
Toon Calders Floriana Esposito
Eyke Hüllermeier Rosa Meo (Eds.)

 123

LN
AI

 8
72

4

European Conference, ECML PKDD 2014
Nancy, France, September 15–19, 2014
Proceedings, Part I

Machine Learning and
Knowledge Discovery
in Databases

FASOLE: Fast Algorithm for Structured Output
LEarning

Vojtech Franc

Czech Technical University in Prague
Faculty of Electrical Engineering

Technicka 2, 166 27 Prague 6, Czech Republic
xfrancv@cmp.felk.cvut.cz

Abstract. This paper proposes a novel Fast Algorithm for Structured Ouput
LEarning (FASOLE). FASOLE implements the sequential dual ascent (SDA) al-
gorithm for solving the dual problem of the Structured Output Support Vector
Machines (SO-SVM). Unlike existing instances of SDA algorithm applied for
SO-SVM, the proposed FASOLE uses a different working set selection strategy
which provides nearly maximal improvement of the objective function in each
update. FASOLE processes examples in an on-line fashion and it provides certifi-
cate of optimality. FASOLE is guaranteed to find the ε-optimal solution in O(1

ε2
)

time in the worst case. In the empirical comparison FASOLE consistently outper-
forms the existing state-of-the-art solvers, like the Cutting Plane Algorithm or the
Block-Coordinate Frank-Wolfe algorithm, achieving up to an order of magnitude
speedups while obtaining the same precise solution.

1 Introduction

The Structured Output Support Vector Machines SO-SVM [17,19] is a supervised al-
gorithm for learning parameters of a linear classifiers with possibly exponentially large
number of classes. SO-SVM translate learning into a convex optimization problem size
of which scales with the number of classes which rules out application of common
off-the-shelf solvers. The specialized solvers can be roughly split to batch methods
and on-line solvers. The batch methods, like variants of the Cutting Plane Algorithm
(CPA) [18,8] or the column generation algorithm [19], approximate the SO-SVM ob-
jective by an iteratively built global under-estimator called the cutting plane model (the
column generation algorithm instead approximates the feasible set). Optimizing the
cutting plane model is cheaper than the original problem and, in addition, it provides a
certificate of optimality. The bottle-neck of the CPA is the expensive per-iteration com-
putational complexity. Namely, computation of a single element (the cutting plane) of
the cutting plane model requires calling the classification oracle on all training exam-
ples. Note that in structured setting the classification is often time consuming. More-
over, many iterations are typically needed before the cutting plane model becomes tight
and the approximate solution sufficiently precise.

The on-line methods, like the Stochastic Gradient Descent (SGD) [13,15], process
the training examples one by one with a cheap update requiring a single call of the clas-
sification oracle. A disadvantage of the SGD is its sensitivity to setting of the step size

T. Calders et al. (Eds.): ECML PKDD 2014, Part I, LNCS 8724, pp. 402–417, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

FASOLE: Fast Algorithm for Structured Output LEarning 403

and a missing clear stopping condition as the method does not provide a certificate of
optimality. Unlike the SGD which optimizes the primal objective, the recently proposed
Sequential Dual Method for Structural SVMs (SDM) [1] and the Block-Coordinate
Frank-Wolfe (BCFW) [9] are on-line solvers maximizing the Lagrange dual of the SO-
SVM problem. SDM and BCFW are instances of the same optimization framework in
the sequel denoted as the Sequential Dual Ascent (SDA) method. The SDA methods
iteratively update blocks of dual variables each of them being associated with a single
training example. Particular instances of SDA method, like SDM or BCFW, differ in the
strategy used to select the working set containing the dual variables to be updated. The
SDA methods if compared to the SGD algorithm have two main advantages. First, for
fixed working set the optimal step size can be computed analytically. Second, the opti-
mized dual objective provides a certificate of optimality useful for defining a rigorous
stopping condition.

The convergence speed of the SDA methods is largely dependent on the working
set selection strategy. In this paper, we propose a novel SDA algorithm for solving the
SO-SVM dual using a working set selection strategy which yields nearly maximal im-
provement of the dual objective in each iteration. We named the proposed solver as
the Fast Algorithm for Structured Ouput LEarning (FASOLE). The same idea has been
previously applied for optimization of simpler QP tasks emerging in learning of two-
class SVM classifiers with L2-hinge loss [4,5] and L1-hinge loss [3,6]. The SDA solver
using a similar working set selection strategy is implemented for example in popular
LibSVM [2]. Our paper extends these solvers to the structured output setting. The struc-
tured output setting imposes several difficulties, namely, the SO-SVM dual problem has
exponentially large number of variables and m linear equality constraints in contrast to
the two-class SVM dual having only m variables and single equality constraint. The
extreme size of the SO-SVM does not permit operations feasible in two-class case like
maintaining all dual variables and buffering the columns of the Hessian matrix. The
proposed method thus introduces a sparse representation of the SO-SVM dual and a
set of heuristics to reflect the mentioned difficulties. In addition, we provide a novel
convergence analysis which guarantees that the proposed SDA solver finds ε-optimal
solution in O(1

ε2) time. We experimentally compare the proposed FASOLE against
BCFW, SDM and CPA showing that FASOLE consistently outperforms all competing
methods achieving up to an order of magnitude speedup. We remark that recently pro-
posed BCFW and SDM have not been compared so far hence their empirical study is
an additional contribution of this paper.

The paper is organized as follows. The problem to be solved is formulated in Sec-
tion 2. Section 3 describes the proposed solver. Relation to existing methods is dis-
cussed in Section 4. Section 5 presents experiments and Section 6 concludes the paper.

2 Formulation of the Problem

Let us consider a linear classifier h : X × Rn → Y defined as

h(x;w) ∈ Argmax
y∈Y

〈w,ψ(x, y)〉

404 V. Franc

which assigns label y ∈ Y to observations x ∈ X according to a linear scoring function
given by a scalar product between a feature vector ψ : X × Y → Rn and a parameter
vector w ∈ Rn to be learned from data. In the structured output setting the label set
Y is finite but typically very large, e.g. Y contains all possible image segmentations.
Given a set of examples {(x1, y1), . . . , (xm, ym)} ∈ (X×Y)m, the SO-SVM algorithm
translates learning of the parameters w ∈ Rn into the following convex problem

w∗ = argmin
w∈Rn

P (w) :=
λ

2
‖w‖2 + 1

m

∑
i∈I

max
y∈Y

(
Δi(y) + 〈w,ψi(y)〉

)
(1)

where I = {1, . . . ,m}, ψi(y) = ψ(xi, y) − ψ(xi, yi), Δi(y) = Δ(yi, y) is a loss
function and λ > 0 is a regularization constant. For a convenience of notation we
assume that the loss function satisfies Δ(y, y) = 0, ∀y ∈ Y , which implies that
Δi(yi)+ 〈w,ψi(yi)〉 = 0. Note that all common loss functions like e.g. Hamming loss
satisfy this assumption. The problem (1) can be equivalently expressed as a quadratic
program whose Lagrange dual, denoted as SO-SVM dual, reads

α∗ = argmax
α∈A

D(α) := 〈b,α〉 − 1

2
‖Aα‖2 , (2)

where α = (αi(y) | i ∈ I, y ∈ Y) ∈ Rd is vector of d = m|Y| dual variables,
b = (Δi(y) | i ∈ I, y ∈ Y) ∈ Rd is a vector containing losses on training examples,
A = (ψi(y)/

√
λ | i ∈ I, y ∈ Y) ∈ Rn×d is a matrix of feature vectors, and A ={

α ∈ Rd | α ≥ 0 ∧
∑

y∈Y αi(y) = 1
m , i ∈ I

}
denotes a feasible set. Since the

primal problem (1) is convex and non-degenerate, the duality gap at the optimum is
zero, i.e. P (w∗) = D(α∗). The optimal primal variables can be computed from the
optimal dual variables by w∗ = − 1√

λ
Aα∗.

In this paper we propose a solver which iteratively maximizes the SO-SVM dual (2).
Although maintaining the dual problem in computer memory is not feasible, an approx-
imate solution can be found thanks to the problem sparsity. For any prescribed ε > 0,
our solver finds an ε-optimal solution ŵ satisfying P (ŵ) ≤ P (w∗) + ε in time not
bigger than O(1

ε2). Our solver is modular: it accesses the problem only via a classi-
fication oracle solving so called loss-augmented inference task, i.e. for given i,w the
classification oracle returns an optimal solution and the optimal value of

max
y∈Y

(
Δi(y) + 〈w,ψi(y)〉

)
. (3)

3 Proposed Algorithm Solving SO-SVM Dual

In this section we describe the proposed solver. For the sake of space we put derivations
and proofs to a supplementary material available online1.

1 ftp://cmp.felk.cvut.cz/pub/cmp/articles/franc/
Franc-FasoleSupplementary-ECML2014.pdf

ftp://cmp.felk.cvut.cz/pub/cmp/articles/franc/Franc-FasoleSupplementary-ECML2014.pdf
ftp://cmp.felk.cvut.cz/pub/cmp/articles/franc/Franc-FasoleSupplementary-ECML2014.pdf

FASOLE: Fast Algorithm for Structured Output LEarning 405

3.1 Generic SDA

In this section we first outline the idea of a generic SDA algorithm for solving SO-SVM
dual (2). In the next section we then describe the proposed instance of the generic SDA.

A generic SDA algorithm converts optimization of the SO-SVM dual (2) into a series
of simpler auxiliary QP tasks solvable analytically. Starting from a feasible point α ∈
A, an SDA algorithm iteratively applies the update rule

αnew := argmax
α∈AL

D(α) , (4)

whereAL ⊂ A is a line between the current solution α and a point β selected fromA,

AL = {α′ | α′ = (1− τ)α + τβ , τ ∈ [0, 1]} . (5)

The update rule (4) is an auxiliary QP task having the same objective as the original
SO-SVM dual but the feasible set is reduced to a line inside A. This implies that the
new solution αnew is also feasible. Let us define a single-variable quadratic function

DL(τ) = D
(
(1 − τ)α+ τβ

)
corresponding to the dual objective D(α) restricted to the line AL. If the point β is
selected such that the derivative of D(α) along the line AL evaluated at α is posi-
tive, i.e. DL(0)

′ > 0, then the update (4) strictly increases the objective function, i.e.
D(αnew)−D(α) > 0 holds. Moreover, the update (4) has a simple analytical solution
(supplementary material, Sec 1.1)

αnew := (1− τ)α + τβ

where

τ := argmax
τ ′∈[0,1]

DL(τ
′) = min

(
1,

〈β −α, b−ATAα

〈α− β,ATA(α− β)〉

)
. (6)

Algorithm 1. Generic SDA for solving SO-SVM dual (2)
Initialization: select a feasible α ∈ A
repeat

Select β ∈ A such that DL(0)
′ > 0.

Compute τ by (6).
Compute the new solution α := (1− τ)α+ τβ.

until until convergence;

Algorithm (1) outlines the generic SDA algorithm. The recently proposed SDM [1]
and the BCFW Algorithm [9] are instances of the generic SDA which differ in the way
how they construct the point β. Note, that the point β determins which variables will be
modified (the working set) by the update rule. For example, the BCFW simultaneously
updates all |Y| dual variables associated with one training example, while, the method

406 V. Franc

SDM updates just two variables at a time. In Section 4 we describe the related instances
of the generic SDA in more details.

Our algorithm is also instance of the generic SDA which adopts a different selection
strategy originally proposed for two-class SVM solvers independently proposed by [3]
and [4]. This method, in [3] coined the Working Set Selection strategy using second
order information (WSS2), selects two variables ensuring nearly maximal improvement
of the objective. In the next section we describe the adaptation of the WSS2 to solving
the SO-SVM dual.

3.2 Proposed SDA Solver with WSS2 Selection Strategy

The proposed solver constructs the point β as follows

βj(y) :=

⎧⎨⎩
αi(u) + αi(v) if j = i ∧ y = u
0 if j = i ∧ y = v
αj(y) otherwise

(7)

where (i, u, v) ∈ I×Y×Y is a triplet such that u �= v (the way how (i, u, v) is selected
will be described below). We denote the SDA update rule (4) using β constructed by
(7) as the Sequential Minimal Optimization (SMO) rule [7]. The SMO rule changes the
minimal number of dual variables, in our case two, without escaping the feasible set
A. There are m|Y|(|Y| − 1) SMO rules in total out of which we need to select one in
each iteration. A particular SMO rule determined by the choice of (i, u, v) changes the
variables αi(u) and αi(v) associated with labels u and v and the i-th example. We now
describe our strategy to select (i, u, v).

Selection of i. Recall that the ultimate goal is to find an ε-optimal solution of the SO-
SVM dual (2). Specifically, we aim to find a primal-dual pair (w,α) ∈ Rn × A such
that the duality gap is at most ε, i.e.G(w,α) = P (w)−D(α) ≤ ε holds. Let us define
shorthands

w = − 1√
λ
Aα and si(y,α) = Δi(y) + 〈w,ψi(y)〉

for the primal solution w constructed from the dual solution α and the score function
si(y,w) of the classification oracle (3) with parameters w, respectively. Using this
notation it is not difficult to show (supplementary material, Sec. 1.3) that the duality
gap can be computed by the following formula

G(w,α) =
1

m

∑
i∈I

Gi(w,α)

where
Gi(w,α) = max

y∈Y
si(y,w)−m

∑
y∈Y

αi(y)si(y,w) .

The proposed solver goes through the examples and it uses the value of Gi(w,α) to
decide whether the block of variables αi = (αi(y) | y ∈ Y), associated with the i-th

FASOLE: Fast Algorithm for Structured Output LEarning 407

example, should be updated. In particular, if Gi(w,α) > ε holds then αi is updated
otherwise they are skipped and the next block of variables is checked. It is clear that if
Gi(w,α) ≤ ε holds for all i ∈ I, i.e. no variables are selected for update, the target
duality gap G(w,α) ≤ ε has been already achieved and thus no update is needed.

Selection of u and v. Here we employ the WSS2 strategy of [3,4]. Given block of
variables αi, our goal is to select among them two, αi(u) and αi(v), which if used
in the SMO rule will cause a large increment, δ(i, u, v) = D(αnew) − D(α), of the
dual objective. First, we need to identify those pairs (u, v) which guarantee positive
change of dual objective, i.e. those for which D′

L(0) > 0 holds. Using (7) the condition
D′

L(0) > 0 can be written as (supplementary material, Sec. 1.2)

αi(v)
(
si(u,w)− si(v,w)

)
> 0 . (8)

Provided the condition (8) holds, application of the SMO rule given by a triplet (i, u, v)
increases the dual objective exactly by the quantity (supplementary material, Sec. 1.2)

δ(i, u, v) =

⎧⎪⎨⎪⎩
λ(si(u,w)− si(v,w))

‖ψi(u)−ψi(v)‖2
if τ < 1

αi(v)(si(u,w)− si(v,w))− αi(v)
2

2λ
‖ψi(u)−ψi(v)‖2 if τ = 1

(9)
The optimal strategy would be to find the pair (u, v) maximizing δ(i, u, v), however,
this is not feasible due to a large number of candidate pairs (u, v) ∈ Y ×Y . Instead we
use a cheaper WSS2 strategy which has been shown to yield nearly the same improve-
ment as trying all pairs [4]. We first find û by maximizing the dominant term si(u,w)
appearing in the improvement formulas. This corresponds to fining the most violated
primal constraint associated with i-th example by solving

û ∈ argmax
y∈Y

si(y,w) (10)

via using the classification oracle. When û is fixed, we find v̂ which brings the maximal
improvement by

v̂ ∈ argmax
y∈Yi

δ(i, û, y) (11)

where Yi = {y ∈ Y | αi(y) > 0} is a set of labels corresponding to non-zero dual vari-
ables associated with the i-th example. Note that the maximization tasks (10) and (11)
do not need to have a unique solution in which case we take any maximizer.

The SDA solver using WSS2 is summarized in Algorithm 2. Note that the SDA-
WSS2 algorithm is an on-line method passing thought the examples and updating those
blocks of variables found to be sub-optimal. The algorithm stops if Gi(w,α) ≤ ε,
∀i ∈ I, implying that the duality gap G(w,α) is not larger than ε. Besides primal
variables w ∈ Rn the algorithm maintains the non-zero dual variables, αi(y) > 0,
y ∈ Yi, their number is upper bounded by the number of updates. Although the primal
variables are at any time related to the dual variables by w = − 1√

λ
Aα it is beneficial

to maintain the vector w explicitly as it speeds up the computation of the score

si(y,w) = Δi(y) + 〈ψi(y),w〉 = Δi(y)−
1

λ

∑
j∈Y

∑
y′∈Yi

αj(y
′)〈ψi(y),ψj(y

′)〉 .

408 V. Franc

Algorithm 2. SDA-WSS2 algorithm for solving SO-SVM dual (2)
Input: precision parameter ε > 0, regularization constant λ > 0
Output: ε-optimal primal-dual pair (w,α)
Initialization:

w = 0, Yi = {yi}, αi(y) =

{
1
m

if y = yi
0 otherwise

, i ∈ I

repeat
num updates := 0
forall the i ∈ I do

u1 := argmaxy∈Y si(y,w)
u2 := argmaxy∈Yi

si(y,w)

if si(u1,w) > si(u2,w) then
û := u1

else
û := u2

if si(û,w)−m
∑

y∈Yi
αi(y)si(y,w) > ε then

num updates := num updates + 1
v̂ := argmax

y∈{y′∈Yi|αi(y
′)>0}

δ(i, û, y)

τ := min
{
1, λ(si(û,w)−si(v̂,w))

αi(v̂)‖ψi(û)−ψi(v̂)‖2
}

w := w + (ψi(v̂)−ψi(û))
ταi(v̂)

λ

αi(û) := αi(û) + ταi(v̂)
αi(v̂) := αi(v̂)− ταi(v̂)
if û = u1 then

Yi := Yi ∪ {u1}

until num updates = 0;

Note, however, that all computations can be carried out in terms of the dual variables
α. This property allows to kernelize the algorithm by replacing 〈ψi(y),ψj(y

′)〉 with a
selected kernel function.

The computational bottle neck of the SDA-WSS2 is calling the classification oracle
to solve u1 := argmaxy∈Y si(y,w). The other maximization problems over Yi, which
are required to select u2 and v2, can be solved exhaustively since the set Yi contains
only those ψi(y) corresponding to at least once updated dual variable αi(y).

The convergence of the SDA-WSS2 is ensured by the following theorem:

Theorem 1. For any ε > 0 and λ > 0, Algorithm 2 terminates after

T =
8LD2

ε2λ

updates at most where L = max
y∈Y,y′∈Y

Δ(y, y′) and D = max
i∈I,y∈Y

‖ψ(xi, y)‖.

Proof is given in the supplementary material, Section 2.
We point out without giving a formal proof that the convergence Theorem 1 is valid

not only for the SDA-WSS2 algorithm but also for a broader class of SDA solvers using

FASOLE: Fast Algorithm for Structured Output LEarning 409

the SMO update rule. In particular, the idea behind the proof of Theorem 1 applies to
the DCM of [1] for which no such bound has been published so far.

The competing methods like the BCFW [9] and the CPA [18] are known to converge
to the ε-optimal solution in O(1ε) time which is order of magnitude better compared to
our bound O(1

ε2) for the SDA-WSS2 algorithm. However, all the bounds are obtained
by the worst case analysis and little is known about their tightness. The empirical sim-
ulations provided in Section 5 show that the actual number of updates required by the
proposed algorithm is consistently much smaller (up to order of magnitude) compared
to the competing methods.

3.3 FASOLE: Fast Algorithm for Structured Output LEarning

In this section we describe a set of heuristics significantly decreasing the absolute com-
putational time of SDA-WSS2 without affecting its convergence guarantees. We denote
SDA-WSS2 algorithm with the implemented heuristics as the Fast Algorithm for Struc-
tured Output LEarning (FASOLE). A pseudo-code of the FASOLE is summarized by
Algorithm 3. The implemented heuristics aim at i) further reducing the number of ora-
cle calls and ii) using a tighter estimate of the duality gap which is used as a certificate
of the ε-optimality. In particular, FASOLE uses the following set of heuristics:

Reduced problem. FASOLE maintains vector b̂ and matrix Â containing a subset of
coefficients (b,A) of the SO-SVM dual (2). The coefficients (b̂, Â) correspond to the
dual variables α̂ = (αi(y) | y ∈ Yi, i ∈ I) which has been updated in the course of
algorithm. The remaining variables are zero hence the corresponding coefficients need
not be maintained. At the end of each pass through the examples we use b̂ and Â to find
the optimal setting of α̂ by solving a reduced dual problem

α̂ := argmax
α′∈A

〈b̂,α′〉 − 1

2
‖Âα′‖2 (12)

We use the SDA-WSS2 Algorithm 2, “worm”-started from the current solution α̂, to
find ε-optimal solution of (12), i.e. FASOLE uses one loop optimizing over all variables
and second loop for optimizing those variables which have been selected by the first
loop. This strategy reduces the number oracle calls and is cheap due to the warm start.

Variable shrinking. SDA-WSS2 Algorithm 2 checks optimality of dual variables αi in
each iteration irrespectively if they have been found optimal in the previous pass. FA-
SOLE instead introduces binary flag, satisfied(i), which is set true if the corresponding
variables αi already satisfied the partial duality gap constraint Gi(w,α) ≤ ε. Once all
variables have been found optimal, i.e. satisfied(i) = true, ∀i ∈ I, the flags are reset
to false and the process starts again. This strategy allows to concentrate on non-optimal
variables without wasting oracle calls on already optimal ones.

On-line and batch regime. The SDA-WSS2 Algorithm 2 stops if Gi(w,α) ≤ ε,
∀i ∈ I, holds which implies G(w,α) ≤ ε. This stopping conditions is cheap and
can be evaluated in an on-line manner, however, it is overly stringent because the ac-
tual duality gap G(w,α) is usually a way below ε. In fact G(w,α) = ε holds only

410 V. Franc

Algorithm 3. FASOLE: Fast Algorithm for Structured Output LEarning
Input: precision parameter ε > 0, regularization constant λ > 0
Output: ε-optimal primal-dual pair (w,α)
Initialization:

w = 0,
(
Yi = {yi}, i ∈ I

)
,

(
αi(y) =

{
1
m

if y = yi
0 otherwise

, i ∈ I
)

Â := (ψi(yi) | i ∈ I), b̂ := (Δi(yi) | i ∈ I)
converged := false, regime := online,

(
satisfied(i) := false, i ∈ I

)
repeat

G := 0, num satisfied := 0, num checked := 0
forall the i ∈ I do

if satisfied(i) = false then
num checked := num checked + 1
u1 := argmaxy∈Y si(y,w)
u2 := argmaxy∈Yi

si(y,w)

if si(u1,w) > si(u2,w) then
û := u1

else
û := u2

Gi := si(û,w)−m
∑

y∈Yi
αi(y)si(y,w)

G := G+Gi

if Gi ≤ ε then
satisfied(i) := true
num satisfied := num satisfied + 1

else
if û = u1 then

Yi := Yi ∪ u1

Â := Â ∪ψi(u1)
b̂ = b̂ ∪Δi(u1)

if regime = online then
v̂ := argmax

y∈{y′∈Yi|αi(y
′)>0}

δ(i, û, y)

τ := min

{
1, λ(si(û,w)−si(v̂,w))

αi(v̂)‖ψi(û)−ψi(v̂)‖2
}

w := w + (ψi(v̂)−ψi(û))
ταi(v̂)

λ

αi(û) := αi(û) + ταi(v̂)
αi(v̂) := αi(v̂)− ταi(v̂)

if num checked = m then
if regime = batch ∧ G ≤ ε then

converged := true

if m ·K ≤ num satisfied then
regime := batch

if ∀i ∈ I, satisfied(i) = true then
satisfied(i) := false, i ∈ I

if converged = false then
Update α̂ = (αi(y) | y ∈ Yi, i ∈ I) by solving the reduced problem (12)

until converged = true;

FASOLE: Fast Algorithm for Structured Output LEarning 411

in a rare case when G(w,α) = ε, ∀i ∈ I. We resolve the problem by introducing
two optimization regimes: on-line and batch. FASOLE is started in the on-line regime,
regime = online, during which the “for” loop instantly updates the dual variables iden-
tified as non-optimal. As soon as it gets close to the optimum it switches from online to
the batch regime. In the batch regime, FASOLE uses the “for” loop only to select new
non-optimal variables and to simultaneously evaluate the actual duality gap G(w,α).
The variable update in the batch regime is done solely by solving the reduced prob-
lem (12). FASOLE switches from on-line to batch when a large portion of dual vari-
ables are found optimal, in particular, if Gi(w,α) ≤ ε holds for m · K variables at
least. We used the value K = 0.9 in all our experiments.

4 Relation to Existing Methods

In this section we describe relation between the proposed SDA-WSS2 algorithm (and
FASOLE, respectively) and other two instances of the generic SDA algorithm 1 that
have been recently proposed for solving the SO-SVM dual. We also mention a relation
to two-class SVM solvers which use a similar optimization strategy.

Sequential Dual Method for Structural SVMs (SDM) [1] SDM is among the existing
solvers the most similar to our approach. SDM is an instance of the generic SDA using
the SMO updated rule (7) similarly to the proposed SDA-WSS2. The main difference
lies in the strategy for selecting the variables for update. SDM uses so called maximal
violating pair (MVP) strategy which returns the variables most violating Karush-Kuhn-
Tucker (KKT) conditions of the SO-SVM dual (2). Specifically, it finds û by (10),
similarly to our approach, however v̂ is set to

v̂ = argmin
y∈{y′∈Y|αi(y′)>0}

si(v,w) .

The MVP strategy can be seen as a cruel approximation of WSS2 strategy. Indeed,
MVP maximizes the improvement δ(i, u, v) if we neglect the terms containing λ and
‖ψi(u) − ψi(v)‖ in the formula (9). Note that WSS2 strategy introduces only a neg-
ligible computational overhead if compared to the MVP. We show experimentally that
the proposed the SDA with WSS2 strategy consistently outperforms the SDM using the
MVP strategy as it requires consistently less number of oracle calls. Similar behavior
showing that the WSS2 strategy outperforms the MVP strategy has been observed for
the two-class SVM solvers in [3,4].

Block-Coordinate Frank-Wolfe (BCFW) [9] BCFW is an instance of the generic SDA
constructing the point β as

βj(y) =

⎧⎨⎩
1
m if y = u ∧ i = j
0 if y �= u ∧ i = j

α
(t)
j (y) if j �= i

(13)

where û is selected by (10); we call this variable selection strategy as the BCFW up-
date rule. Unlike the SMO update rule used by SDA-WSS2 and SDM, the BCFW rule

412 V. Franc

changes the whole block of |Y| variables αi at once. It can be shown that the BCFW
rule selects among the admissible points the one in which direction the derivative of
the SO-SVM dual objective is maximal. Hence, the resulting SDA algorithm using the
BCFW rule can be seen as the steepest feasible ascent method. Empirically it also be-
haves similarly to the steepest ascent methods, i.e. it exhibits fast convergence at the
first iterations but stalls as it approaches optimum. The slow convergence is compen-
sated by simplicity of the method. Specifically, it can be shown that the BCFW rule
admits to express the update rule, and consequently the whole algorithm, without ex-
plicitly maintaining the dual variables α. That is, the BCFW algorithm operates only
with the primal variables though it maximizes the dual SO-SVM objective. The empir-
ical evaluation shows that the BCFW converges significantly slower compared to the
SDA-WSS2, as well as SDM, both using the SMO update rule. Similar behavior have
been observed when the BCFW update rule is applied to two-class SVM problem [4].

Two-class SVM solvers using the SDA with WSS2 [3][4][5] The SDA methods with
WSS2 have been first applied for solving the two-class SVM with L2-hinge loss [4][5]
and with L1-hinge loss in [3]. A similar method was also proposed in [6]. The SDA
with WSS2 is the core solver of LibSVM [2] being currently the most popular SVM
implementation. The main difference to the proposed SDA-WSS2 lies in the form and
the size of the quadratic programs these methods optimize. In particular, the two-class
SVM dual has only a single linear constraint and m variables. In contrast, the SO-SVM
dual hasm linear constraints andm|Y| variables. The extreme size of the SO-SVM does
not admit operations used in two-class SVM solvers like maintaining all dual variables
and buffering the columns of the Hessian matrix. In addition, selection of the most
violated constraint via the classification oracle is expensive in the case of SO-SVM and
must be reduced. The proposed method thus introduces a sparse representation of the
SO-SVM dual and a set of heuristics to reflect the mentioned difficulties.

In addition, our convergence Theorem 1 provides an upper bound on the number of
updates to achieve the ε-optimal solution. To our best knowledge no similar result is
known for the two-class SVM solvers. In particular, only asymptotical convergence of
the SMO type algorithms have been proved so far [16].

5 Experiments

Compared methods. We compared the proposed solver FASOLE (Algorithm 3) against
the SDM [1] and BCFW [9] which are all instances of the generic SDA algorithm 1. In
addition, we compare against the the Cutting Plane Algorithm (CPA) [8,18] being the
current gold-standard for SO-SVM learning (e.g. implemented in popular StructSVM
library). We also refer to [9] which provides a thorough comparison showing that the
BCFW consistently outperforms approximate on-line methods including the exponen-
tiated gradient [11] and the stochastic sub-gradient method [14] hence these methods
are excluded from our comparison.

Datasets. We used three public benchmarks which fit to the SO-SVM setting. First,
we learn a linear multi-class classifier of isolated handwritten digits from the USPS

FASOLE: Fast Algorithm for Structured Output LEarning 413

dataset [10]. Second, we learn OCR for a sequence of segmented handwritten letters
modeled by the Markov Chain classifier [17]. Third, we learn a detector of landmarks
in facial images based on a deformable part models [12]. For USPS and OCR classifiers
we use normalized image intensities as dense features. For the LANDMARK detector
we use high-dimensional sparse feature descriptors based on the Local Binary Patterns
as suggested in [12]. The classification oracle can be solved by enumeration in the case
of USPS and by Viterbi algorithm in the case of OCR and LANDMARK. The three
applications require different loss function Δ(y, y′) to measure the performance of the
structured classifier. Specifically, we used the 0/1-loss (classification loss) for USPS
data, Hamming loss normalized to the number of characters the OCR problem, and the
loss for LANDMARK data was the absolute average deviation between the estimated
and the ground-truth landmark positions measured in percents of the face size. The
datasets are summarized in Table 1.

Implementation. The competing methods are implemented in Matlab. CPA, SDM and
FASOLE use the same inner loop quadratic programming solver written in C. SDM
and FASOLE implement the same framework described by Algorithm 3 but SDM uses
the SMO update with MVP selection strategy of [1]. We do not implement different
heuristics proposed in [1] in order to measure the effect of different variable selection
strategy being the main contribution of our paper. All methods use the same classifi-
cation oracles. The oracles for OCR and USPS are implemented in Matlab. The oracle
for LANDMARK is implemented in C. All methods use the same stopping condition
based on monitoring the duality gap. In contrast to FASOLE and SDM, the authors of
BCFW do not provide an efficient way to compute the duality gap. Hence we simply
evaluate the gap every iteration and stop BCFW when the goal precision is achieved but
we DO NOT count the duality gap computation to the convergence speed and thus the
wall clock times for BCFW are biased to lower values. The experiments were run on
the AMD Opteron CPU 2600 MHz/256GB RAM.

Evaluation. We measure convergence speed in terms of the effective iterations. One
effective iteration equals to m oracle calls where m is the number of examples. Note
that CPA algorithm requires one effective iteration to compute a single cutting plane.
In contrast, one effective iteration of SDM, BCFW and FASOLE corresponds to m
updates. The effective iteration is an implementation independent measure of the con-
vergence time which is correlated with the the real CPU time when the oracle calls
dominate the other computations. This is the case e.g. for the OCR and LANDMARK
where the oracle calls are expensive. We also record the wall clock time because the
competing methods have different overheads, e.g. CPA, SDM and FASOLE call an in-
ner QP solver. We run all methods for a range of regularization constants, specifically,
λ ∈ {10, 1, 0.1, 0.01}. We stopped each method when the ε-optimal solution has been
achieved. We set the precision parameter to ε = 0.001 for USPS and OCR, and ε = 0.1
for the LANDMARK problem. Note that the target precision ε is given in terms of the
risk function which has different units for different application. Specifically, for USPS
and OCR the units is the probability (hence ε = 0.001 seems sufficient) while for
LANDMARK the units is the percentage (hence ε = 0.1).

414 V. Franc

Table 1. Parameters of the benchmark datasets used in comparison

dataset #training examples #testing examples #parameters structure
USPS 7,291 2,007 2,570 flat
OCR 5,512 1,365 4,004 chain
LANDMARK 5,062 3,512 232,476 tree

Table 2. The number of effective iterations and the wall clock time needed to converge to ε-
optimal solution for different setting of the regularization constant λ. The time is measured
in seconds for USPS and in hours for OCR and LANDMARK. The last two rows corre-
spond to accumulated time/iterations and the speedup achieved by the proposed solver FASOLE
(speedup={CPA,BCFW,SDM}/FASOLE). The BCFW method had problems to converge for low
values of λ hence we stopped BCFW when it used the same number of effective iterations as CPA
(the slowest method which converged). These cases are marked with brackets. The best results,
i.e. minimal number of iterations and the shortest time are printed in bold.

USPS
CPA BCFW SDM FASOLE

λ iter time iter time iter time iter time [s]
1.000 62 3.6 18 61.6 5 9.5 5 9.8
0.100 101 6.0 70 214.2 6 11.6 5 9.9
0.010 197 10.9 (197) (538.0) 13 39.12 5 14.0
0.001 380 26.7 (380) (1,018.8) 24 399.9 7 30.5

total 740 47.3 665 1,832.6 48 460.2 22 64.2
speedup 33.6 0.73 30.2 28.6 2.2 7.1 1 1

OCR
CPA BCFW SDM FASOLE

λ iter time iter time iter time iter time [h]
1.000 63 0.23 26 0.41 8 0.09 9 0.04
0.100 111 0.39 89 1.28 10 0.16 13 0.07
0.010 257 0.91 (257) (3.55) 20 0.60 16 0.15
0.001 655 2.31 (655) (9.47) 49 6.04 20 0.43

total 1086 3.83 1027 14.70 87 6.89 58 0.70
speedup 18.7 5.5 17.7 21.0 1.5 9.8 1 1

LANDMARK
CPA BCFW SDM FASOLE

λ iter time iter time iter time iter time [h]
10.00 93 2.43 4 0.18 8 0.32 6 0.21
1.00 165 4.71 20 0.78 11 0.40 8 0.28
0.10 261 7.82 (261) (8.52) 30 1.42 15 0.55
0.01 446 12.20 (446) (12.14) 131 12.30 39 1.79

total 965 27.25 731 21.62 180 14.42 68 2.83
speedup 14.2 9.6 10.8 7.6 2.6 5.1 1 1

FASOLE: Fast Algorithm for Structured Output LEarning 415

USPS

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

effective iterations

pr
im

al
 s

ub
op

tim
al

ity

CPA
BCFW
SDM
FASOLE

10
0

10
1

10
2

10
3

0.08

0.09

0.1

0.11

0.12

0.13

0.14

effective iterations

te
st

 r
is

k

CPA
BCFW
SDM
FASOLE

OCR

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

effective iterations

pr
im

al
 s

ub
op

tim
al

ity

CPA
BCFW
SDM
FASOLE

10
0

10
1

10
2

10
3

0.16

0.17

0.18

0.19

0.2

effective iterations

te
st

 r
is

k

CPA
BCFW
SDM
FASOLE

LANDMARKS

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

effective iterations

pr
im

al
 s

ub
op

tim
al

ity

CPA
BCFW
SDM
FASOLE

10
0

10
1

10
2

10
3

5

5.5

6

6.5

7

effective iterations

te
st

 r
is

k

CPA
BCFW
SDM
FASOLE

Fig. 1. Convergence curves for the regularization parameter λ which produces the minimal test
risk, in particular, λ = 0.01 for USPS and LANDMARK and λ = 0.001 for OCR. The left col-
umn shows convergence in terms of the primal sub-optimality and the right column convergence
of the test risk.

Discussion of the results. Table 2 summarizes the numbers of effective iteration and
the wall clock time required by competing methods to achieve the target ε-precision. In
sake of space we do not included the final objective because they are almost the same
(must not differ more than ε).

416 V. Franc

The results show that if compared to CPA and BCFW, the proposed FASOLE re-
quires order of magnitude less number of effective iterations on all three datasets. This
leads to the speedup in terms of the wall clock time ranging from 5.5 to 21.0 on struc-
tured problems OCR and LANDMARKS. The CPA algorithm requires less time on the
non-structured USPS benchmark because the risk function of multi-class SVM required
by CPA can be evaluated by a single matrix multiplication (very effective in Matlab)
unlike the SDA solvers (BCFW, SDM, FASOLE) which compute the loss for individual
examples separately (calling function in a loop not effective in Matlab).

Comparison to SDM, the closest method to FASOLE, shows that SDM requires ap-
proximately only two times more effective iterations than FASOLE. However, SDM
requires much more time in the inner loop, optimizing over buffered features, espe-
cially for low values of λ. This results to significantly slower convergence in terms of
the wall clock time, specifically, the speedup achieved by FASOLE relatively to SDM
ranges from 5.1 to 9.8.

These results show that FASOLE converges to the ε-optimal solution consistently
faster on all problems which translate to significant speedup in terms of wall-clock
time for the cases where the oracle calls are expensive. The advantage of the FASOLE
is especially significant for small values of λ when the speed up is often an order of
magnitude. Figure 1 (column 1) shows convergence of the competing methods in terms
of the primal sub-optimality (P (w) − P (w∗))/P (w∗), i.e. relative deviation of the
primal objective from the optimal value, where P (w∗) was replaced by the maximal
achieved dual value. The figures show that FASOLE converges consistently faster from
the beginning to the end. This implies that it beats the competing methods for the whole
range of the precision parameter ε and not only the particular setting the results of which
are reported in Table 2.

Some authors advocate that the optimality in terms of the objective function is not
the primal goal and instead they propose to stop the algorithm based on monitoring
the test risk. Therefore we also record convergence of the test risk which is presented
in the second column of Figure 1. We see that the convergence of the test risk closely
resembles the convergence of the objective function (compare the first and the second
column).

6 Conclusions

In this paper we have proposed a variant of the sequential dual ascent algorithm for opti-
mization of the SO-SVM dual. The proposed algorithm, called FASOLE, uses working
set selection strategy which has been previously used for optimization of simpler QP
tasks emerging in learning the two-class SVM. We provide a novel convergence analysis
which guarantees that FASOLE finds the ε-optimal solution in O(1

ε2) time. The empir-
ical comparison indicates that FASOLE consistently outperforms the existing state-of-
the-art solvers for the SO-SVM achieving up to an order of magnitude speedups while
obtaining the same precise solution.

Acknowledgment. The author was supported by the project ERC-CZ LL1303.

FASOLE: Fast Algorithm for Structured Output LEarning 417

References

1. Balamurugan, P., Shevade, S.K., Sundararajan, S., Sathiya Keerthi, S.: A sequential dual
method for structural SVMs. In: SIAM Conference on Data Mining (2011)

2. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM Transactions
on Intelligent Systems and Technology 2, 27:1–27:27 (2011)

3. Fan, R., Chen, P.H., Lin, C.J.: Working set selection using second order information for
training support vector machines. JMLR 6, 1889–1918 (2005)

4. Franc, V.: Optimization Algorithms for Kernel Methods. PhD thesis, Center for Machine
Perception, K13133 FEE Czech Technical University, Prague, Czech Republic (2005)

5. Franc, V., Hlaváč, V.: Simple solvers for large quadratic programming tasks. In: Kropatsch,
W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 75–84. Springer,
Heidelberg (2005)

6. Glasmachers, T., Igel, C.: Maximum-gain working set selection for SVMs. Journal of Ma-
chine Learning Research (2006)

7. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization.
In: Advances in Kernel Methods: Support Vector Machines. MIT Press (1998)

8. Joachims, T., Finley, T., Yu, C.: Cutting-plane training of structural SVMs. Machine Learn-
ing 77(1), 27–59 (2009)

9. Lacoste-Julien, S., Jaggi, M., Schmidt, M., Pletscher, P.: Block-coordinate frank-wolfe opti-
mization for structural SVMs. In: ICML (2013)

10. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.:
Handwritten digit recognition with a back-propagation network. In: Lisboa, P.G.J. (ed.) Neu-
ral Netwotks, Current Applications. Chappman and Hall (1992)

11. Collins, M., Globerson, A., Koo, T., Carreras, X., Bartlett, P.L.: Exponentiated gradient algo-
rithms for conditional random fileds and max-margin markov networks. JMLR 9, 1775–1822
(2008)

12. Uricar, M., Franc, V., Hlavac, V.: Detector of facial landmarks learned by the structured
output SVM. In: VISAPP (2012)

13. Ratliff, N., Bagnell, J.A., Zinkevich, M.: (online)subgradient methods for structured predice-
tions. In: AISTATS (2007)

14. Shalev-Shwartz, S., Singer, Y., Sebro, N., Cotter, A.: Pegasos: primal estimated sub-gradient
solver for svm. In: ICML (2007)

15. Shalev-Shwartz, S., Zhang, T.: Trading accuracy for sparsity in optimization problems with
sparsity constraints. SIAM Journal on Optimization 20(6), 2807–2832 (2010)

16. Takahashi, N., Nishi, T.: Rigorous proof of termination of smo algorithm for support vector
machines. IEEE Transactions on Neural Networks (2005)

17. Taskar, B., Guestrin, C., Koller, D.: Max-margin markov networks. In: NIPS, vol. 16. MIT
Press (2003)

18. Teo, C.H., Vishwanathan, S.V.N., Smola, A.J., Le., Q.V.: Bundle methods for regularized
risk minimization. JMLR (2010)

19. Tsochantaridis, I., Joachims, T., Hoffman, T., Altun, Y.: Large margin methods for structured
and interdependent output variables. JMLR 6, 1453–1484 (2005)

