusted Rand index can yield
values in the range of (−1, 1), the higher the better.

4 Experiments

Unless specified otherwise, all experiments use the parameters given in Table 1 and we report the
F1 measure using 10-fold cross-validation. We first show the effect of varying the most important
parameters and design decisions on the segmentation quality. We then compare the proposed
method with previously used methods. Quantitative evaluation is presented only for datasets where
reference segmentations are available — the Langerhans islet and the two Drosophila datasets.

4.1 Superpixel parameters

Figure 11 shows the influence of the superpixel size N and regularization parameter r on the
Drosophila imaginal disc images. Superpixel size N is a trade-off between computational com-
plexity and the approximation error; values around N = 25 seems to work well for our data.
Regularization r has a strong effect on superpixel regularity. Small values (r ∼ 0) make the su-
perpixels follow the contours in the image, with few shape constraints, while strong regularization
(r ∼ 1) makes superpixels mostly rectangular, regardless of the image. We observed that r = 0.2
provided good results for all our images.
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Figure 11 The influence of the two SLIC parameters: superpixel size and regularization.

Dataset Random forest Dec. Tree Grad. boost Log. regression k-NN
Langer. islets 0.9898 0.9627 0.9933 0.9877 0.9692
imaginal disc 0.9901 0.9262 0.9923 0.9898 0.9873

Ovary 0.9902 0.9627 0.9913 0.9884 0.9863
Table 2 Evaluation of the performance of the classifiers, as measured by the AUC for the best parameter configura-
tion.

For each dataset, we computed the ‘ideal’ segmentation YA for given superpixels by assigning
to superpixels the most frequent class of their pixels. We then evaluated quantitatively the effect of
superpixel parameters on the segmentation quality (Figure 12) using 10-fold cross-validation. We
compute the F1 measure of the random forest classifier on the superpixel level (denoted ‘classifier’)
and on the pixel-level YΩ (denoted ‘segmentation’), with the superpixel-level F1 measure using the
ideal segmentation YA (denoted ‘annotation’). We see that the optimum varies for the segmentation
accuracy between applications, but the chosen values of N = 25 and r = 0.2 seems to be a good
compromise in all cases.

4.2 Classifiers and Graph Cut parameters

Classifiers. We experimented with 5 standard classifiers— random forest, decision trees, gradi-
ent boost, logistic regression, and k-nearest neighbors, as implemented in the Scikit-learn48 Python
library. For each of them, we chose the best parameters in terms of the F1 score from 250 randomly
generated parameter values, sampling uniformly from a user-defined range of values. The classi-
fiers are compared in Table 2 using the AUC criterion. We chose random forest because it is one
of the best performing classifiers, as it is fast and can handle large datasets.

Edge weights. We evaluate the effect of choosing different metrics in the model edge weighting
(Section 2.6) in Table 3. The l∞ metric was chosen as the best compromise. Table 4 compares
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Figure 12 Evaluating the F1 score for different superpixel sizes (a) and regularization (b) for the random forest on
the superpixel level (‘classifier’) and on the pixel level YΩ (‘segmentation’), compared with the ideal segmentation YA
on the superpixel level (‘annotation’).

Dataset nb. classes l1 l2 l∞
Langer. islets 2 0.772 0.781 0.774
imaginal disc 3 0.813 0.808 0.807

ovary 4 0.818 0.816 0.824
Table 3 The effect of the metrics used in model weights (Section 2.6) on the final segmentation accuracy measured
by the F1 score. Only two-class annotation were used for Langerhans islets, merging the classes for background and
exocrine tissue.

the effect of different edge weight types on the segmentation results. We can see that the newly
proposed edge weight based on model distance outperforms all others on all datasets.

Graph Cut regularization. We studied the influence of the Graph-Cut regularization constant β
defined by equation (4). The optimal value of β depends on the dataset (see Figure 13) but the best
value in all three cases was within the range β = (1, 3).

4.3 Segmentation performance and evaluation

Our key experiment is a comparison of the performance of all methods described here and shown
in Table 5. Our supervised segmentation is denoted as ‘RF’, because it uses the random forest
classifier. The unsupervised segmentation is denoted as ‘GMM’, because the model is estimated
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Datasets Spatial weight Color weight Features weight Model weight
Langer. islets 0.6826 0.7974 0.6894 0.7994
imaginal disc 0.6846 0.7985 0.6726 0.8133

ovary 0.7379 0.8150 0.7604 0.8236
Table 4 Comparison of the Graph Cut edge weight types defined in Section 2.6 in terms of the F1 score.
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Figure 13 Evaluating the F1 score for different Graph-Cut regularization parameters β.

via the Gaussian mixture model (GMM). A variant of GMM which learns from all images at once
is denoted by ‘[gr.]’. Otherwise, the GMM model is learned for each image separately.

Denoted as ‘ideal segm. YA’, it uses the ‘ideal’ segmentation for given superpixels (Sec-
tion 4.1). It is not a real method, as it needs to know the reference segmentation. It is meant
to illustrate how close we are to the performance limit given by the superpixels. However, note
that YA is optimal in the number of misclassified pixels, i.e. the sum of false positives and false
negatives, which may not always translate to the best F1 score, although the differences are usually
small.

It can be seen that, on all datasets, our supervised segmentation with Graph Cut regularization
works better than all other methods (except ‘ideal segm. YA’). The use of Graph Cut regular-
ization improves the segmentation results both for supervised segmentation and for unsupervised
segmentation. More detailed discussion follows.

4.3.1 Langerhans islets

The detailed results on the Langerhans islet dataset are shown in Table 6. We show the pixel-
wise segmentation quality with respect to islet reference segmentation as well as the correlation
and MARE error of the purity estimate. We see that our supervised RF method with Graph Cut
regularization yields the best results, which are also very close to ‘ideal segm. YA’. It provides
better results than the baseline NPA and ‘Weka’ methods. Our method also has almost perfect
correlation with the purity estimate and the smallest error with respect to it. The improvement due
to Graph Cut regularization is small because the segmented objects normally consist of just a few
superpixels.

Unsupervised GMM performs better when the model is learned from all images (denoted by
‘[gr]’) because the images have similar appearance and group learning of the GMM partially com-
pensates the unbalance presence of tissue in individual images.
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Method Lang. islets imaginal disc ovary

Pi
xe

l-
w

is
e

Su
pe

rv
is

ed

Weka44 0.7374 0.6923 0.5800
Weka & GC(0, 100) 0.7373 0.6887 0.5810
Weka & GC(1, 50) 0.7376 0.6887 0.5965

Weka & GC(10, 50) 0.6935 0.6887 0.1395
Weka & GC(50, 100) 0.6862 0.6850 0.6007

NPA33 0.8420 - -

Su
pe

rp
ix

el
s

ideal segm. YA 0.8590 0.9696 0.9067
Supertextons17 - - 0.7488

our RF 0.8565 0.8181 0.8201
our RF & GC 0.8570 0.8229 0.8600

U
ns

up
er

. our GMM 0.5358 0.7542 0.5967
our GMM & GC 0.5465 0.7644 0.6039
our GMM [gr] 0.5682 0.7301 0.6009

our GMM [gr] & GC 0.5816 0.7564 0.6083
Table 5 A comparison of all applicable methods for all datasets with ground truth segmentations in terms of the
F1 score. The baseline methods are ‘Weka’ (a Fiji plugin with Graph Cut regularization, see text), ‘NPA’33 for
segmenting Langerhans islets and ‘Supertextons’17 for segmentation the Drosophila ovaries. We also introduce
superpixel segmentation YA with an ideal classifier.

Method accuracy F1 score precision recall Pu Corr. Pu MARE
Weka44 0.9748 0.7374 0.7946 0.7424 0.6572 1.381

Weka & GC(1, 50) 0.9772 0.7376 0.8043 0.7395 0.4825 1.777
Weka & GC(10, 50) 0.9767 0.6935 0.7406 0.6951 0.3805 2.163

Weka & GC(50, 100) 0.9761 0.6862 0.7175 0.6897 0.3609 2.265
NPA33 0.9774 0.8420 0.8522 0.8557 0.9820 0.296

ideal segm. YA 0.9819 0.8590 0.8894 0.8358 0.9992 0.058
our RF 0.9839 0.8565 0.8833 0.8391 0.9951 0.164

our RF & GC 0.9840 0.8570 0.8849 0.8390 0.9951 0.165
our GMM 0.6954 0.5358 0.5720 0.6186 0.6213 1.299

our GMM & GC 0.7253 0.5465 0.5753 0.6398 0.6990 1.082
our GMM [gr] 0.8360 0.5682 0.5926 0.6326 0.7500 0.955

our GMM [gr] & GC 0.8644 0.5816 0.5978 0.6447 0.8267 0.716
Table 6 Segmentation of Langerhans islets. Quantitative evaluation by standard metrics and the correlation and MARE
error of the purity estimate Pu with respect to the expert validation.

4.3.2 Drosophila imaginal discs

Detailed quantitative results on the Drosophila imaginal disc segmentation are show in Table 7. As
before, our superpixel segmentation performs better that the pixel-wise baseline ‘Weka’ method.
Moreover, on this dataset, the baseline results are also matched or exceeded by the unsupervised
GMM methods. In Figure 14, we show an example of segmentation by the supervised and un-
supervised methods, together with the reference segmentation. It can be seen that the results are
very similar for superpixel segmentations. The three desired classes — gene activation, disc and
background — are clearly distinguished.
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Method ARS accuracy F1 score precision recall
Weka44 0.9508 0.952 0.6923 0.7497 0.7101

Weka & GC(1, 50) 0.9563 0.9539 0.6887 0.7594 0.7078
Weka & GC(10, 50) 0.9563 0.9539 0.6887 0.7594 0.7078

Weka & GC(50, 100) 0.9584 0.9548 0.6850 0.7705 0.7073
ideal segm. YA 0.9843 0.9943 0.9696 0.9737 0.9656

our RF 0.9641 0.9728 0.8181 0.8424 0.8201
our RF & GC 0.9653 0.9739 0.8229 0.8506 0.8219

our GMM 0.9486 0.9557 0.7542 0.7631 0.8004
our GMM & GC 0.9504 0.9517 0.7644 0.7844 0.846
our GMM [gr] 0.9482 0.9533 0.7301 0.7377 0.7803

our GMM [gr] & GC 0.9521 0.9571 0.7564 0.7643 0.8032
Table 7 Segmentation of Drosophila imaginal discs. Quantitative evaluation of applicable methods by standard met-
rics.

Speaking about unsupervised segmentation, there is a considerable variance in appearance
which leads to slightly worse results for estimating global appearance model from whole dataset
(denoted by ‘[gr]’) than learning the GMM for each image indigently.

4.3.3 Drosophila ovary

Segmentation of Drosophila ovaries turns out to be very challenging, possibly due to the high
level of similarity between the two pairs of classes: nurse cells—follicular cells, and cytoplasm—
background, which the baseline ‘Weka’ method fails to distinguish. By contrast, this task is well
handled by texture features when superpixels are used.

The quantitative segmentation results are presented in Table 8. Our method have much in
common with the baseline Supertextons.17 We improved the F1 score by 7% by using random
forest and texture features instead of the k-NN classifier on the supertextons dictionary. We gained
an additional 4% by applying Graph Cut spatial regularization. Some example results are shown in
Figure 15, and we can observe much better spatial regularity of our Graph Cut regularized method
with respect to the baseline ‘Supertextons’. The unsupervised methods work less well for this
application due to the high level of similarity between segmented classes.

4.3.4 Histopathology

We do not have a reference segmentation for the histopathology dataset, so we cannot use super-
vised segmentation and quantitative evaluation. Instead, we applied unsupervised segmentation,
which seems to perform quite well. We learned the GMM from multiple equally stained images,
see Figure 9. Due to extremely high image resolution, image registration typically uses a multires-
olution approach and universally down-samples images/segmentation to individual levels. Instead
we propose using Graph Cut regularization as smart reducing detail in different scale levels. Ex-
ample results are shown in Figure 16, demonstrating also the effect of changing the regularization
parameter.
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Figure 14 Visualization of the expert annotation and segmentation results with the ‘Weka’ baseline classifier and our
supervised and unsupervised methods. Clearly, GMM was learned quite accurately.

4.3.5 Lung CT

In addition to the other applications, we also took a small number of Computed Tomography (CT)
images of a human chest, and we applied our methods to the task of segmenting lungs from axial
cuts. In Figure 17, we show the unsupervised segmentation results without and with Graph Cut
which reduce number of artifacts in the lungs and still it preserves the lungs shape.

5 Conclusion

We have presented a feature-based segmentation method using an innovative combination of super-
pixels and GraphCut regularization to impose spatial compactness. This makes the segmentation
both fast and robust. We have also introduced a new edge weight factor. Finally, we have tested
our method extensively on five real applications, and have compared it with previously used meth-
ods. We found not only that superpixel methods work better than non-superpixel methods, but also
that GraphCut regularization yields further improvement. Interestingly, an unsupervised variant of
our method can generate completely acceptable results for some applications, without the need for
manual segmentation.

Source code

The implementation is available on http://github.com/Borda/pyImSegm.
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Figure 15 Example segmentations of Drosophila ovaries. Observe that our Graph Cut regularized segmentation
(bottom row) is much more regular than the baseline method (Supertextons17). The input images are in the middle
row.

Method ARS accuracy F1 score precision recall
Weka44 0.8008 0.8842 0.5800 0.6250 0.5833

Weka & GC(1, 50) 0.8167 0.8909 0.5965 0.6520 0.6023
Weka & GC(10, 50) 0.8235 0.7844 0.1395 0.1392 0.1399

Weka & GC(50, 100) 0.8214 0.8934 0.6007 0.6686 0.6085
ideal segm. YA 0.9528 0.9735 0.9067 0.9126 0.9021
Supertextons17 0.8633 0.9220 0.7488 0.7403 0.7798

our RF 0.8836 0.8509 0.8201 0.8298 0.8195
our RF & GC 0.8883 0.9090 0.8600 0.8627 0.8666

our GMM 0.7306 0.8578 0.5967 0.5854 0.6385
our GMM & GC 0.7481 0.8649 0.6039 0.5953 0.6472
our GMM [gr] 0.7385 0.8603 0.6009 0.5831 0.6519

our GMM [gr] & GC 0.7599 0.8666 0.6083 0.5805 0.6578
Table 8 Segmentation of Drosophila ovaries. Quantitative evaluation by standard metrics using baseline pixel-level
segmentation, with and without Graph Cut, supertexton17 segmentation, and the proposed ‘RF’ superpixel-based seg-
mentation.
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Figure 16 Unsupervised segmentation using GMM of a lesion stained by four stains — H&E, CD31, Ki67 and
proSPC — shown in the columns. In the rows, we show the input image, and the segmented image with Graph Cut
regularization β = 3 and β = 10.

Weka segm. & CG input image our segm. GMM our GMM & CG

Figure 17 Unsupervised segmentation of a CT image of human lungs with and without Graph Cut. We present also
trained ‘Weka’ segmentation with just a small subset of foreground and background pixels.
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