
3916 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018

Data-Driven Policy Transfer With Imprecise
Perception Simulation

Martin Pecka , Karel Zimmermann, Matěj Petrlı́k , and Tomáš Svoboda

Abstract—This letter presents a complete pipeline for learning
continuous motion control policies for a mobile robot when only
a nondifferentiable physics simulator of robot–terrain interactions
is available. The multimodal state estimation of the robot is also
complex and difficult to simulate, so we simultaneously learn
a generative model which refines simulator outputs. We propose
a coarse-to-fine learning paradigm, where the coarse motion
planning is alternated with guided learning and policy transfer to
the real robot. The policy is jointly optimized with the generative
model. We evaluate the method on a real-world platform.

Index Terms—Learning from demonstration, learning and
adaptive systems, reactive and sensor-based planning, domain
transfer.

I. INTRODUCTION

H IGH-DIMENSIONAL reactive motion control of com-
plex unmanned ground robots which substantially inter-

act with unstructured terrain is complicated. Main difficulties
are threefold: (i) the sample inefficiency and local optimality
of state-of-the-art reinforcement learning methods make direct
policy optimization on a real platform inconceivable, (ii) the
curse of dimensionality of planning methods [1] makes direct
search prohibitively time-consuming, and (iii) the simulation in-
accuracy of robot–terrain interactions often makes direct usage
of simulator-learned policies impossible [2]. We propose a com-
plete policy learning–planning–transfer loop, which addresses
all of these issues simultaneously.

The aim of this work is to learn motion control policy for four
independently articulated flippers of a tracked skid-steering
robot shown in Figure 2. The proposed method exploits
an analytically non-differentiable dynamics-engine–based
simulator of the real platform [3]. The learned policy maps
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the local height map and pose of the robot to desired motion
of the flippers, which assures smooth traversal over complex
unstructured terrain.

The complexity of track–terrain interactions [3] slows the
simulation speed down to real-time, therefore collecting a huge
number of samples needed for accurate learning is impossible.
Consequently, we propose coarse-to-fine policy learning, where
the coarse motion planning is alternated with guided learning
and policy transfer to the real robot.

The proposed method starts by planning trajectories, which
approximately optimize traversal of randomly generated ter-
rains. Then guided learning provides a coarse initial policy.
Since it is impossible to simulate the state estimation described
in Section IV accurately, the state estimated on the real plat-
form significantly differs from the simulated state. Instead of
precise simulation, we suggest learning a conditional genera-
tive model of the state estimation procedure, which comprises
both the underlying noise of different sensors and the errors
caused by fusion of multi-modal measurements. This genera-
tive model is optimized together with the policy. In addition to
that, the successively learned policy allows to guide the node
expansion during planning which helps to obtain more accurate
plans faster. This procedure is iterated until convergence.

Contribution of the letter lies in proposing the new
self-contained learning-planning-transfer loop which simulta-
neously learns and transfers the policy using the generative
model, which refines imprecise perception in simulation. The
method is evaluated on a real platform.

II. RELATED WORK

Direct policy transfer methods: Oßwald et al. [4] demon-
strated direct transfer of motion navigation policy for Nao hu-
manoid robot. Policy was learned in a precise simulator and
then directly used on the real platform and it performed well.
Christiano et al. [5] suggest learning an inverse dynamics model
that can adjust actions from the simulator to execute in the real
world as intended. They however require a way to transfer the
real-world state into the simulator to execute their algorithm.
Nemec et al. [6] used value function learned in simulation to
bootstrap the real robot learning. We also initialize the policy
from the simulator.

Model-based reinforcement learning methods learn
simultaneously model and the policy. Since the model learned
from the scratch on real trajectories is typically a fast dif-
ferentiable function [7], [8], direct policy optimization is
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often possible. But learning the motion and perception model
from real trajectories (i) endangers the robot and (ii) requires
prohibitively high number of trajectories. In contrast to these
approaches, we already make use of a sophisticated motion
model, and mainly focus on the perception transfer.

Data-driven refinement of perception simulator: The prob-
lem of transferring perception between different domains is well
studied. In computer vision Generative Adversarial Nets [9]
(GANs) have been recently used for generating synthetic train-
ing images. Shrivastava et al. [10] have shown significant perfor-
mance boost if GANs are used to refine graphics-engine–based
images. Similarly, we also refine simulator-generated data.

Guided policy search: In Guided Policy Search [11], guiding
samples are utilized in a loop to guide direct policy search into
areas of search space which yield the highest reward. However,
it does not account for the reality gap between the simulated and
real world, and it is impossible to run the algorithm directly on
the real platform, since it requires too many samples.

A similar approach to our pipeline was tested by
Bousmalis et al. [12] for grasping. They use (non-cycle) GAN to
transform mostly static simulated images into the real domain,
and then a deep network that benefits from the simulated data.
In this work we show that using CycleGAN helps the domain
transfer even more.

III. PIPELINE OVERVIEW

Our pipeline follows three main assumptions: (i) the physics-
based simulator is slow and analytically non-differentiable, (ii)
simulation of the exteroceptive perception such as mapping from
multi-modal sensor fusion is not realistic, and (iii) there exists
an unknown generative model G which corrects the simulated
perception to be close to the real perception. Under these as-
sumptions, we search for control policy π∗, which minimizes
the expected sum of traversal costs c of the real robot.

Let us denote pπ
r the probability distribution of trajectories

τr = {(xi
r ,a

i
r )}i generated by the real robot under policy π, and

pπ
s (G) the probability distribution of trajectories τs generated

by the simulator with generative model G under policy π. Each
trajectory (xi ,ai) is a sequence of state vectors xi and action
vectors ai . We search for policy

π∗ = arg min
π

Eτr ∼pπ
r
{c(τr )}. (1)

Using assumption (iii), we rewrite the optimization problem
using the simulator distribution pπ

s (G) in the objective as follows

arg min
π ,G
{Eτs∼pπ

s (G){c(τs)} | s.t. pπ
s (G) = pπ

r }. (2)

Since trajectories collected with the simulator and with the real
robot are unpaired, direct supervised training of the genera-
tive model is impossible. Consequently, we replace constraint
pπ

s (G) = pπ
r by the saddle point constraint on GAN-like loss

LGAN(G,D, π) induced under policy π

arg min
π ,G

Eτs∼pπ
s (G){c(τs)}

s.t. G = arg min
G ′

max
D
LGAN(G′,D, π), (3)

Fig. 1. Proposed coarse-to-fine policy learning paradigm: the coarse
policy-guided motion planning is alternated with guided learning and policy
transfer to the real robot.

where D denotes a discriminator.
If the GAN loss LGAN(G,D, τr , τs) is pure GAN loss [9]

Eτr ∼pπ
r

log D(τr ) + Eτs∼pπ
s (G) log(1−D(G(τs))),

the saddle-point generator provides samples from the true dis-
tribution and the equivalence between eq. (2) and eq. (3) holds.
In order to achieve fast convergence on the high-dimensional
unpaired data, we use CycleGAN loss [13], therefore eq. (3) is
an approximation of the original problem.

By assumption (i), any direct optimization of eq (3) is
technically intractable. We propose approximated optimization
scheme, which minimizes the interaction with the slow
simulator and the real robot.

The optimization alternates between (i) planning guiding
samples τp , which approximately optimize objective

arg min
τ ′p

Eτ ′p {c(τs)}, (4)

(ii) collecting real and simulated trajectories τr , τs , and (iii)
searching for the control policy and the generative model which
minimize the locally approximated criterion

J(π,G, τp) =
∑

(x,a)∈τp

‖π(G(x))− a‖ (5)

subject to locally approximated GAN loss LGAN(G,D, τr , τs)
around the collected trajectories τr , τs . The proposed pipeline
is summarized in Figure 1 and Algorithm 1.

The generative model G0 is initialized as identity. The initial
policy π0 is initialized by guided learning (i.e.,we plan initial
trajectories τp and estimate π0 = arg minπ J(π,G0 , τp)).
Given the initial policy, real trajectories are collected and alter-
nated optimization (lines 3–8) with K iterations is performed.
Finally, a new set of real test trajectories is collected and the
whole process is repeated until a satisfactory behavior of the
real robot is observed.

IV. REAL PLATFORM AND ITS SIMULATION MODEL

The real robot used in our experiments is the Absolem tracked
vehicle used in Urban Search and Rescue scenarios [3], [14],
which is depicted in Figure 3. It is equipped with a gyro provid-
ing its spatial orientation and with a rotating 2D lidar which pro-
vides full 3D laser scans at rate 0.3 Hz. The point map built from



3918 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018

Fig. 2. Robot surmounting unstructured terrain during USAR mission.

Fig. 3. Real and simulated DEMs. A visualization of Digital Elevation Maps
(DEMs) is shown above. Dark green cells represent NaNs. Top left: DEM
captured by the real platform. Bottom left: The real pose of the robot on
an obstacle. Top right: DEM from simulator. The shapes are ideal and all
measurements are available. Bottom right: DEM from simulator transformed
by G to appear realistic.

lidar scans by the state-of-the-art SegMatch algorithm [15] is
combined with high-precision track odometry in a multi-modal
fusion pipeline [16].

For simulation, we use our custom tracked vehicle dynamics
model implemented in the Gazebo simulator [3]. Parts of the
simulation are randomized or pseudo-randomized (e.g., search
of contact points of colliding bodies, solving of the underlying
dynamics equations), so every execution of even a deterministic
policy results in slightly different outcomes. This is useful
for us, because our pipeline requires a multitude of different
trajectories for every control policy. To achieve fast simulation,
several simplifications were implemented in the simulated
perception pipeline.

The most important of all policy inputs is the Digital El-
evation Map (DEM) of close robot neighborhood (visualized
in Figure 3). It is a horizontal 2D grid of rectangular cells where
each cell contains information about the highest 3D point lo-
cated in it. When there is no point measured inside a cell, a
Not-a-number (NaN) value is stored. The DEM is treated in
the coordinate frame of the robot with pitch and roll angles ze-
roed out. On the real robot, DEM is constructed from the point
map. In simulation, DEM measurement is done in a completely
different way to avoid inefficient laser ray-tracing: we directly
extract the height of the highest object (excluding robot body)
in each DEM cell, which is a fast operation. That means there
are no missing measurements in the simulator DEM, and also
no noise.

V. GENERATING GUIDING PLANS

The simulator is utilized by the path planner to sample tra-
jectories τk

p , which are further used in the pipeline as described
in Algorithm 1.

Algorithm 1: Overview of the Real Policy Learning.

1: Initialize: G0 as identity and policy π0 .
2: Collect real trajectories τr ∼ pπ 0

r

3: for k = 0 . . . K do
4: Plan guiding traj. τk

p biased by πk (Section V).
5: Optimize policy w.r.t. new generator (Section VI)

πk+1 ← arg min
π

J(π,Gk , τp)

6: Collect simulated trajectories: τk+1
s ∼ pπk + 1

s (Gk )
7: Find trajectory-consistent saddle point

(Section VII)

Gk+1 ← arg min
G

max
D
LGAN(G,D, τr , τsk + 1 )

8: end for
9: G0 ← GK , π0 ← πK and repeat from line 2.

The planner works on a multitude of randomly generated
worlds (training worlds) with different obstacles, correspond-
ing approximately to the expected real obstacles. Each training
world has a predefined length of trajectories the robot has to
safely traverse to consider the trajectories valid (a time limit is
also in place).

Different definitions of valid trajectories can be used; they
are always closely related to the particular task. We utilize the
fact that if the flippers are controlled incorrectly, the robot is
not able to overcome obstacles and gets stuck or damaged.
Safety of trajectories is given implicitly by several criteria like
maximum allowed accelerations, limits on pitch and roll angles,
and parts of the robot body which cannot touch any part of the
environment.

Input of the planner consists of the training world specifica-
tion and possibly also a guiding policy π. The task is to find
a valid trajectory τ while keeping planned actions as close to
actions of π as possible (if π is given).

The planner uses an RRT-based algorithm of state space
search. Planning nodes capture the simulated DEM, robot ori-
entation and flipper configuration. Each expansion of a planning
node is evaluated in the simulator and a new planning node is
created for the returned state.

Even though a standard RRT planner can find a solution by ex-
ploring the state space uniformly in all dimensions, in reality it is
often impractically slow. In high-dimensional applications with
costly expansion (as in our case), a heuristic must be employed
to reduce the required iterations. Kinodynamic RRT* [17] is
widely used to compute asymptotically optimal trajectories
for robots with linear differential constraints. The method,
however, assumes the knowledge of explicit motion model.
Another general approach is to first find a discrete geometric
path in a simplified search space and then optimize it by
generating multiple trajectories with added noise [18] or by
biasing the sampling of a guided RRT planner [1], [19], which
is the method we use. A whole set of (different) trajectories is
expected to satisfy our validity criterion, so methods targeting
at getting close to a single optimal trajectory are not suitable.
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Policy π is used as a guide by sorting the actions by their
similarity to what π would do (we use L2 norm, but any mean-
ingful norm can be used). If π is not given, actions are selected
randomly. Node expansion is realized by executing the action
in simulator and checking the feasibility of the obtained node.
The tree cannot be optimized by RRT* rewiring [20], due to the
uncertainty introduced by executing an action, which prevents
connecting any two nodes of the tree. Trajectories generated
from the guided RRT are similar to trajectories sampled from
the guiding policy, but many sampled trajectories can be invalid,
and using the planner filters these automatically out.

An important property of the guiding approach is that with
more planning–learning iterations, the plans will be closer to
the subspace representable by the chosen policy class, which
should in return result in better fit of future policies to future
planned paths. The speedup gained by the guiding is utilized to
enlarge the searched action space or refine the time resolution.

We propose to start the planning in a reduced action space
which is practical to be explored without guiding, and once
a guiding policy is available, the dimensionality can be in-
creased. We start with 9 actions and time resolution of 1000 ms,
further we add more actions, and last, we refine the time resolu-
tion to 200 ms, which is more suitable for real-world execution
(but the plans need to be 5-times longer, which would be a sig-
nificant increase in computation time without guiding).

VI. GUIDED LEARNING

With a set of trajectories generated by the path planner, the
guided learning phase can start. Generally, it is possible to use
any kind of supervised learning in this part. We chose a deep neu-
ral network that is crafted to make use both of the 2D structure
of DEMs and to handle correctly Not-a-Number (NaN) values.

Inputs to the network are DEM, orientation of the robot and
current flipper positions. Outputs of the network are the 4 desired
flipper positions. Normally, if a NaN value would enter as a part
of the DEM, it would silently spread further and could eventually
end up in one of the outputs, which is undesirable.

A standard approach is to replace NaNs with a neutral value
(like 0) or interpolate them. In Section VIII we show that these
approaches yield worse results. Thus, we decided to treat the
NaN values as “first-class citizen” because they can also carry
useful information (the fact that a measurement is missing can
have geometrical reasons).

We propose the following input processing: the DEM is con-
verted into two matrices of the same shape—one with NaNs
replaced by zeros, and the other with ones in measured cells and
zeros in cells with NaNs (this part of architecture is shared with
the GANs described in Section VII). Each of these matrices is
fed into its own convolutional layer, and their outputs are mul-
tiplied. This effectively means normalizing each patch covered
by a convolutional filter by the number of measured values in
this patch. From this layer on, no NaN values are in the network,
the output of the convolution is flattened, concatenated with the
1D inputs (robot orientation, flipper angles) and finally enters
a fully connected layer, whose output are the four desired flipper
angles.

Fig. 4. CycleGAN architecture. Two GAN networks interconnected in such
a way that input dimension of generator Gs is the same as output dimension of
G and vice versa. The discriminators Ds and D serve both for evaluation of
single generator loss and the cyclic loss.

Fig. 5. Generator architecture. The raw input is preprocessed to yield a ten-
sor of shape 21 × 5 × 2 which is then used by the rest of the network.

Fig. 6. DEMs transformed by the generators. Heights in the DEM:
blue = −1 m, green = 0 m, red = +1 m, white = NaN.

The regressor network is optimized using gradient descent
to minimize the error between the predicted flipper target posi-
tions and those provided in the dataset. The dataset is randomly
divided into training and test parts.

VII. DATA TRANSFORMATION VIA CGANS

The next key step is to find a suitable transformation between
the data observed on the real platform and data observed in the
simulator.

CycleGANs [13] were shown to be useful in the task of mu-
tual mapping of two domains when only unpaired data are avail-
able. Specifically, Shrivastava et al. [10] used them to transform
a simulated dataset to look real and then applied standard deep
learning that expects real data at the inputs.

The mapping from simulated to real data is realized by gen-
erator G, while the opposite process is represented by generator
Gs . The relation between the generators, their discriminators
and input datasets is shown in Figure 4.

The input data with special structure (20× 5 2D data possibly
containing NaNs + 5 scalar constants), are preprocessed similar
to Section VI. In generators and discriminators, the input DEM
is transformed into a 20× 5× 2 tensor where the first channel
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contains the DEM with NaNs substituted with 0 s and the second
channel contains a mask with −1 s at NaN cells in the DEM,
and 1 s otherwise see Figures 5 and 6 for details.

The scalar inputs (robot orientation and flipper angles) skip
these first convolution layers and enter the network later as
inputs to a fully connected layer. At the output, the DEM and
the scalar values are again separated. This allows the network to
work as a standard image-to-image CycleGAN, but also allows
it to use the scalar information.

The internal structure of the generators and discriminators
contains several convolution layers that use the Leaky ReLU
activation function, and a final fully-connected layer.

Our pipeline suggests that the generators should be initial-
ized to identity, which is not generally possible with neural
networks containing non-linear activation functions. However,
implementing a skip-connection of the input data directly to the
fully-connected layer allows this initialization. Identity should
be a good initial guess for the generator, because we do not want
it to change the data too much.

Both discriminators use the pure GAN loss formulation
(see Section III).

Loss function of both generators is defined by their
corresponding discriminator (D for generator G; Ds for
generator Gs):

LG (x) = +λ ·
∑

(log(D(x)) + λp ·
∑

i

||xi −G(xi)||

We penalize distance of the generated output from the inputs
(pixel-wise), as it was shown to stabilize the learning [10]. One
additional component of LGs

can be added that penalizes any
NaN values in the output, since we know there are no NaNs in
the simulator DEMs.

The cycle loss Lc(G,D,xr , Gs,Ds,xs) is defined as

LD (G(Gs(xr ))) + LDs
(Gs(G(xs)))

Training of the network is done by repeated optimization of
all generator and discriminator losses, where λc · Lcycle is added
to the loss of both generators. The training is done on simulated
data from τk

s and real data from τr .
It is usually difficult to tell when to stop GAN training. Al-

though it is not required for the training itself, we constructed
a small validation dataset consisting of pairs of data from the
simulator and their closest counterparts encountered in the real
data. If it is possible to collect more such correspondences,
a part of them can be added to the learning process via L2 loss
on these samples. In our tests, adding the correspondences fur-
ther helped training the GAN, but care must be taken to not
overfit the network to the correspondences.

VIII. EXPERIMENTS

Experimental evaluation of the learned policies is an essential
part of the learning loop. After several iterations of the learning,
planning and generator optimization, verification in the real
world is to be performed.

For the task of terrain traversal with a tracked robot, we
designed a real test scenario consisting of flat ground, a pallet
and a staircase, which are typical obstacles the robot can

Fig. 7. Average policy performance in simulated worlds. Performance
of 100% means traversing all test worlds in a safe manner.

Fig. 8. Average policy performance in real world.

encounter. The staircase is subdivided to 6 sections with
different characteristics – approach to stairs, on stairs, leaving
stairs, and the stairs can go either upwards or downwards. The
staircase is traversed with constant forward speed 0.3 m/s three
times and the pallet 10 times, resulting in execution of 13 trajec-
tories. Every trajectory is assigned one of three success levels
– good in case the trajectory was without problems, the robot
passed and did not endanger itself; unclear if there were minor
problems during the execution, but the robot traversed the whole
required length (e.g., behavior close to unsafe, the operator had
to reduce the otherwise constant travel speed, and so on); finally
fail level is assigned to trajectories that the robot could not finish
or executed an unsafe action. These levels carry numerical
value (good = 1.0, unclear = 0.5, fail = 0.0) and policy
performance is an average of these values over all executions.

Similar obstacles were modeled in the simulator and a set of
8 test worlds was created. The metrics for simulation is pro-
portion of good trajectories among all executed. Here good
means traversing the required length of the trajectory with con-
stant speed 0.3 m/s without executing any unsafe actions (as
described in Section IV).

Results of the learning process are summarized in Figures 7
and 8. First, 3 iterations (policies π1–π3) were using only
the simulator without GAN for adjusting perception. Further
simulator-only iterations showed little performance improve-
ment, so we assume the process converged at π3 . Policy π3

is similar to what Guided Policy Search [11] with Adaptive
Guiding Samples would find, so we also call it GPS (we
use a different guiding sample generator – RRT instead of
DDP, and the RRT planner automatically generates adaptive
samples by prioritizing actions similar to the policy decisions).
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TABLE I
PATH-PLANNING PERFORMANCE

CPU-core–time and number of visited nodes needed to sample one trajectory by the path
planner. Δt is time resolution (i.e.,with Δt = 200 a trajectory of some defined metric
length needs 5× more nodes than with Δt = 1000). Bold values highlight changes
between iterations.

Unfortunately, real-world trajectories cannot be used as guiding
samples in GPS, because the simulated and real domains differ
too much for the learning to converge.

Testing in real world started in the fourth iteration. Two of the
best policies found in simulator were tested in real world and
the better one became πk+1 .

We cut off the whole pipeline once the policy achieved good
performance in the real world (after 7 iterations). That accounts
for ca 15 minutes of driving with the real robot to collect the
initial τr , then 4× 13 trajectories for real-world policy verifica-
tion, which is about 20 minutes. No more real-world execution
was needed.*

To see the benefits of our pipeline, we tested running π3

aka GPS (the best simulator-only policy) directly on the real
robot. The performance was, as expected, poor. We also trained
two baseline policies (zeros and interp) which either zero-
out or bi-linearly interpolate the missing values (NaNs) in real
data. These policies can have a simpler structure (the second
channel for NaNs is removed). They were trained on the same
trajectories π4 was trained on. None of these policies managed
to outperform the proposed pipeline. Last, we also tested the
importance of the cycle loss in GANs. Policy no cycle was
trained on a dataset transformed by a GAN that was trained
without the cycle loss, similar to GraspGAN [12], so we also
call it grasp gan. Validation error of the GAN (as mentioned at
the end of Section VII) was about 12% higher than with cycle
loss, and performance of the no cycle policy did also not beat
the proposed pipeline.

To train final policy π7 from scratch, we needed 800 CPU-
core–hours (of which 90% is spent on performance verification,
which could be lowered) and 50 GPU-hours (highly depends on
structures of the policy and GANs).

We also experimentally verified that guiding decreases path-
planning time or allows to plan paths in larger action spaces
or with longer planning horizon. A summary of computation
times is shown in Table I. We also tried unguided planning with
200 ms resolution, but no path was found in one hour.

*See the attached video with policy tests, or http://cmp.felk.cvut.cz/∼
peckama2/policy_transfer/ for more information and FullHD video.

IX. CONCLUSION AND FUTURE WORK

We have proposed and experimentally evaluated the new
self-contained learning–planning–transfer loop, which employs
a simulator of robot–terrain interactions. The proposed method
simultaneously learned the policy in simulation and transferred
it to the real robot. The transfer was achieved by a generative
model which corrected imprecisely simulated perception. The
experimental evaluation showed that iterations of the learning–
planning–transfer loop improve performance of the policy on
the real robot. We also showed that it is possible to further re-
fine the action space of guiding policies without compromising
computational tractability.

Our ongoing research will focus on possibilities of making
the CycleGAN learning policy-aware, so that the generators are
trained with policy performance in mind.
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