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Geometric Graph Matching Using Monte Carlo
Tree Search

Miguel Amavel Pinheiro, Jan Kybic, Senior Member, Pascal Fua, Fellow

Abstract—We present an efficient matching method for generalized geometric graphs. Such graphs consist of vertices in space
connected by curves and can represent many real world structures such as road networks in remote sensing, or vessel networks in
medical imaging. Graph matching can be used for very fast and possibly multimodal registration of images of these structures. We
formulate the matching problem as a single player game solved using Monte Carlo Tree Search, which automatically balances
exploring new possible matches and extending existing matches. Our method can handle partial matches, topological differences,
geometrical distortion, does not use appearance information and does not require an initial alignment. Moreover, our method is very
efficient — it can match graphs with thousands of nodes, which is an order of magnitude better than the best competing method, and

the matching only takes a few seconds.

Index Terms—Geometric graph matching, Monte Carlo tree search, image registration, curve descriptor

1 INTRODUCTION

ANY linear structures can be naturally represented as
M geometric graphs. Examples include road and street
networks in aerial images, blood vessels in retinal scans,
bronchi in angiograms, and neuronal fibers in microscopy
image stacks. The images often lack easily matchable fea-
tures other than the linear structures themselves. This makes
it impractical to use traditional registration techniques that
rely on maximizing image similarity [1], [2], [3]. In many
cases, standard feature-based methods cannot be used ei-
ther, as local neighborhoods are not sufficiently distinctive,
for example because many road intersections look alike. We
therefore propose to register these images by matching the
extracted geometrical graphs. For an example, see Fig.

In earlier work, we described an active testing search
(ATS) method [4], which involved progressively refining the
geometrical transformation model as more correspondences
are added. The model was used to explore the set of all
possible correspondences starting with the most likely ones,
which allowed convergence at an acceptable computational
cost even though no appearance information is used. ATS
outperforms a number of state-of-the-art techniques [5], [6],
[7] and is usable for graphs of up to about 200 nodes.
However, for larger graphs its computational cost becomes
prohibitive.

Here, we propose a different approach that can handle
graphs with thousands of vertices, even in the presence
of substantial deformations. We formulate the problem as
a single player game and use a Monte Carlo tree search [§] to
automatically balance between exploration (finding new par-
tial matches) and exploitation (extending previously found
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ones). We will refer to our method as graph matching using
Monte Carlo tree search (GMMC). We follow the graph edges
to grow the matches incrementally and we speed-up the
computation by using curve descriptors [9] to distinguish
compatible edges from incompatible ones and to prune the
search tree. Finally, we use an implicit geometric defor-
mation model, which is much faster to evaluate than the
Gaussian processes of ATS.

We demonstrate the effectiveness of our approach using
aerial images of roads networks, blood vessels in retinal
scans, bronchi in angiograms, and neurites in microscopy
image stacks. We also experimented with several syntheti-
cally generated datasets to test the method against various
types of transformations, size of the graphs and dependence
on the parameters of the algorithm.

Our key contributions are the use of the Monte Carlo tree
search along with our fast and efficient curve descriptors
and implicit transformation model. These ideas were first
introduced in earlier conference papers [9], [10]. Here we
brought them together, described the algorithms in more
detail, and conducted much more extensive experiments on
both synthetic and real data.

2 RELATED WORK

Our method matches points and line-features across images.
We briefly review other approaches for solving this task.

2.1 Point matching

By neglecting the edges, we can reduce our problem to point
cloud matching [11]. Optionally, points may be sampled
along the edges, which makes the point cloud denser at the
expense of the uniqueness of the matching. If the number
of degrees of freedom is small, its parameters can be re-
covered by RANSAC [12], based on randomly sampling the
correspondences and fitting the geometrical model Many
improvements to RANSAC have been proposed [13], such
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Fig. 1: Localizing a small satellite image within a map. Yellow lines link matched nodes of the road networks extracted from
a satellite image (red) and from a map (blue). Transformed version of the map network (blue) after matching is shown overlaid

on the satellite image.

as Guided-MLESAC [14] or PROSAC [15]. The advantage
of RANSAC is that it does not require initialization but its
computational complexity grows sharply with more general
deformation models.

Another class of point matching algorithms is repre-
sented by the Iterative Closest Point (ICP) [16], which al-
ternatively identifies closest points and updates the defor-
mation parameters until convergence. There are variants
of ICP that increase robustness [17], [18] or employ non-
linear transformations [19]. The Coherent Point Drift (CPD)
method [20] uses probabilistic assignment. These methods
are fast and can handle large number of points but require
a good initial estimate of the transformation.

2.2 Graph matching

Appearance node attributes or descriptors [21], [22] are
often used to prune matches between incompatible points
in RANSAC-like methods. The next step is to consider com-
patibilities between edges or pairs of points, for example by
comparing their Euclidean or geodesic distances [7], [5] or
neighborhood similarity [23]. Matching can be approached
as finding an approximate minimum vertex cover of pair-
wise consistent matches [24], or maximum weighted inde-
pendent set [25]. The algorithm is fast as long as the number
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of consistent point pairs is low, i.e. for rigid transformations
or for very discriminative appearance descriptors.

Binary compatibilities between point pairs can be re-
laxed to real-valued affinities, which leads to an integer
quadratic program (IQP), which can be solved by spec-
tral techniques [26], [27], spectral matching with affine
constraints [28], iterative projections [29], dual decompo-
sition [30], path following algorithms [31l], or Sequential
Monte Carlo search [32]]. Unfortunately, none of these meth-
ods can handle more than a few tens of nodes.

Topological differences are common in graphs created by
segmentation of real data. Most algorithms can only handle
missing nodes or edges; more general cases can be handled
by graph edit distance minimization [33] at the expense of
increased computational complexity.

The active testing search (ATS) method [34], [4] builds
the match incrementally, adding node correspondences one
by one. The probability of the match belonging to the
solution is estimated from observable features and the most
promising matches are added first, backtracking if neces-
sary. This method does not require an initial estimate of the
transformation and was applied to graphs with up to 200
nodes [4], which is better than all other previously known
methods capable of handling non-linear transformations
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and unknown initial position.

2.3 Curve matching

A simple but computationally demanding method for
matching two curves in 2D or 3D consists of first aligning
the curves and then calculating the residual Euclidean dis-
tance [17], [4] or the Frechet distance [35].

Descriptors of curve segments invariant to similarity
transformations can be established [36], based on angle [37]
or curvature [38], [39]. In [40], the authors present an affine-
invariant descriptor for a curve, based on curvature and
high order derivatives. Other path descriptors use image
information such as a gradient [41]].

Partial matches can be found by iterative closest point al-
gorithm [17], dynamic programming [42] or the Hungarian
algorithm [4].

2.4 Applications

Graph and point cloud matching has been used many times
for image registration. In retinal fundus photography, it is
possible to match the branching points [43] but also the com-
plete vessel graphs [31]], [5]. Tree matching has been used
for matching 3D lung structures [44], [45] and also blood
vascular systems [46]]. Graph matching has been applied in
the registration of volumes of neuronal networks and brain
blood vessels [4].

The problem of car self-localization on a map was so
far used in a setting, where the initial position is known
and odometry information is available [47]; odometry was
obtained from a set of images by modeling a map using
landmarks [48]]. This is unlike our graph-based method
(Section where no initial position estimate is needed.

3 PROBLEM DEFINITION

Let us consider a graph G# = (VA E#) where the vertices
V4 are points in R, and the edges E4 C V4 x V4
are associated with curves connecting the two incident
vertices. This is a generalization of a geometric graph [49].
Each edge e € E4 is described by a continuous function
Ce: I — RP, where I = [0,1] is the unit interval, so that
e = ((e(0),¢e(1)). The curve is an image of this function,
Co(I) = {Co(t);t € I} and has length I(e) = [, [|Ce(t)] dt.
We choose a constant speed parameterization, implying
[I<e(t)]] = l(e) for all t € I. We assume that for each edge
(u,v) in E4, the graph contains also its reverse (v, u), with
the same curve reversed. The total length of all edges is
denoted I(E#) and the number of vertices is |[V4|.

To handle segmentation errors, we want to allow for
some vertices and edges to be present only in one of the
graphs, i.e. to perform partial matching. Moreover, two or
more edges in one graph may correspond to one longer
edge in the other graph. To handle these topological dif-
ferences, we define superedges [25] as sequences of up to K
consecutive edges, s = (e1,...,ex,), Ks < K. We mostly
use K = 2 or 3 and give examples in Fig. 2} Matching
superedges instead of edges effectively allows some nodes
to be skipped in one of the graphs. The set of all superedges
in the graph G* will be denoted S“. The length of a su-
peredge is the sum of the lengths of the constituent edges,

I(s) = >,l(e;). To each superedge, we associate a curve
which is a concatenation of the curves associated with
individual edges and is described by a function (s: I — R”.

The matching between two geometrical graphs G* and
GP = (VB E?P) can be described by a set of superedge
pairs MS C S84 x S&. The superedge matching MS deter-
mines uniquely a vertex matching MV C V4 x VB, such
that matched superedge end-vertices are matched in MV
but no other vertices are matched. A matching MS is feasible
only

(a) if no matched superedges overlap (contain the same
edges),

(b) if it is consistent with some vertex matching MV.

The matching is said to be consistent with a geometrical

transformation T: RP? — RPD, iff the vertices and su-

peredges are transformed version of each other,

(u,v) e MYV = v =T(u), 1)
(r,8) € M® = ((I) = (T o &) (D). 2)

We want the matching to be as large as possible, so we
measure its quality using the total length of the matched
superedges, averaged over the two graphs

(sft,sP)ems

Since we also want to discourage skipping nodes that exist
in both graphs, we will reward the number of matched
nodes |[MV |. The combined objective function is

QMY M®) =I(M®) + kI(SA,SB) MY|, (4

where [(S4,SB) is the average length of the superedges
of both graphs, and & is a user-defined parameter (in our
experiments £ = 0.8). The task can be now defined as
follows:

Problem 1 Find a feasible matching MS between the superedges
of the graphs G and GB, which maximizes the criterion Q (@),
and is consistent with some geometrical transformation T' from
a given class of allowed transformations 7.

Note that the matching may be partial, i.e. not all edges and
vertices are necessarily matched. Our choice of the class of
allowed transformations .7 will be defined in Section ]

3.1 Proposed approach

The key idea of our approach is to formulate the combina-
torial Problem [I|as a single player game with the following
rules:

1) Start with an empty matching M§ = 0.

2) The game consists of a sequence of valid moves. In each
move, a superedge pair (r,s) € S4 x SP is added to
MS, ie. MP,; = M? U (r,s). A move is wvalid, if the
resulting matching MtSJrl is feasible and consistent with
some geometrical transformation 7' € .7, where T can
vary in time.

3) A move consisting of adding a pair (r,s) can be taken
only if (r,s) is adjacent to M. The move is called
adjacent, if there is a superedge pair (r',s’) € M, such
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Fig. 2: Example of a geometrical graph (top) and its superedges
of length one (bottom left) and two (bottom right).

that the first vertex of r and s is equal to the last vertex
of r’ and §’, respectively.

4) The goal of the game is to find a sequence of valid moves
such that the final matching maximizes the criterion Q.

The rules require the matching to be built incrementally
(rule ) and contiguously (rule B) and thus limiting the
number of possibilities to consider in each step. See Fig. [B|for
illustration of possible moves and Section [5.1] for handling
disconnected graphs.

To prune the search even further, we will use pre-
computed path descriptors (Section [6). Only compatible su-
peredge pairs (r,s) will be considered as possible moves.
To summarize, (r,s) is a possible move, if the following
conditions are fulfilled:

(i) (r,s) is adjacent to existing matches M?,

(ii) (r,s) does not conflict with already matched su-
peredges (i.e. no edge overlap or conflicting vertex
assignment),

(iii) r and s have compatible descriptors (Section @,

(iv) (r,s) together with previous matches M are consis-
tent with the transformation model (Section [4).

The conditions are tested in this order so that the geometri-
cal consistency, which is the most time consuming, is tested
last.

The superedges are considered in a default order: first the
superedges with the least number of constituent edges and,
in case of equality, longer superedges are considered first.
For pairs of superedges, a maximum number of edges and
the sum of their lengths is considered. This heuristic quickly
constrains future matching choices without skipping ver-
tices unless necessary.

4 TRANSFORMATION MODEL

Any geometrical transformation model can be used, as long
as it allows efficient test of consistency with a set of points.
We represent the curves by a set of regularly sampled points
with a sampling step A, so no special test for curves is
needed. Note that for the matching itself, the deformation
does not need to be explicitly evaluated. We shall therefore
define the model only implicitly, which is computationally
advantageous.

n+1
. reachable in next move
L]
¢ o . °

Fig. 3: Example for a possible next move (top — initial state,
bottom — next state) for a simplified case of superedges
with length one. The superedges reachable in each state are
connected with already matched superedge pairs.

In our applications, the scale is usually known, so we
need to model mainly a rigid body transformation with
a small nonlinear component due to a tissue deformation,
optical distortion, measurement inaccuracies or perspective
distortion. We are therefore modeling the transformation as
bi-Lipschitz, which means that for any two points x,y €
RD, their relative distance after applying the transformation
should not change by more than some small constant 7:

1
1+ep

where d(x,y) is the Euclidean distance between x and y.

To check condition [(iv)|in Section[3.1] i.e. whether a new
superedge pair (r,s) is geometrically compatible with al-
ready matched pairs M, we should take all pairs of points
(x,y) from all edges in M? U (r, s). However, this would be
computationally very costly. Instead, we shall only test the
yet unmatched end-vertices u € V4 and v € V& of r and
s, respectively, with all other vertices (p,q) € MY matched
so far:

dx,y) <d(T(x),T(y)) < (1 +er)d(x,y), (5)

1

T dwp) <d(v,a) < (1+e7) d(u,p)

5 MONTE CARLO TREE SEARCH

To find the optimum matching M S we will use an algo-
rithm inspired by the Upper Confidence Bound on Trees
(UCT), a variant of the Monte Carlo Tree Search (MCTS) [8].

A search tree is built incrementally. Each node v stores
the matched superedges MS and vertices M V. It contains
the node reward Q, = Q(M Y, MS) defined by {@) and the
estimated maximum reward Q) for the subtree rooted in v;
Q; is calculated in the simulation step described below. For
each node, we also calculate the urgency

s Qy

2logn
Qy: &

Qnorm + ’Y nV . (6)
The second term is the upper confidence bound (UCB) [8] and
it balances between exploration of yet unvisited branches
and exploitation of known good branches; n is the current
iteration number, n, is the number of times the node v has
been selected (see below), v is a user-defined parameter (in
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our experiments v = 0.01), and Qnorm is an upper bound
and a normalization factor for the node reward @, :

A B
Qnorm = l(E ) ;Z(E )

A node can be expanded by performing a possible move
and adding the resulting state as a child node of the current
node. We keep track of the expandability (existence of
unused possible moves) of each node.

The algorithm repeatedly performs the following four
steps (Fig. d), until the computational budget is exhausted
or until no nodes can be expanded:

+ £ 1(S,8P) min([VA],[VE)),

1) Selection — The most urgent expandable node is selected
by a greedy top-down tree search. We start in the root
and always select among the expandable children the one
with the highest urgency Q. We return the expandable
node with the highest Q,, found.

2) Expansion — N, children of the selected node are
added to the tree. The children nodes to be expanded
are taken in the default order (Section [3.1). In our exper-
iments Neyp = 2.

3) Simulation — We estimate the maximum possible re-
ward Q; of the subtree rooted in the selected node by
greedily and recursively adding Nim, children in a depth-
first manner, adding always the first node in the default
ordering. The greedy approach is fast, so Ngim can be set
to a large number (in our experiments Ngim = 25). We
insert the added nodes into the search tree.

4) Backpropagation — We update @}/ in the nodes along
the path from the current node back to the root, taking
the maximum of the children values.

The algorithm stops after reaching a predefined match size
Niateh, maximum number of iterations N; or maximum
processing time Tinax. The result is a matching (MY, MS)
between the graphs with the highest reward @),,.

When the matching is complete, we use a Gaussian pro-
cess regression [50] to fit a smooth non-linear transformation
T given the matched vertices. This step is fast and provides
sufficiently good results on our data. For more demanding
applications, the iterative procedure [4] should be used,
which alternates between solving for the assignment be-
tween all points using the Hungarian algorithm [5I] and
fitting the Gaussian process model.

5.1 Implementation details

Several additional fields are stored for each node besides
MS, MV, Q, and Q) :
- Counter n,: Number of times the node has been selected.

- Skipped vertices are vertices which are part of superedges
in M but which are not in MV They are not considered
for addition in the future, as they overlap with already
matched superedges.

- Expandable flag: true if some node in the subtree rooted
at v can be expanded

To allow exploring disconnected components of the
graphs G#, GPB, virtual superedges composed of a sin-
gle straight edge are added between vertices closer than
a distance d. which belong to different graph components

(for graphs normalized s.t. VA, VB ¢ [~1,1], we use
d. = 0.15). Only superedges of the same type (virtual and
non-virtual) can be matched to each other.

Unlike in standard MCTS, the search space is a directed
acyclic graph, not a tree, because several sequences of moves
may lead to the same state. To save the computational effort,
the nodes representing the same state are shared. Each time
a new state MS is to be added to the search tree, we check
a list of already encountered states. If the node already
exists, it is shared. The test is fast using binary search, as
the list is kept sorted by defining a topological ordering.

5.2 Adding a child node

There is a special procedure for expanding the root node,
since it would be wasteful to enumerate all possible su-
peredge pairs. If the root is selected for expansion, a single
superedge pair is added. We start with the first superedge in
S (in the default order, i.e. the longest edge, see Section [3.1)
and find the first geometrically compatible superedge in S”
(Section [6). Only superedge pairs with the same number
of constituent edges are considered for addition. The lists
of possible superedge pairs and endpoints are then created
(as for all other nodes, see below). If the root needs to be
expanded again, the search continues where it left off.

For a non-root node, the procedure of adding a child
node is the same for both the expansion and simulation
steps:

- We pick an unexplored superedge pair from the list of
possible superedge pairs, sorted in default order. This pair

will automatically satisfy conditions in Section
We then check the geometric compatibility with previous

matches (condition [(iv)) using (6).

- The new node starts as a copy of its parent. We then
add the newly matched superedge pair to MS and the
yet unmatched end-vertices to M V. The list of skipped
vertices is updated. Infeasible matches are removed.

- We search in S# and S® for superedges incident with
the newly matched vertices but with none of the already
matched edges. Geometrically compatible superedge pairs
(condition are added to the list of possible moves.
This can be done in linear time with respect to the number
of adjacent edges.

6 PATH DESCRIPTORS

The path descriptors characterize a curve by a fixed-length
real vector, invariant to rigid body transformations, al-
lowing efficient curve matching. An earlier version of the
descriptors was used in [9].

Let us have a sampling vector w = (wo, - - - ,wWn,+1) such
that 0 = wp < w1 < ... < wyp, < wWp,4+1 = 1. For a given
superedge s and its associated curve (s, we shall define
a scalar value

he(s) = Zd(Cs(ti>7 Cs(tiv1)), )
i=0
where the vector t = (tg,...,tn,+1) is chosen such that

d(¢s(0),Gs(t:)) = wid(¢s(0),¢s(1)). If there are more pos-
sible t;, the smallest one is taken. In other words, we find
the first intersection of the curve with concentric circles of
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Fig. 5: Simple example of the sampling for calculating the path
descritptor h. (si) for a superedge si

relative radii given by w;, and calculate the total length of
the line segments, connecting these points (see Fig. [5). A
vector descriptor

hﬂ(s) = (hwu e 7h'wm\) (8)

is created by evaluating (7) for a set @ = (w1,...,w|q))
of randomly generated sampling vectors w. The number of
sampling vectors || and their length n,, are user defined
fixed parameters. In our experiments n,, = 5, || = 50.

The descriptors are precalculated for all superedges. To
test the compatibility of two superedges (r,s) € S# x S&

(condition in Section [B.1), we take inspiration from
the Lipschitz condition (5). We shall consider the two su-
peredges to be compatible iff

1
T1g, elt) S hols) < (L+en)he(r), vi )
for all sampling vectors w; from 2. We use ¢, = 3er,

which has been confirmed to be a reasonable choice in an
experiment in Section[.3.4]

7 EXPERIMENTS

We evaluate the performance of our proposed method
GMMC on synthetic and real data and compare its per-
formance against that of state-of-the-art methods. We first
quantify the relationship between accuracy and time com-
plexity given the amount of deformation and noise, the
initial position and topological differences using synthetic
data (Section [7.2). We then show results on real bioimaging
data and on satellite images of roads (Section [7.3).

7.1 Tested methods

The methods to compare with were chosen to cover the
range of known approaches to point cloud and graph
matching. We have preferred methods that scored well in
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Fig. 6: Results for synthetic datasets in 3D showing the performance of the tested methods. The median correct correspondence
percentage of 20 realizations for each parameter value is shown. Under each graph, we show 2D examples of the effects.

our previous experimental comparison in [4]. We have cho-
sen RANSAC [12] as an example of sampling methods. Ac-
tive Testing Search (ATS) [4], which uses incremental match-
ing, is the best performing method so far. Graph matching
techniques are represented by the Integer Projected Fixed
Point method (IPFP) [29] and the Path Following Algorithm
(PATH) [31]. Local matching approaches are represented by
the Coherent Point Drift (CPD) [20].

The methods were implemented as described in their
respective papers and using provided implementation when
available, with the following parameters:

- RANSAC [12]: Four points are sampled at each itera-
tion and an affine transform is fitted. This disadvantages
RANSAC somewhat but to fit more general transforms
would not be feasible due to the exponential time com-
plexity.

- ATS [4]: Synthetic training data (Section[7.2.3) was used to
learn the score function. The Gaussian process regression
hyperparameters were chosen as 6§y = 1, §; = 10, 62 =

0.1,05 =1and S~ = 0.05.

- CPD [20]: A point cloud is obtained by considering also
the point representation of the edges with a sampling step
of A = 0.025. We used the non-rigid configuration with
B8 = 3 and A = 3. The initial transformation was identity.

- For the proposed method (GMMC), the parameters used
for all experiments were K = 3,n,, = 5 and |Q2| = 50.

All tested methods, with the exception of CPD, only
provide a coarse matching, i.e. a matching between the graph
nodes or their subsets. For the remaining methods, we use

the same approach as in GMMC (as described in Section [f).

A correspondence (x,y) is considered to be correct, if
the distance d(y,y*) to the true match y* of x is smaller

than the sampling step A.

7.2 Synthetic datasets

To generate a synthetic graph G4, the procedure from [4] is
used — points are randomly sampled from a uniform dis-
tribution on the [—1, 1]* cube and then minimum spanning
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Fig. 7: The processing time, precision and recall as a function of

en, where er = %Eh. For different values of ¢, we calculate the

processing time taken to obtain the solution, the precision (pos-
itive predictive value) and the recall (true positive rate). The
values shown are a median over 100 synthetically generated
pairs of graphs. Nyatch Was set to the size of the true match.

tree [52]] edges are added. The branching points become ver-
tices of G and the edges are resampled using a sampling
step A = 0.025. The graph G is obtained by transforming
G in the desired way, as described below.

7.2.1 Evaluating matching accuracy

Random graphs G4 with approximately |V| ~ 40 nodes
were generated as described above and the following effects
were applied to them to obtain the graphs G%:

- Deformation: A cubic B-spline transformation [53] was
applied with random coefficients of a given standard
deviation in the range [0, 0.2].

- Missing subgraphs: Randomly selected branches of the
graph were removed so that the number of nodes is
decreased by {0%, 10%, ...,90%}.

- Rotation: The graph is rotated by a given angle from the
interval [—m, 7] around a random rotation axis through
the origin.

- Noise: A Gaussian random displacement with standard de-
viation in the range [0, 0.1] was applied to each component
of each point in G5, including the edge points.

For each effect and each parameter value, 20 pairs of ran-
dom graphs were generated and matched by the tested
method, and median correct correspondence percentage
was calculated over all vertices. The termination criteria
were set so that the number of matched vertices is 80% of
the size of V4.

We see in Fig. [f| that the proposed method (GMMC)
is among the best in all cases. CPD cannot handle large
rotations and missing subgraphs, RANSAC and IPFP cannot
handle deformation and noise, PATH performs badly for
missing branches, deformation and noise. This leaves only
ATS and GMMC fulfilling our requirements, with GMMC
performing better than ATS in all cases except the rotation
test, where their performance is similar.

7.2.2 Lipschitz parameters

We analyzed the performance of the algorithm with respect
to the Lipschitz parameters €}, and €7, which determine the
allowed deformation (6) and the allowed path descriptor
tolerance (9). The parameter e is set according to how
much deformation can be expected in specific datasets and
we take ¢, = 3e7, as discussed in Section [7.3.4

We have generated 250 pairs of graphs by combining
the effects from Section a small nonlinear deformation,
a random rigid motion, removal of randomly selected 40%
of the vertices. The true median value of the Lipschitz con-
stant ¢y, for this dataset is approximately 0.2 and ez ~ 0.07.
We ran the algorithm with different values of ¢}, until either
the search tree was completely explored or until a solution
with as many matched points MV as in the true solution
was found.

As we can see in Fig. @ for small values of ¢, the
tests are very strict, the search tree is rather small and is
completely explored. The running time and the number
of true correspondences found (recall) increases with ¢y,
Above the optimal value of €, which is close to the true
median €p, the recall starts to decrease slowly. Note that
by experiment design, the precision equals recall in this
regime, since the number of returned correspondences is
fixed. The running time first drops sharply, as the solution
is found quickly and the search tree does not need to be
fully explored; it then increases slowly with increasing ¢y,.

We conclude that it is important to set ¢; to a large
enough value, so that the true solution is not missed.
Increasing it further will deteriorate the performance only
slightly. Note that in most realistic applications, the Lips-
chitz constant 7 is small, usually much smaller than 1.

To understand the performance of the algorithm with
respect to the maximum allowed time Tj,.x, we generated
250 synthetic graph pairs as in the previous experiment,
only increasing the size of the undecimated graph G* to 250
vertices to make the differences more visible. In this experi-
ment, we do not set the maximum number of iterations Vj;
nor the minimum stopping match size Npatch; the algorithm
stops only after the time budget Ti,ax is exhausted or if the
search tree is completely explored. Recall and precision for
ey, € [0,5] and Thax € [0.018,5.0] s are shown in Fig. |8 The
median true ¢, for this dataset is approximately 0.42 and
the median true e =~ 0.14.

As expected from the previous experiment, for small
en, the recall increases sharply with increasing &; and
the precision is high. After exceeding the optimal value,
which is close to the true median Lipschitz constant, false
positives start appearing and the performance decreases
slowly with increasing ¢j. Allowing more processing time
always improves the results, as the algorithm has the time
to explore a larger part of the search tree. This effect is more
pronounced for higher values of ¢y,.

7.2.3 Time complexity

Using the procedure as described at the beginning of this
Section, with a random rotation and a small nonlinear
deformation, we have generated a synthetic dataset of graph
pairs with an increasing number of vertices |[V| € {10!,
10125105, 10475, ..., 1037}, with 20 pairs of graphs for
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Fig. 9: Experiment evaluating the complexity of methods
ATS [4], RANSAC [12], IPFP [29], PATH [31]], CPD [20] and the
proposed method (GMMC). Both axes use logarithmic scale.

each graph size. Fig. [ shows the median processing time
for all the tested methods. The parameters for all methods
were set so that at least 75% of the vertices of the graphs
were matched. We can see that the proposed method is
the fastest of the methods tested. For larger graphs, it is
about 5 orders of magnitude faster than ATS, the only other
method meeting our requirements. Moreover, GMMC also
has a lower asymptotic complexity (see the slope of the
curve) than all other competing methods except CPD. The
times are given for the coarse matching only, while CPD
matches the edge points, too.

7.3 Real datasets

The algorithm was also tested on real datasets. All seg-
mented graphs were normalized such that VA, VB ¢
[~1,1]P. The ground truth correspondence between the
graph vertices was obtained manually. For all methods
except CPD, the Gaussian process regression as described in

Sectionwas used to obtain the fine alignment. Then, we
calculated the alignment error as the mean Euclidean distance
between the corresponding vertices, once the graphs were
aligned. We also show the precision and recall of identifying
the true matches between vertices, which were annotated
manually, as well as the total processing time. As in the
synthetic case, we choose e according to how much defor-
mation we expect to find in the dataset and set €, = 3er.
The chosen value of 7 is reported for each dataset.

7.3.1 Roads

We matched a segmented road network from an aerial
view image to a graph extracted from a road map. The
map was obtained from OpenStreetMap [54] and we semi-
automatically segmented [55], [56] roads from satellite im-
ages obtained from Google Mapeﬂ The satellite image cor-
responds to only a small subset of the graph obtained from
the map.

We tested 10 different pairs of map graphs with up
to 6000 vertices, 7500 edges and 75000 superedges, which
were matched to templates with up to 60 vertices and 600
superedges. We used e = 0.1.

The alignment error, precision, recall and elapsed time
are presented in Table [I| and a few visual examples are
shown in Fig. Some methods could not process all
datasets as they exhausted the available 256GB of RAM
memory in our computer. These cases are marked with .
We see that the proposed GMMC method is the best in
almost all criteria (shown in bold). The ATS method has
a better precision but a much lower recall and much higher
computational complexity. The tradeoff between precision
and recall can be influenced by parameter setting but the
computational complexity remains. The other tested meth-
ods simply do not find any correct matches.

To validate our choice of the default order as described
in Section we have also tried to consider superedges in

1. http://maps.google.com
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Fig. 10: Top left: Brain tissue acquired using two-photon light
microscopy from live brain tissue at a 1 um resolution and bot-
tom left: a smaller area of the same tissue imaged using electron
microscopy, at a 20 nm resolution. Right: The alignment of the
two structures after matching using the proposed method.

a random order instead. On this dataset, it resulted in an
almost 40 times longer processing.

7.3.2 Medical images

We tested our method on five types of datasets of medical
images or volumes. The datasets are examples of different
applications in medical imaging and were obtained using
different acquisition techniques.

Tem aim of the registration of retinal fundus images [5],
[57] (Fig. er = 0.35) is to combine images with limited
fields of view or to detect changes in time. In this case the
segmented graphs are two-dimensional.

Images of brain circuits (Fig. a) er = 0.2) are sparse
sets of fluorescently labeled neurons in the neocortex in
3D, which were obtained using large-scale 2-photon laser
scanning microscopy at two time instances in a living
mouse [58]. Registration is needed to detect and quantify
the differences [59].

Multimodal registration is demonstrated on two 3D
datasets. The EM/LM (Fig. er = 0.35) dataset shows
brain tissue at two different scales using electron mi-
croscopy (EM) and light microcopy (LM). Brain vessels
(Fig. [I3(b), ez = 0.35) are blood vessels acquired using op-
tical and 2-photon microscopy. In both cases the registration
is needed to fuse images from the two modalities.

Finally, heart images from the angiography dataset are
two-dimensional angiograms taken at different time in-
stances (Fig. c), er = 0.25). The aim of this application is
to track the displacement of the heart vessels over time.

The alignment error, precision, recall and elapsed time
for these datasets is shown in Table [2 Both the proposed
method (GMMC) and ATS are able to successfully match
all the graphs, however GMMC is much faster. CPD can
solve some of the tasks but fails when large parts of the
graph are missing (EM/LM) or when the deformation is

large (angiography). CPD sometimes presents a high recall
since it tries to match all points. However, the precision is
lower, as many of these points are incorrect, resulting in a
higher alignment error in most cases.

7.3.3 Discussion — what should be matched

Let us comment on several aspects, which are well illus-
trated on the medical datasets. First, if the deformation is
smooth, as for the retinal dataset, it is faster and sufficiently
accurate to match just a part of the graph for example by
reducing the desired number of matched vertices Npmatch.
Second, it is up to the user to provide the parameters ¢;, or
er, determining how much deformation is allowed between
the two input graphs. If this parameters are set conser-
vatively, strongly deformed parts will not be matched. In
Fig. we show that be increasing e7 and ¢y, a large part
of the graph can be matched at the expense of computation
time.

Finally, note that leaf nodes are sometimes not matched,
as they do not correspond to well defined physical points in
the tissue, but rather to points where the annotator or the
segmentation algorithm decided to stop the edge (see the
angiography or retinal datasets), and these points may not
coincide in the two graphs. If desired, leaf edge matches can
be treated specially, allowing partial matches by shortening
the longer superedge to the length of the shorter one [25], at
the expense of more false matches.

7.3.4 Path descriptors

We have tested the proposed path descriptors from Sec-
tion [6{ against four other methods: Similarity of Deformable
Shapes [60], Curve Matching using the Fast Marching
Method [61] and Similarity Invariants for 3D Space Curve
Matching [36]. We have used all medical datasets from
Section[7.3.2

We took all possible superedge pairs and tried to de-
termine whether two superedges matched. ROC curves
were calculated by thresholding a provided curve distance
measure for [60] and [61], thresholding a Euclidean distance
between the descriptors for [36], and varying ¢j, in (9) for
our method. We can see in Fig. (14} that our path descriptors
outperform all other methods.

The points on the ROC curve are annotated with the
Lipschitz constant ¢, and we also show a histogram of the
true €, values for all matching superedge pairs. We can see
that the equal error rate point is reached for ¢, = 0.16,
which corresponds to the 93.5% percentile of the histogram
while e = 0.05, corresponds to a 95.17% percentile of
its respective histogram. We observe similar behavior in
other datasets, including synthetically generated. Hence our
choice of €, = 3er, with er sufficiently large to allow the
expected deformation.

8 CONCLUSION

Geometric graph matching is a task, which has not received
much attention so far. It is an extended version of standard
graph matching (with geometry information) but also an
extended version of point cloud matching (with edge con-
nections).
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TABLE 1: Results for road datasets: alignment error (graphs were normalized s. t. V4, VZ ¢ [~1,1]"), percentage of correct
matches in the solution (precision), percentage of ground truth matches retrieved (recall) and processing time in seconds. For each
dataset, we present the number of vertices of each graph |[V#| and [V?|. The ATS and IPFP methods could not process some of
the larger datasets without exhausting the available 256GB of RAM. These cases are marked with '~'.

GMMC

GMMC

Dataset (Proposed) ATS IPFP  CPD Dataset (Proposed) ATS IPFP  CPD
Road Pair I Error 0.004 0.005 0.305 0.239 Road Pair VII  Error 0.007 - - 0.377
[VA|: 32 Precision (%) 100.0 100.0 0.0 3.1 [VA| : 47 Precision (%) 73.7 = = 0.0
[VE|: 38 Recall (%) 83.3 33.3 0.0 8.3 [VE|: 6050 Recall (%) 43.8 - - 0.0
Time (s) 0.03 55.17 9.16 0.92 Time (s) 363.74 = = 0.29
Road Pair I Error 0.005 0.011 0.252  0.070 Road Pair VIII  Error 0.009 - 0464 0363
VAl :25 Precision (%) 92.9 714 0.0 0.0 [VA| ;24 Precision (%) 85.7 - 0.0 0.0
[VE|:199 Recall (%) 61.9 23.8 0.0 0.0 V5| : 803 Recall (%) 60.0 - 0.0 0.0
Time (s) 0.00 3030650  137.90  0.01 Time (s) 0.02 - 82431  0.05
Road Pair III  Error 0.003 0.005 0.403  0.358 Road Pair IX  Error 0.002 - 0526  0.675
[VA|: 19 Precision (%) 90.9 100.0 0.0 0.0 VA : 67 Precision (%) 96.3 = 0.0 0.0
V5| : 306 Recall (%) 76.9 23.1 0.0 0.0 [VB|: 1693 Recall (%) 57.8 - 0.0 0.0
Time (s) 0.01 10946.63  1679.98  0.01 Time (s) 414.36 - 3605612 020
Road Pair IV Error 0.009 - 0.447 0.388 Road Pair X Error 0.002 - 0.268 0.577
['VA]: 20 Precision (%) 100.0 - 0.0 0.0 [VA]: 51 Precision (%) 95.8 - 0.0 0.0
[VB|:1344  Recall (%) 71.4 - 0.0 0.0 [VB|: 2576 Recall (%) 71.9 - 0.0 0.0
Time (s) 0.96 - 1606.86  0.01 Time (s) 0.05 - 4575820 3.08
Road Pair V. Error 0.004 - 0.429 0.303 Road Pair XI Error 0.006 - 0.489 0.571
[VA]: 29 Precision (%) 73.3 = 0.0 0.0 [VA|: 41 Precision (%) 100.0 = 0.0 0.0
[VE|: 7111 Recall (%) 61.1 = 0.0 0.0 [VB|: 2479 Recall (%) 78.0 = 0.0 0.0
Time (s) 0.00 = 509.53  0.02 Time (s) 0.66 - 2143136 0.02
Road Pair VI  Error 0.005 - 0.782 0.790 Road Pair XII Error 0.004 - - 0.668
VA : 49 Precision (%) 70.0 - 0.0 0.0 ['VA|: 36 Precision (%) 95.2 - - 0.0
[VB|:1989  Recall (%) 424 - 0.0 0.0 V5| : 6050 Recall (%) 83.3 - - 0.0
Time (s) 10.95 - 83619.15  0.17 Time (s) 549.41 - - 0.23

TABLE 2: Results for medical images: average distance between
true matches of aligned graphs (graphs were normalized s. t.
VA VE e [-1,1)P), percentage of correct matches in the solu-
tion (precision), percentage of ground truth matches retrieved
(recall) and processing time in seconds. For each dataset, we
also give the average number of vertices | V.

Dataset GMMC ATS IPFP  CPD
(Proposed)
Error 0.026 0.030 0.669  0.027
Brain Circuits Precision (%) 72.0 100.0 24 452
V] : 124 Recall (%) 29.5 8.2 49 91.8
Time (s) 0.16 110441 59.42  0.11
Error 0.016 0.016 0.179  0.128
EM/LM Precision (%) 77.8 100.0 4.5 45
V] :22 Recall (%) 70.0 50.0 100 100
Time (s) 0.00 97.14 0.78 0.01
Error 0.045 0.041 0.409  0.048
Brain Vessels  Precision (%) 71.4 100.0 214 29.7
|V|:37 Recall (%) 41.7 41.7 50.0 91.7
Time (s) 0.01 4.84 3.26 0.01
Error 0.031 0.052 0.057  0.078
Angiography  Precision (%) 70.1 70.0 24.7 19.1
[V]:24 Recall (%) 80.6 47.2 66.7  61.1
Time (s) 0.29 13.03 2.66 0.08
Error 0.017 0.031 0.133  0.070
Retina Precision (%) 88.6 86.7 62.1 66.6
[V]:141 Recall (%) 73.8 42 76.1 84.1
Time (s) 0.47 585.60 640.20 0.10

We have presented a method that can match geometrical
graphs extracted from 2D and 3D images. Its main appli-
cation is fast template localization or registration of very
large images with very different appearance, which have in
common the extracted graph but not much else. It is appli-

cable in cases where the geometric graph (linear) structures
can be distinguished but standard keypoint detectors fail
or keypoint descriptors are not discriminative enough and
similarity criterion based registration would be too slow.

We have compared GMMC with other point cloud and
graph matching methods, which all have their strengths and
weaknesses. For example, CPD [20] works great when the
transformation is small but fails when it is not. RANSAC is
simple, fast and robust, but requires a low-dimensional de-
formation model. Optimization-based, linear programming,
and spectral methods (IPFP,PATH), as well as earlier Monte
Carlo methods, can often find globally optimal solutions but
cannot handle even medium size graphs.

As we have shown in the experiments, our method is
unique in that it is fast, does not need an initial estimate of
the transformation, yet it is robust to nonlinear deformation,
noise and topological differences. It is the only method we
know that can successfully match geometrical graphs of
many thousands of vertices. This is mostly due to a novel
formulation of the matching problem as a single player
game, solved using a modified Monte Carlo tree search ap-
proach, which automatically balances between exploration
and exploitation of the search space. Note that while we use
the Monte Carlo tree search method, our method is in fact
completely deterministic. The method is fast also thanks to
the curve descriptors which we have introduced and which
allow efficient pruning. We have shown experimentally that
these descriptors outperform other previously known curve
descriptors.

Our method is modular and could be extended in
various ways. For example: (i) we could add appearance
comparison to the superedge pair compatibility check. (ii)
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Fig. 11: Examples of results on the retinal dataset. The first and second rows are the input images with the extracted geometrical
graphs superimposed. Matched superedges are shown in red. The third row depicts the resulting alignment of the first graph
onto the second.

er = 0.05, Recall 39.1%
t = 0.03s, Precision 100%

er = 0.15, Recall 81.8%
t = 0.06s, Precision 100%

er = 0.35, Recall 84.8%

Ground truth

t = 0.12s, Precision 84.8%

Fig. 12: The recall increases with increasing er (with e, = 3e7) when matching two retinal fundus images. Consequently, the
precision decreases and the processing time ¢ increases. The graphs are drawn in green and blue, transformed based on the
matched superedges (shown in red for both graphs), and overlaid on the original image. The same graph pair is visible as the
left-most result in Fig. |11} The ground truth is shown in yellow in the right-most pair of images. Only entire edges are matched.

The deformation threshold er could vary in space. (iii) The
subtree match quality criterion @} could be estimated more
accurately from the properties of the partial matches using
machine learning, similar to [4]. (iv) The search could be
parallelized to yield further speedup [62]. The challenge
remains how to perform the matching of truly large geo-
metrical graphs, of millions of vertices or more.
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