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whose goal is to find a linear layout of an input graph in such way that a certain
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1. INTRODUCTION

Graph layout problems are a particular
class of combinatorial optimization prob-
lems whose goal is to find a linear layout
of an input graph in such a way that a
certain objective function is optimized. A
linear layout is a labelling of the vertices
of a graph with distinct integers. A large
number of relevant problems in different
domains can be formulated as graph lay-
out problems. These include optimization
of networks for parallel computer archi-
tectures, VLSI circuit design, informa-
tion retrieval, numerical analysis, compu-
tational biology, graph theory, scheduling
and archaeology. Most interesting graph
layout problems are NP-hard and their
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decisional versions NP-complete, but, for
most of their applications, feasible solu-
tions with an almost optimal cost are suf-
ficient. As a consequence, approximation
algorithms and effective heuristics are
welcome in practice.

Because of their importance, there are
many results associated with layout prob-
lems. Here we try to present a com-
plete view of the current state of the
art with respect to graph layout prob-
lems. Our focus is biased to algorithmic
issues. Our purpose is two-fold: on one
hand, to present a global view includ-
ing the latest results; on the other to
encourage the algorithmic community to
work on this very exciting field of re-
search. There are other surveys that deal

ACM Computing Surveys, Vol. 34, No. 3, September 2002, pp. 313–356.



314 Dı́az et al.

with aspects of different graph layout
problems, and this paper intersects with
them; see for instance Chinn et al. [1982];
Chung [1988]; Monien and Sudborough
[1990]; Diaz [1992]; Mohar and Poljak
[1993]; Bezrukov [1999], Lai and Williams
[1999]; Raspaud et al. [2000].

The road map for this survey is as fol-
lows: First of all, in Section 2, we for-
mally define the layout problems we are
interested in and state some basic re-
sults. A historical overview with motiva-
tions and applications for the study of lay-
out problems is surveyed in Section 3.
Section 4 presents NP-completeness re-
sults on layout problems and Section 5
presents some polynomial time solvable
graph classes. In Section 6 we survey fixed
parameterized complexity results. After-
wards, in Section 7 we survey approxi-
mation algorithms. In Section 8 we con-
sider random graphs as inputs to layout
problems and show the performance of
some approximation algorithms on them.
In Sections 9 and 10 we present, re-
spectively, several techniques to obtain
upper and lower bounds and several
heuristic methods to obtain good feasible
solutions. Finally, in Section 11 we present
several extensions to the basic model of
graph layout problems. We close the pa-
per with some concluding remarks, mainly
open problems.

2. DEFINITIONS AND BASIC
OBSERVATIONS

We start with the definition of several
graph layout problems and associated con-
cepts. This enables us to treat different
layout problems using a unique frame-
work. Finally, we present some basic re-
sults regarding layout problems.

The graph theoretic definitions and no-
tations that we use, for the most part, con-
form to the standard ones in computer sci-
ence. Unless otherwise mentioned, graphs
are finite, undirected and without loops.
Given a graph G, its vertex set is denoted
by V (G) and its edge set by E(G). The no-
tation uv stands for the undirected edge
{u, v}. The degree of a vertex u in a graph
G is denoted as deg(u) = degG(u) and the

maximal degree of G as 1(G). The set of
neighbors of a vertex u in G is denoted
0(u) = 0G(u) = {v ∈ V (G) : uv ∈ E(G)}.

A linear layout, or simply a layout, of an
undirected graph G = (V , E) with n = |V |
vertices is a bijective function ϕ : V →
[n] = {1, . . . , n}. A layout has also been
called a linear ordering [Adolphson and
Hu 1973], a linear arrangement [Shiloach
1979], a numbering [Chinn et al. 1982] or
a labeling [Juvan and Mohar 1992] of the
vertices of a graph. We denote by8(G) the
set of all layouts of a graph G.

Given a layout ϕ of a graph G =
(V , E) and an integer i, we define the set
L(i, ϕ, G) = {u ∈ V : ϕ(u) ≤ i} and the set
R(i, ϕ, G) = {u ∈ V : ϕ(u) > i}. The edge
cut at position i of ϕ is defined as

θ (i, ϕ, G) = |{uv ∈ E :
u∈ L(i, ϕ, G)∧ v ∈ R(i, ϕ, G)}|

and the modified edge cut at position i of
ϕ as

ζ (i, ϕ, G) = |{uv ∈ E : u ∈ L(i, ϕ, G)
∧ v ∈ R(i, ϕ, G) ∧ ϕ(u) 6= i}|.

The vertex cut or separation at position i
of ϕ is defined as

δ(i, ϕ, G) = |{u ∈ L(i, ϕ, G) :
∃v ∈ R(i, ϕ, G) : uv ∈ E}|.

Given a layout ϕ of G and an edge uv ∈ E,
the length of uv on ϕ is

λ(uv, ϕ, G) = |ϕ(u)− ϕ(v)|.

These measures are summarized in
Table I for ease of future reference.

A common way to represent a layout ϕ
of a graph G is to align its vertices on a
horizontal line, mapping each vertex u to
position ϕ(u), as shown in Figure 1. This
graphical representation gives an easy un-
derstanding of the previously defined mea-
sures: By drawing a vertical line just af-
ter position i and before position i + 1,
the vertices at the left of the line belong
to L(i, ϕ, G) and the vertices at the right
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Table I. Layout Measures for a Layout ϕ of a Graph G = (V , E)

L(i, ϕ, G) = {u ∈ V : ϕ(u) ≤ i}.
R(i, ϕ, G) = {u ∈ V : ϕ(u) > i}.
θ (i, ϕ, G) = |{uv ∈ E : u ∈ L(i, ϕ, G) ∧ v ∈ R(i, ϕ, G)}|.
ζ (i, ϕ, G) = |{uv ∈ E : u ∈ L(i, ϕ, G) ∧ v ∈ R(i, ϕ, G) ∧ ϕ(u) 6= i}|.
δ(i, ϕ, G) = |{u ∈ L(i, ϕ, G) : ∃v ∈ R(i, ϕ, G) : uv ∈ E}|.

λ(uv, ϕ, G) = |ϕ(u)− ϕ(v)|, uv ∈ E.

Fig. 1 . A graph G together with some layout measures and a graphical
representation of the layout ϕ = {(a, 1), (b, 5), (c, 3), (d , 7), (e, 8), ( f , 6), (g , 4),
( j , 9), (h, 2)}.

of the line belong to R(i, ϕ, G). It is easy
to compute the cut θ (i, ϕ, G) by counting
the number of edges that cross the verti-
cal line. The modified cut ζ (i, ϕ, G) counts
all the edges in θ (i, ϕ, G) except those that
have vertex ϕ−1(i) as endpoint. It is also
easy to compute the separation δ(i, ϕ, G)
by counting the number of vertices at the

left of the vertical line that are joined with
some vertex at the right of the vertical line.
Finally, the length λ(uv, ϕ, G) of an edge
uv corresponds to the natural distance be-
tween its endpoint images.

Given a layout ϕ of a graph G = (V , E),
its reversed layout is denoted ϕR and is de-
fined by ϕR(u) = |V |−ϕ(u)+1 for all u ∈ V .
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A layout cost is a function F that asso-
ciates to each layout ϕ of a graph G, an
integer F (ϕ, G). Let F be a layout cost;
the optimization layout problem associ-
ated with F consists in determining some
layout ϕ∗ ∈ 8(G) of an input graph G such
that

F (ϕ∗, G) = min
ϕ∈8(G)

F (ϕ, G).

For any F and G, we define MINF (G) =
minϕ∈8(G) F (ϕ, G).

The particular costs we consider in this
survey are listed below, together with the
layout problems they give raise to:

—Bandwidth (BANDWIDTH): Given a graph
G = (V , E), find a layout ϕ∗ ∈ 8(G) such
that BW(ϕ∗, G) = MINBW(G) where

BW(ϕ, G) = max
uv∈E

λ(uv, ϕ, G).

—Minimum Linear Arrangement
(MINLA ): Given a graph G = (V , E),
find a layout ϕ∗ ∈ 8(G) such that
LA(ϕ∗, G) = MINLA(G) where

LA(ϕ, G) =
∑

uv∈E

λ(uv, ϕ, G).

—Cutwidth (CUTWIDTH ): Given a graph
G = (V , E), find a layout ϕ∗ ∈ 8(G) such
that CW(ϕ∗, G) = MINCW(G) where

CW(ϕ, G) = max
i∈[|V |]

θ (i, ϕ, G).

—Modified Cut (MODCUT ): Given a graph
G = (V , E), find a layout ϕ∗ ∈ 8(G) such
that MC(ϕ∗, G) = MINMC(G) where

MC(ϕ, G) =
∑

i∈[|V |]
ζ (i, ϕ, G).

—Vertex Separation (VERTSEP ): Given a
graph G = (V , E), find a layout ϕ∗ ∈
8(G) such that VS(ϕ∗, G) = MINVS(G)
where

VS(ϕ, G) = max
i∈[|V |]

δ(i, ϕ, G).

—Sum Cut (SUMCUT ): Given a graph G =
(V , E), find a layout ϕ∗ ∈ 8(G) such that
SC(ϕ∗, G) = MINSC(G) where

SC(ϕ, G) =
∑

i∈[|V |]
δ(i, ϕ, G).

—Profile (PROFILE ): Given a graph G =
(V , E), find a layout ϕ∗ ∈ 8(G) such that
PR(ϕ∗, G) = MINPR(G) where

PR(ϕ, G) =
∑
u∈V

(
ϕ(u)− min

v∈0∗(u)
ϕ(v)

)
and 0∗(u) = {u} ∪ {v ∈ V : uv ∈ E}.

—Edge Bisection (EDGEBIS ): Given a
graph G = (V , E), find a layout ϕ∗ ∈
8(G) such that EB(ϕ∗, G) = MINEB(G)
where

EB(ϕ, G) = θ (
⌊

1
2
|V |
⌋

, ϕ, G).

—Vertex Bisection (VERTBIS ): Given a
graph G = (V , E), find a layout ϕ∗ ∈
8(G) such that VB(ϕ∗, G) = MINVB(G)
where

VB(ϕ, G) = δ
(⌊

1
2
|V |
⌋

, ϕ, G
)
.

Strictly speaking, the edge bisection and
vertex bisection problems are not layout
problems: Both problems ask for a parti-
tion of the set of vertices of the graph in
two disjoint subsets of the same size (or
differing by one if the number of vertices
is odd) rather than for a permutation of
the vertices. Nevertheless, bisection prob-
lems and layout problems are closely re-
lated, and bisection problems fit well in
our framework for layout problems.

The definitions of the previous problems
are summarized in Table II. In Section 3
we will reference the first appearances of
these problems.

At this point it is relevant to point out
some basic, but important, facts.

Observation 2.1 For any graph G =
(V , E) and any layout ϕ of G, the total edge
length equals the sum of all edge cuts in
the layout:∑

uv∈E

λ(uv, ϕ, G) =
∑

i∈[|V |]
θ (i, ϕ, G).

This fact was first noticed by Harper
[1966]. It follows from the observation
that any edge uv ∈ E with ϕ(u) < ϕ(v)
contributes ϕ(v) − ϕ(u) to the left hand
side and 1 to each one of the terms
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Table II. Layout Problems and Costs for a Graph G = (V , E) with |V | = n

Problem Name Cost

Bandwidth BANDWIDTH BW(ϕ, G) = maxuv∈E λ(uv, ϕ, G).

Min. Lin. Arrangement MINLA LA(ϕ, G) =
{∑

uv∈E λ(uv, ϕ, G),∑n
i=1 θ (i, ϕ, G).

Cutwidth CUTWIDTH CW(ϕ, G) = maxn
i=1 θ (i, ϕ, G).

Modified Cut MODCUT MC(ϕ, G) =
∑n

i=1 ζ (i, ϕ, G).

Vertex Separation VERTSEP VS(ϕ, G) = maxn
i=1 δ(i, ϕ, G).

Sum Cut SUMCUT SC(ϕ, G) =
∑n

i=1 δ(i, ϕ, G).

Profile PROFILE PR(ϕ, G) =
{∑

u∈V (ϕ(u)−minv∈0∗(u) ϕ(v)),
SC(ϕR , G).

Edge Bisection EDGEBIS EB(ϕ, G) = θ (
⌊

n/2
⌋

, ϕ, G).

Vertex Bisection VERTBIS VB(ϕ, G) = δ(
⌊

n/2
⌋

, ϕ, G).

θ (ϕ(u), ϕ, G), θ (ϕ(u) + 1, ϕ, G), . . . , θ (ϕ(v),
ϕ, G) in the right hand side.

Observation 2.2. For any graph G =
(V , E) and any layout ϕ of G,

PR(ϕ, G) = SC(ϕR , G).

This identity apparently has been well
known for some time; a recent proof can
be found in Golovach and Fomin [1998]. It
is due to the fact that each vertex u ∈ V
contributes one unit ϕ(u) −minv∈0∗(u) ϕ(v)
times to the sum cut in the reversed
layout. Notice that, as a consequence,
PROFILE and SUMCUT are equivalent
problems.

Observation 2.3. It is important to
stress that the graph layout problems we
have formulated explicitly ask for the con-
struction of a layout with an optimal cost,
rather than the cost of an optimal layout:

LA(ϕ, G) ≤ n · CW(ϕ, G), MINLA(G) ≤ n · MINCW(G),
LA(ϕ, G) ≤ m · BW(ϕ, G), MINLA(G) ≤ m · MINBW(G),
MC(ϕ, G) ≤ LA(ϕ, G), MINMC(G) ≤ MINLA(G),
SC(ϕ, G) ≤ n · VS(ϕ, G), MINSC(G) ≤ n · MINVS(G),
VS(ϕ, G) ≤ BW(ϕ, G), MINVS(G) ≤ MINBW(G),
EB(ϕ, G) ≤ CW(ϕ, G), MINEB(G) ≤ MINCW(G),
VB(ϕ, G) ≤ VS(ϕ, G), MINVB(G) ≤ MINVS(G),
CW(ϕ, G) ≤ 1(G) · BW(ϕ, G), MINCW(G) ≤ 1(G) ·MINBW(G).

“Given a graph G, find a layout ϕ∗ ∈ 8(G)
such that F (ϕ∗, G) = MINF (G).”

All the problems can however be re-
stated as decisional problems, where the
task is to decide whether or not a graph
admits a layout with cost not greater than
an integer given as part of the input:

“Given a graph G and an integer k, is there
some layout ϕ ∈ 8(G) such that F (ϕ, G) ≤ k?”

We will not focus too much on whether
we are considering the optimization or the
decisional version of some problem, be-
cause they will be clearly differentiated by
the context.

The following lemma gives useful re-
lations between some layout costs. The
proofs are straightforward.

LEMMA 2.4. Let G be any graph with n
vertices and m edges, and let ϕ be any lay-
out of G. Then,
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The next lemma relates some layout
costs of a graph in terms of its connected
components. A proof for bandwidth can
be found in Chvátalová et al. [1975]; for
the remaining problems the results can be
proven in a similar way.

LEMMA 2.5. Let G be a graph and
G1, . . . , Gk its connected components.
Then,

MINBW(G) = max
i∈[k]

MINBW(Gi), MINMC(G) =
∑
i∈[k]

MINMC(Gi),

MINCW(G) = max
i∈[k]

MINCW(Gi), MINLA(G) =
∑
i∈[k]

MINLA(Gi),

MINVS(G) = max
i∈[k]

MINVS(Gi), MINSC(G) =
∑
i∈[k]

MINSC(Gi).

A useful consequence of the previous
lemma is that, for any layout cost F ∈
{BW, CW, VS, LA, MC, SC}, it is possible to ob-
tain an optimal layout for F of a graph
just by computing the optimal layouts of
its connected components. Observe, how-
ever, that the EB and VB bisection costs do
not share this property: As a counterex-
ample, consider a graph made of two com-
ponents of the same size, each one being a
clique.

The following lemma relates the layout
costs of a graph and a subgraph of it. Given
two graphs G and H, it is said that H is an
edge induced graph of G if V (H) = V (G)
and E(H) ⊆ E(G) and it said that H is a
vertex induced graph of G if V (H)⊆V (G)
and E(H) = {uv ∈ E(G) : u, v ∈ V (H)}.

LEMMA 2.6. Let H be an edge or vertex
induced subgraph of a graph G. Then, for
any layout cost F ∈ {BW, CW, VS, LA, MC, SC},
holds that MINF (H) ≤ MINF (G). In the case
that H is an edge induced subgraph of G,
then MINEB(H) ≤ MINEB(G) and MINVB(H) ≤
MINVB(G).

3. HISTORICAL PERSPECTIVE
AND APPLICATIONS

In its simpler form, a layout is an embed-
ding into the natural line. As we will men-

tion, the terms layout and layout problem
are due to the early application of these
problems to the optimal layout of circuits.
We present here some background that
motivates research on layout problems, as
well as some of their applications. We start
with a historical overview.

The Minimum Linear Arrangement
problem (MINLA) was first stated in

Harper [1964]. Harper’s aim was to de-
sign error-correcting codes with minimal
average absolute errors on certain classes
of graphs. Latter, this problem was con-
sidered in Mitchison and Durbin [1986] as
an over-simplified model of some nervous
activity in the cortex. MINLA also has ap-
plications in single machine job schedul-
ing [Adolphson 1977; Ravi et al. 1991]
and in graph drawing [Shahrokhi et al.
2001]. The Minimum Linear Arrangement
problem has received some alternative
names, such as the Optimal Linear Or-
dering, the Edge Sum, the Minimum-1-
sum, the bandwidth sum or the wirelength
problem.

Bandwidth had received much attention
during the fifties in order to speed up sev-
eral computations on sparse matrices. Ac-
cording to Dewdney [1976], the introduc-
tion of the bandwidth problem for graphs
(BANDWIDTH) was first stated in Harary
[1967], however the problem was formally
defined in Harper [1966].

The cutwidth problem (CUTWIDTH ) was
first used in the seventies as a theoreti-
cal model for the number of channels in
an optimal layout of a circuit [Adolphson
and Hu 1973]; see also the Introduction
in Makedon and Sudborough [1989]. More
recent applications of this problem include
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network reliability [Karger 1999], auto-
matic graph drawing [Mutzel 1995] and
information retrieval [Botafogo 1993].

The vertex separation problem
(VERTSEP) was originally motivated by the
general problem of finding good separa-
tors for graphs [Lipton and Tarjan 1979],
and has applications in algorithms for
VLSI design [Leiserson 1980]. As we shall
see, this problem is also equivalent to
some other well known problems.

The sum cut and profile problems on
graphs (SUMCUT and PROFILE ) were in-
dependently defined in Diàz et al. [1991]
and in Lin and Yuan [1994b]. The sum
cut problem was originally proposed as a
simplified version of the δ-operator prob-
lem [Dı́az 1979]. The profile problem was
proposed as a way to reduce the amount
of storage of sparse matrices [Tewarson
1973; Lepin 1986; Lin and Yuan 1994a].
Both problems turn out to be equivalent
to the interval graph completion problem
[Ravi et al. 1991], which has applications
in archaeology [Kendall 1969] and clone
fingerprinting [Karp 1993]. The prob-
lem was rediscovered in Golovach [1997]
under the name total vertex separation
number.

The edge bisection problem (EDGEBIS )
has a wide range of applications, notably
in the area of parallel computing and VLSI
[Bhatt and Leighton 1984; Shing and
Hu 1986; Hromkovič and Monien 1992;
Leighton 1993; Diekmann et al. 1994]. The
vertex bisection problem (VERTBIS ) is rel-
evant to fault-tolerance, and is related to
the complexity of sending messages to pro-
cessors in interconnection networks via
vertex-disjoint paths [Klasing 1998].

In the remaining of this section, we
present several further applications re-
lated to layout problems.

3.1. Layout Problems in Numerical Analysis

In the area of numerical analysis, it is
desirable for many engineering applica-
tions to reorder the rows and columns
of very large sparse symmetric matrices
in such a way that their non-zero en-
tries lie as close as possible to the diag-

onal. Recall that a matrix is sparse when
it has very few non-zero entries. Specifi-
cally, the bandwidth of a symmetric ma-
trix M is the largest integer b for which
there is a non-zero entry at M [ j , j + b]
and the profile of M is

∑
i∈[n](i − pi)

where pj is the index of the first non-
zero entry of row j . Reducing the band-
width and/or the profile of a matrix leads
to a reduction of the amount of space
needed for some storage schemes and
to an improvement of the performance
of several common operations such as
Choleski factorization of non-singular sys-
tems of equations [Saad 1996]. The prob-
lem of reducing the bandwidth or the pro-
file of a matrix M consists in finding a
permutation matrix P such that M ′ =
P ·M ·P T has minimal bandwidth or min-
imal profile. Recall that a permutation
matrix P is an identity matrix with the
same size of M whose columns have been
permuted.

Observe that if we identify the non-zero
entries of a symmetric matrix with the
edges of a graph and the permutations of
rows and columns with flips of the vertex
labels, then the bandwidth of the graph
equals the bandwidth of the matrix, and
the profile of the graph equals the profile
of the matrix.

The problem of reducing the bandwidth
or the profile of a sparse symmetric ma-
trix has a long history since it originated
in the fifties; see for instance the refer-
ences given in Gibbs et al. [1976]. Nowa-
days, there exist general sparse methods
that are more efficient than these “enve-
lope schemes.” However, many commer-
cial packages still offer functions to re-
duce the bandwidth or the profile of sparse
matrices as a preprocessing step. Thus,
improvements in these methods can be
ported to this software without a com-
plete reorganization of their architecture
Barnard et al. [1995]. Efficient algorithms
to perform several operations on matri-
ces with small bandwidth can be found,
for instance, in Saad [1996]. Information
retrieval to browse hypertext is a recent
area where bandwidth and profile reduc-
tion techniques are also used [Botafogo
1993; Simon and Teng 1997].
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3.2. Layout Problems in VLSI

Many layout problems are originally mo-
tivated as simplified mathematical mod-
els of VLSI layout. Given a set of mod-
ules, the VLSI layout problem consists in
placing the modules on a board in a non-
overlapping manner and wiring together
the terminals on the different modules ac-
cording to a given wiring specification and
in such a way that the wires do not inter-
fere among them. There are two stages in
VLSI layout: placement and routing. The
placement problem consists in placing the
modules on a board; the routing problem
consists in wiring together the terminals
on different modules that should be con-
nected. A VLSI circuit can be modeled by
the means of a graph, where the edges rep-
resent the wires and the vertices represent
modules. Of course, this graph is an over-
simplified model of the circuit, but un-
derstanding and solving problems in this
simple model can help to obtain better so-
lutions for the real-world model.

A first approach to solve the placement
phase was to use the minimum linear
arrangement problem in order to mini-
mize the total wire length [Harper 1970;
Adolphson and Hu 1973]. Recently an al-
ternative approach to solve this problem
has been considered; it consists in find-
ing recursively minimal cuts with mini-
mal capacity among all cuts that separates
the graph into two components of equal
size. The edge bisection problem aims at
this approach [Simon and Teng 1997].
Nowadays, integrated circuit technology
has changed substantially and some of the
early applications of layouts are obsolete.

The cutwidth of a graph times the or-
der of the graph gives a measure of the
area needed to represent the graph in a
VLSI layout when vertices are laid out in
a row [Lengauer 1982]. In fact, Raspaud
et al. [1995] prove a new relation between
the cutwidth and the area of the VLSI
layout of a graph: the minimal area of a
VLSI layout of a graph is not less than the
square of its cutwidth. A similar relation
between area and edge bisection was well
known for graphs with maximum degree 4
[Thompson 1979].

3.3. Layout Problems in Graph Drawing

Perhaps one of the most important goals
in graph drawing is to produce aestethic
representations of graphs. Reducing the
number of crossing edges is a way to im-
prove the readability and comprehension
of a graph. A bipartite drawing or 2-layer
drawing is a graph representation where
the vertices of a bipartite graph are placed
in two parallel lines and the edges are
drawn with straight lines between them.
The bipartite crossing number of a bipar-
tite graph is the minimal number of edge
crossings over all bipartite drawings. In
Shahrokhi et al. [2001] it is proved that
for a large class of bipartite graphs, reduc-
ing the bipartite crossing number is equiv-
alent to reducing the total edge length,
that is, to the minimum linear arrange-
ment problem. Moreover, an approximate
solution of MINLA can be used to generate
an approximate solution to the bipartite
crossing number problem. See Shahrokhi
et al. [1997] for a bound and applications
of crossing numbers and Vrťo [2002] for an
extensive bibliography.

3.4. Layout Problems as Embedding
Problems

Linear arrangements are a particular case
of embedding graphs in d -dimensional
grids or other graphs. In its most general
form, the embedding of a graph G into a
host graph H consists in defining an injec-
tive function mapping the vertices of G to
the vertices of H, and associating a path
in H for each edge of G. Three parame-
ters are fundamental to assess the quality
of an embedding: the dilation, the conges-
tion, and the load. The dilation of an em-
bedding is the length of the largest associ-
ated path. The congestion of an embedding
is the maximal number of paths that share
an edge of H. The load of an embedding is
the maximum number of vertices of G that
are mapped to a vertex of H. Making use
of good embeddings is essential in certain
contexts, as in parallel computing where
embeddings can be used to simulate an al-
gorithm designed for one type of network
on a parallel machine with a different type
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of network; see Monien and Sudborough
[1990] for a nice survey.

The case in which a graph with n ver-
tices must be embedded into a path graph
Pn of n vertices with load 1 is perhaps the
simplest nontrivial embedding problem
and has been intensively studied in the
literature [Kendall 1969; Adolphson and
Hu 1973; Adolphson 1977; Harper 1977;
Robertson and Seymour 1985; Makedon
and Sudborough 1989; Ravi et al. 1991;
Botafogo 1993; Karp 1993; Leighton 1993;
Saad 1996]. In this particular case, some
layout problems and embedding problems
are closely related. Specifically, the band-
width of a graph corresponds to the mini-
mal dilation, and the cutwidth to the min-
imal congestion.

There exists other interesting embed-
dings on more general graphs than the
path. For instance, Raspaud et al. [2000]
present a survey on cyclic cutwidth
and cyclic bandwidth, that is, when the
graph is embedded into a cycle, rather
than a path. Few results are known for
other cyclic width parameters, Ching Guu
solved the cyclic MINLA problem for the
d-cube (H. L. Harper, Personal communi-
cation). Of practical importance are also
the embeddings into grids [Miller [1991];
Lin 1994; Bezrukov et al. 2000a]. Sev-
eral variants of embeddings into trees
were studied in Hu [1974]; Johnson et al.
[1978]; Seymour and Thomas [1994]; Ding
and Oporowski [1995]; Wu et al. [1999];
Àlvarez et al. [2000].

3.5. Layout Problems in Parallel and
Distributed Processing

Many parallel computers are made up of
a set of processors with their own private
memory that exchange messages by the
way of a communication network. In or-
der to get good speedups when using such
a system, it is important to distribute the
total amount of work among the proces-
sors as evenly as possible to minimize idle
times. It is also important to reduce the
amount of communication among the pro-
cessors, because communicating through
the network is much slower than the speed
of the processors. Well established map-

ping and load balancing techniques have
been developed to address these situa-
tions. In certain cases, these techniques
lead to graph partitioning problems; see
Diekmann et al. [1994]; Leighton [1993];
Hromkovič and Monien [1992].

The graph partitioning problem con-
sists in partitioning the vertices of a given
graph in k sets of nearly same size in such
a way that the number of cutting edges
between the k sets is minimal. The edge
bisection problem is a particular case of
graph partitioning where k = 2. Recur-
sive bisection is a popular technique to ob-
tain partitions when k is a power of 2. See
Simon and Teng [1997] for an analysis of
recursive bisection and see the references
in Bezrukov [1999] for more information
on graph partitioning.

Edge bisection can be of use when solv-
ing partial differential equations and us-
ing finite elements methods in parallel
systems. Simplifying, in these problems
a particular iterative computational task
has to be carried out in every vertex of a
mesh (or the graph defined by the particu-
lar topology of the system) and its compu-
tation involves data from this vertex and
in its neighbors. A way to distribute the
total amount of computation between two
processors is to assign to each one half
of the vertices in the grid. But as border
vertices need to communicate in order to
get their operands, it is necessary to re-
duce the cut of the bisection.

3.6. Some Equivalent Problems

The vertex separation problem is strongly
connected with several other important
NP-complete problems: gate matrix lay-
out, pathwidth, and vertex search number.
The bandwidth problem is also related to
proper pathwidth.

The gate matrix layout is a well stud-
ied problem with application in CMOS cir-
cuit design [Deo et al. 1987]. An instance
of the gate matrix layout problem con-
sists in a collection of nets {N1, . . . , Nn}
and their respective connection to a set
of gates {G1, . . . , Gm}. Nets are identified
with rows and gates are identified with
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Fig. 2 . Example of a gate matrix layout with three
tracks (figure after Bodlaender).

columns. The goal of the problem is to seek
a permutation of the columns that mini-
mizing the number of tracks required to
lay out the chip, which is equivalent to
minimizing its area. Figure 2 shows an ex-
ample of gate matrix layout. We denote by
MINGML(G), the minimal number of tracks

needed by a graph G.
The pathwidth problem has received

a great interest in recent years due
to its relation with the graph minors
theory [Robertson and Seymour 1985].
A path-decomposition of a graph G =
(V , E) is a sequence of subsets of vertices
(X 1, . . . , X r ) such that

—
⋃r

i=1 X i = V ;
—both endpoints of any edge e ∈ E belong

to some X i for 1 ≤ i ≤ r; and
—for all i ≤ j ≤ k, it is the case that

X i ∩ X k ⊆ X j .

The pathwidth of a path decomposition
(X 1, . . . , X r ) is

MINPW(G, (X 1, . . . , X r )) = max
i∈[r]
|X i| − 1.

The pathwidth of G, denoted MINPW(G),
is the minimal pathwidth over all possi-
ble path decompositions of G. The path-
width problem (PATHWIDTH ) consists in
determining a path decomposition with
minimal pathwidth. Figure 3 shows a
graph and one of its path decompositions.

See Bodlaender [1993] and Downey and
Fellows [1999] for more information on the
pathwidth problem.

The vertex search number problem was
introduced in Kirousis and Papadimitriou
[1986]. Briefly stated, this problem asks
how many searchers are needed to capture
an unlimited number of intruders mov-
ing around the edges of a given graph.
We denote by MINSN(G) the minimal ver-
tex search number of graph G.

The equivalence between the gate ma-
trix layout, search number, pathwidth and
vertex separation problems is a conse-
quence of the results in Kirousis and
Papadimitriou [1986]; Kinnersley [1992];
Fellows and Langston [1994]:

THEOREM 3.1 For any graph G,

MINVS(G) = MINPW(G) = MINSN(G)
− 1 = MINGML(G)+ 1.

Let Iv={i : v∈ X i}. A proper path de-
composition is a path decomposition that
also satisfies Iu 6⊂ Iv for all u, v∈V .
The proper pathwidth of G, denoted
MINPPW(G), is the minimal pathwidth over
all possible proper path decompositions of
G. The proper pathwidth problem consists
in determining a proper path decomposi-
tion with minimal pathwidth. The proper
pathwidth of a graph G can also be defined
as the minimum cardinality of a maximum
clique of a proper interval subgraph of G
decreased by one.

The following equivalence between
bandwidth and proper pathwidth is due
to Kaplan and Shamir [1996]:

THEOREM 3.2 For any graph G,
MINPPW(G) = MINBW(G).

4. NP-COMPLETENESS RESULTS

It is widely believed that showing that
a problem is NP-complete is equivalent
to prove its computational intractability
[Garey and Johnson 1979]. The follow-
ing theorem indicates the difficulty of the
considered layout problems on arbitrary
graphs.

THEOREM 4.1 The decisional versions
of the layout problems BANDWIDTH, MINLA ,
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Table III. Review of NP-Completeness Results for Decisional Graph Layout Problems

Problem NP-complete Ref.

BANDWIDTH in general [Papadimitriou 1976]
for trees with maximum degree 3 [Garey et al. 1978]
for caterpillars with hair-length ≤ 3 [Monien 1986]
for caterpillars with ≤ 1 hair per backbone vertex [Monien 1986]
for cyclic caterpillars with hair-length 1 [Muradyan 1999]
for grid graphs and unit disk graphs [Dı́az et al. 2001a]

MINLA in general [Garey et al. 1976]
for bipartite graphs [Even and Shiloach 1975]

CUTWIDTH in general [Gavril 1977]
for graphs with maximum degree 3 [Makedon et al. 1985]
for planar graphs with maximum degree 3 [Monien and Sudborough 1988]
for grid graphs and unit disk graphs [Dı́az et al. 2001a]

MODCUT for planar graphs with maximum degree 3 [Monien and Sudborough 1988]

VERTSEP in general [Lengauer 1981]
for planar graphs with maximum degree 3 [Monien and Sudborough 1988]
for chordal graphs [Gustedt 1993]
for bipartite graphs [Goldberg et al. 1995]
for grid graphs and unit disk graphs [Dı́az et al. 2001a]

SUMCUT in general [Dı́az et al. 1991]
[Lin and Yuan 1994b]

[Golovach 1997]
for cobipartite graphs [Yuan et al. 1998]

EDGEBIS in general [Garey et al. 1976]
for graphs with maximum degree 3 [MacGregor 1978]
for graphs with maximum degree bounded [MacGregor 1978]
for d -regular graphs [Bui et al. 1987]

Fig. 3 . Example of a graph and one of its path decompositions with pathwidth 2.

CUTWIDTH , MODCUT , VERTSEP , SUMCUT ,
EDGEBIS are NP-complete.

The reduction for BANDWIDTHis given
in Papadimitriou [1976], the proofs for
MINLA and EDGEBIS are given in Garey
et al. [1976], for CUTWIDTH the complete-
ness is due to Gavril [1977], for MODCUT is
given in Monien and Sudborough [1988],
for VERTSEP the proof is in Lengauer
[1981], and for SUMCUT it can be found in

Diàz et al. [1991]; Lin and Yuan [1994b];
Golovach [1997].

Many layout problems remain NP-
complete even for certain restricted
classes of graph; Table III draws a syn-
thetic overview on these results. For
instance, BANDWIDTHis NP-complete even
when restricting its inputs to trees with
maximum degree three [Garey et al.
1978]. This result was improved in Monien
[1986] proving that BANDWIDTHremains
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NP-complete for caterpillars with hairs of
length at most three, and for caterpillars
with at most one unbounded hair attached
to the backbone. The problem is also
NP-complete for cyclic caterpillars as re-
ported in Muradyan [1999]. Recall that
a caterpillar is a particular class of tree
made of a set of paths, called the hairs,
attached by one of their leaves to the ver-
tices of another path, called the backbone.
A cyclic caterpillar has as backbone, a cy-
cle instead of a path.

The CUTWIDTH problem is NP-complete
even for graphs with maximum degree
three [Makedon et al. 1985]. This re-
sult was strengthened by showing that
CUTWIDTH , VERTSEP and MODCUT are NP-
complete even for planar graphs with max-
imum degree three [Monien and Sudbor-
ough 1988]. EDGEBIS is also NP-complete
for d-regular graphs [Bui et al. 1987]
and for graphs with maximal degree 3
[MacGregor 1978]. It is also known that
MINLA is NP-complete when restricted
to bipartite graphs [Even and Shiloach
1975]. The NP-completeness of VERTSEP

for chordal graphs was proved in Gustedt
[1993], and for bipartite graphs in
Goldberg, et al [1995]. In Diàz et al.
[2001a] it is proved that BANDWIDTH,
CUTWIDTH and VERTSEP remain NP-
complete even when restricted to grid
graphs or unit disk graphs. Finally, it is
also known that SUMCUT is NP-complete
when restricted to cobipartite graphs
[Yuan et al. 1998].

The complexity of most of the lay-
out problems for many families re-
mains open. For instance, it is unknown
if MINLA or SUMCUT are NP-complete for
sparse graphs. Also the NP-completeness
of MINLA and SUMCUT remain open for pla-
nar and/or for series-parallel graphs. The
complexity of VERTBIS for the general case
is unknown.

5. CLASSES OF GRAPHS WITH
POLYNOMIAL TIME ALGORITHMS

NP-completeness results do not rule out
the existence of efficient algorithms to get
optimal solutions on particular classes of

graphs. We now review this type of result
for layout problems.

In the case of the MINLA problem, the
optimal value of MINLA for hypercubes is
known [Harper 1964] and there exists a
closed formula for the value of the de
Bruijn graph of order four [Harper 1970].
The motivation for the former case was
to minimize the total edge length of the
wires needed to connect a Viterbi decoder
and the motivation for the latter case was
to design error-correcting codes with min-
imal errors. In the case of a d -dimensional
hypercube Qd , MINLA(Qd ) = 2d−1(2d − 1).

According to Chung [1988], Goldberg
and Klipker [1976] were the first to give
an O(n3) algorithm to solve the min-
imum linear arrangement problem for
trees. Adolphson and Hu [1973] pro-
vide an O(n log n) algorithm to compute
the MINLA of a rooted tree with n ver-
tices. Shiloach [1979] improves the re-
sult by presenting an algorithm to solve
the MINLA on trees of n vertices in
O(n2.2) time. This was further improved
by Chung [1988], who gave an O(nlog 3/ log 2)
algorithm. The optimal value for the
MINLA problem on a complete binary tree
with k levels T2,k has an explicit expres-
sion discovered by Chung: For all k ≥ 2,

MINLA(T2,k) = 2k
(

1
3

k + 5
18

)
+ 2

9
(−1)k − 2.

A recursive expression was also pre-
sented by Chung for the case of complete
ternary trees.

With respect to parallel algorithms,
Diàz et al. [1997a] proved that MINLA for
trees is in NC, as it can be solved in
O(log2 n) time using a CREW PRAM
with O(n3.6) processors; see Greenlaw
et al. [1995] for concepts on parallel
complexity.

The MINLA problem on square or rect-
angular grids has a peculiar history. Let
Lm,n denote a m×n rectangular grid graph
and let Ln = Ln,n denote a n × n square
grid graph. The problem was first solved
by Muradyan and Piliposyan [1980], in a
paper written in Russian, for the general
case of rectangular grids. Latter, in 1986,
Mitchison and Durbin [1986] presented
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Fig. 4 . Schematic representation of the optimal layout of MINLA(Lm,m′ ) for
rectangular m×m′ grids (figure reproduced from Muradyan and Piliposyan
[1980]).

the solution for square grids only. In
1981, Niepel and Tomasta [1981] incor-
rectly conjectured that the lexicographic
layout is optimal for MINLA(Lm). In a paper
published in 1994, Nakano [1994] again
referenced this conjecture. Still in 2000,
Fishburn et al. [2000] presented a solution
for MINLA(Lm,m′ ).

Indeed, the optimal layout for
MINLA(Lm,m′ ) on m × m′ rectangular
grids has an interesting solution, which
is well described in Bezrukov [1999]. The
optimal numbering is shown schemati-
cally in Figure 4. The numbering starts
with the left lower corner of the grid and
then fills the areas A1, A2, . . . , A7, where
A1, A3 are a × a squares and A5, A7 are
a′ ×a′ squares; see Figure 4(a). The values
of a and a′ must satisfy

a, a′ ∈
{⌈

m− 1
2
−
√

1
2

m2 − 1
2

m+ 1
4

⌉
,

×
⌊

m+ 1
2
−
√

1
2

m2 − 1
2

m+ 1
4
.

⌋

The way to number the areas is shown in
Figure 4(b). Each square must be num-
bered sequentially. The square A1 must
be filled row after column. The square
A2 must be filled by consecutive rows,
from bottom to top and from left to right.
The square A3 must be enumerated with
the reverse order with respect to A1. The
square A4 must be numbered by columns
from bottom to top and from left to right.

Finally, the squares A5, A6 and A7 are
filled in the same way. Using this solution,
we get

MINLA(Lm,m′ ) = −2
3

a3 + 2ma2

−
(

m2 +m− 2
3

)
a + m′

× (m2 +m−1)−m

and

MINLA(Lm) = 4−√2
3

m3 + O(m2).

The following theorem due to Muradyan
and Piliposyan [1980]; Mitchison and
Durbin [1986]; Bollobás and Leader
[1991]; Leighton [1993]; Diàz [2000];
Fishburn et al. [2000] gathers the optimal
values of layout problems for square grids:

THEOREM 5.1 Let Lm be an square grid
of side m. Then,

MINVS(Lm) = m, MINCW(Lm) = m
+ (odd m),

MINSC(Lm) = 2
3

m3 + 1
2

m2

− 7
6

m, MINVB(Lm) = m,

MINEB(Lm) = m+ (odd m), MINLA(Lm)

= 1
3

(4−
√

2)m3 + O(m2).
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Fig. 5 . Optimal layouts for 5× 5 square grids.

Optimal layouts for 5 × 5 square grids
are shown in Figure 5. The lexicographic
layout is optimal for VERTSEP , BANDWIDTH,
EDGEBIS and CUTWIDTH; the Muradyan–
Piliposjan layout is optimal for MINLA;
the diagonal layout is optimal for VERTSEP,
VERTBIS, SUMCUT and BANDWIDTH.

The exact results on VERTBIS, SUMCUT

and BANDWIDTHare also known for other
multi-dimensional grids and tori; see
Bezrukov [1999]. The VERTSEP problem
for n-dimensional grids was solved in
Bollobás and Leader [1991]. Notice that
nothing is known about the optimal so-
lutions of grid graphs with holes, except
for the edge bisection problem, for which
Papadimitriou and Sideri [1996] gave an
O(n5) algorithm. Finding a faster algo-
rithm is interesting due to its practical
relevance.

A d-dimensional c-ary clique is a graph
with vertices labeled by integers from 0
to cd − 1 and edges connecting vertices
whose c-ary representation differ in one
and only one digit. Lindsey [1964] solved
the MINLA problem on this kind of graph,
another proof can be found in Nakano
[1994]. More exact MINLA results for sev-
eral other particular classes of graphs
have been identified; see Bezrukov [1999]
and references therein.

The cutwidth problem has a very similar
trajectory. Harper [1966] seems to be the
one who first solved it for the case of hy-
percubes. Chung et al. [1982] presented an
O(n logd−2 n) time algorithm for the cut-
width of trees with n vertices and with
maximum degree d . Yannakakis [1985]
improved that result by giving an algo-
rithm to determine the cutwidth of a tree
of n vertices in O(n log n) time. In the
case of a k-level t-ary tree Tt,k , it holds
that

MINCW(Tt,k)=
⌈

1
2

(k− 1)(t− 1)
⌉

, ∀k ≥ 3.

Exact cutwidths of 2-dimensional grids
and 3-dimensional grids have been found
by Rolim et al. [1995], who also present
results for cylindrical and toroidal meshes.
In particular, for m, n ≥ 2, they prove that

MINCW(Lm,n)

=
{

2, if m = n = 2,
min{m+ 1, n+ 1}, otherwise.

On the other hand, Thilikos et al. [2001]
present an algorithm to compute the cut-
width of bounded degree graphs with
small treewidth in polynomial time.

With respect to parallel algorithms,
Dı́az et al. [1997a] proved that an op-
timal layout for the cutwidth of a tree
with n vertices and degree 1 can be com-
puted in O(1 log2 n) time using a CREW
PRAM with O(n3.6) processors. The paral-
lel complexity of the CUTWIDTH problem for
trees with unbounded degree is an open
problem.

For the SUMCUT or PROFILE problems,
Lepin [1986] gave the first polynomial
exact algorithm for trees. This result was
improved by the linear time algorithm pre-
sented in Dı́az et al. [1991]. These au-
thors also gave a parallel algorithm for
computing the optimal sum cut layout of
a tree with n vertices in O(log n) time
using a CREW PRAM with O(n2 log n) pro-
cessors. Kuo and Chang [1994] also gave a
sequential polynomial time algorithm for
the same problem on trees.
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In the case of the VERTSEP problem,
Ellis et al. [1979] gave a linear algorithm
to compute the optimal vertex separation
of a tree, and an O(n log n) algorithm to
find the optimal layout. Recently, an lin-
ear time algorithm to find the optimal lay-
out has been presented in Skodinis [2000].
Further polynomial time algorithms to
compute the vertex separation of permu-
tation graphs and cographs were given in
Bodlaender et al. [1995b] and Bodlaender
and Möhring et al. [1993] respectively.

In the case of the edge bisection prob-
lem, Leighton [1993] showed how to min-
imize the bisection width of Cartesian
products of paths of the same length, pro-
vided the length is even. Nakano [1994]
solved the problem for odd lengths. Rolim
et al. [1995] have determined the opti-
mal edge bisection of ordinary, cylindrical
and toroidal 2-dimensional grids and of or-
dinary and toroidal 3-dimensional grids.
The following theorem states their results
for Lm,n:

THEOREM 5.2 Let Lm,nbe a rectangular
grid. For 2 ≤ m ≤ n,

MINEB(Lm,n) = m+ (odd n)

and, for m ≥ 2, n ≥ 3,

MINEB(Lm,n)

=



min{2m, n}, if m and
n are even,

min{2m, n+ 2}, if m is odd
and n is even,

min{2m+ 1, n}, if m is even
and n is odd,

min{2m+ 1, n+ 2}, if m and n are
odd.

A related result is considered in Azizoğlu
and Eğecioğlu [2002] for the bisection of d -
dimensional generalized cylinders (prod-
ucts of d graphs, each of them being a path
or a cycle). The bisection of the hypercube
seems to have been solved by many peo-
ple concurrently (see e.g., [Nakano 1994]).
A closed formula for the edge bisection
of cube-connected cycles graphs is given
in Manabe et al. [1984]. For the case
of the trees, MacGregor [1978] gives an

O(n3) algorithm. A parallel algorithm run-
ning on O(log 2n log log n) time on a CRCW
PRAM with O(n2) processors for the bisec-
tion of trees, based on MacGregor’s algo-
rithm is presented On Goldberg and Miller
[1988]. An O(n2) algorithm to compute op-
timal bisection of partial k-trees is given
in Soumyanath and Deogun [1990]. Re-
call that a partial k-tree is a graph with
bounded treewidth.

In Muradyan and Piliposyan [1980], the
MINLA and CUTWIDTH problems are solved
for complete p-partite graphs. The com-
plete p-partite graph K (N1, . . . , Np) is de-
fined as a graph whose vertex set can
be partitioned into p, so that two ver-
tices are adjacent if and only if they be-
long to different partitions. If the number
of vertices in two different partitions dif-
fer in at most one, a p-partite is called
balanced. It should be noted also that
MINLA(K (N1, N2, . . . , Np)) has a nested
solution.

As previously mentioned, the Band-
width problem is NP-complete when re-
stricted to trees. However, in the case of
a k-level t-ary tree Tt,k , it holds that

MINBW(Tt,k) =
⌈

t(tk−1 − 1)
2(k − 1)(t − 1)

⌉
.

The embedding of complete binary trees
with optimal bandwidth was presented in
Heckmann et al. [1998]. There also ex-
ists an O(n log n) algorithm to determine
the bandwidth of caterpillars with hairs of
length at most two [Assman et al. 1981].

Other classes of graphs whose band-
width can be computed efficiently are in-
terval graphs [Muradyan 1986; Mahesh
et al. 1991; Sprague 1994], butterflies [Lai
1997] and chain graphs [Kloks et al. 1998].
Recall that interval graphs are intersec-
tion graphs of a set of intervals over the
real line, and that chain graphs are bipar-
tite graphs G = (X , Y , E) where there is
an ordering x1, x2, . . . , x|X | of X such that
0(x1) ⊆ 0(x2) ⊆ · · · ⊆ 0(x|X |). The first
paper containing a polynomial time al-
gorithm for BANDWIDTHfor interval graphs
was Muradyan [1986]. The second paper
claiming the result was Kratsch [1987].
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Fig. 6 . Examples of graph composition: sum (a), cartesian product (b), composi-
tion (c), tensor product (d), strong product (e), power (f) and corona (e).

The third algorithm was proposed in
Kleitman and Vohra [1990] and takes
time O(nBW(G)). Flaws in the proof of
Kratsch’s algorithm were discovered inde-
pendently, in two papers that propose a
correct algorithm Mahesh et al. [1991] and
[Sprague 1994]. The algorithm in Mahesh
et al. [1991], takes time O(n2) and is a
corrected version of Kratsch’s algorithm.
The algorithm in Sprague [1994] takes
time O(n log n) and extends the result in
Kleitman and Vohra [1990]. SUMCUT is the
other layout problem that has a polyno-
mial time algorithm for interval graphs
Lin and Yuan [1994a].

Table IV summarizes which classes
of graphs are known to be optimally
solvable in polynomial time for graph
layout problems.

Other than grids, several results are
known for families of graphs that can be
described applying basic composition op-
erations on paths (Pn), cycles (Cn), trees
(Tn), complete graphs (Kn), or complete bi-
partite graphs (Kn,m). The definitions of
the operations are taken from Lai and
Williams [1999].

—The r-th power of a graph G is the graph
Gr , with the same vertex set as G and
an edge uv if d (u, v) ≤ r in G.

—The sum of k ≥ 2 pairwise disjoint
graphs G1, . . . , Gk , denoted as G1+· · ·+
Gk , is the graph G with vertex set
∪1≤i≤kV (Gi) and an edge uv if for some
i 6= j u ∈ V (Gi) and v ∈ V (G j ) or if for
some i u, v ∈ V (Gi) and uv ∈ E(Gi).

—The cartesian product of two graphs G
and H, denoted as G × H, is the graph
with vertex set V (G) × V (H) where
(u1, v1) is adjacent to (u2, v2) if either
u1u2 ∈ E(G) and v1 = v2 or v1v2 ∈ E(H)
and u1 = u2.

—The composition of two graphs G and
H, denoted as G[H], is the graph with
vertex set V (G)×V (H) where (u1, v1) is
adjacent to (u2, v2) if either u1u2 ∈ E(G)
or v1v2 ∈ E(H) and u1 = u2.

—The tensor product of two graphs G and
H, denoted as G⊗H, is the graph with
vertex set V (G)×V (H) where (u1, v1) is
adjacent to (u2, v2) if u1u2 ∈ E(G) and
v1v2 ∈ E(H).

—The strong product of two graphs G and
H, denoted as G¯H, is the graph with
vertex set V (G)×V (H) where (u1, v1) is
adjacent to (u2, v2) if one of the following
holds: (a) u1u2 ∈ E(G) and v1v2 ∈ E(H),
(b) u1 = u2 and v1v2 ∈ E(H), or (c) v1 =
v2 and u1u2 ∈ E(G).

—The corona of two graphs G and H is
denoted as G ∧ H and contains a copy
of G and a copy of H for each vertex
of G. Each vertex of G is connected to
every vertex in the corresponding copy
of H.

Figure 6 illustrates these definitions and
Table V summarizes the known results.

The problem of computing the band-
width of a Hamming graph is an inter-
esting open problem, because it gives
a measure of the effects of noise in the
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Table IV. Review of Classes of Graphs Optimally Solvable in Polynomial Time (n denotes the number of
vertices in the graph, m its number of edges and 1 its maximal degree)

Problem Class of graph Complexity Ref.

BANDWIDTH caterpillars with hair-length ≤ 2 O(n log n) [Assman et al. 1981]
hypercubes O(n log n) [Harper 1966]
butterflies O(n log n) [Lai 1997]
interval graphs O(n12 log1) [Muradyan 1986]
interval graphs O(n log n) [Mahesh et al. 1991]
interval graphs O(n log n) [Sprague 1994]
chain graphs O(n2 log n) [Kloks et al. 1998]
complete k-level t-ary tree O(n) [Heckmann et al. 1998]
square grids O(n) [Mai and Luo 1984]

[Dı́az et al. 2000]

MINLA trees O(n3) [Goldberg and Klipker 1976]
rooted trees O(n log n) [Adolphson and Hu 1973]
trees O(n2.2) [Shiloach 1979]
trees O(nlog 3/ log 2) [Chung 1988]
rectangular grids O(n) [Muradyan and Piliposyan 1980]
square grids O(n) [Mitchison and Durbin 1986]
2-dimensional cylinder O(n) [Muradyan 1982]
hypercubes O(n) [Harper 1964]
de Bruijn graph of order 4 O(n) [Harper 1970]
d-dimensional c-ary cliques O(n) [Lindsey 1964]
complete p-partite graphs O(n+ p log(p)) [Muradyan and Piliposyan 1988]

CUTWIDTH trees O(n log1−2 n) [Chung et al. 1982]
trees O(n log n) [Yannakakis 1985]
hypercubes O(n) [Harper 1964]
d-dimensional c-ary cliques O(n) [Nakano 1994]
max degree ≤ 1 and treewidth ≤ k O(n1k2

) [Thilikos et al. 2001]
ordinary 2- and 3-dim. meshes O(n2) [Rolim et al. 1995]
toroidal and cylindrical 2-dim. meshes O(n2) [Rolim et al. 1995]
toroidal 3-dim. meshes O(n2) [Rolim et al. 1995]
complete p-partite graphs O(n+ p log(p)) [Muradyan and Piliposyan 1988]

VERTSEP trees O(n log n) [Ellis et al. 1979]
trees O(n) [Skodinis 2000]
cographs O(n) [Bodlaender and Möhring 1993]
permutation graphs O(n2) [Bodlaender et al. 1995b]
n-dimensional grids O(n2) [Bollobás and Leader 1991]

SUMCUT trees O(n2.3) [Lepin 1986]
trees O(n) [Dı́az et al. 1991]
trees O(n1.722) [Kuo and Chang 1994]
square grids O(n) [Dı́az et al. 2000]
interval graphs [Lin and Yuan 1994a]

EDGEBIS trees O(n3) [MacGregor 1978]
hypercubes O(n) [Nakano 1994]
d-dimensional c-ary arrays O(n) [Nakano 1994]
d-dimensional c-ary cliques O(n) [Nakano 1994]
ordinary 2- and 3-dim. meshes O(n2) [Rolim et al. 1995]
toroidal and cylindrical 2-dim. meshes O(n2) [Rolim et al. 1995]
toroidal 3-dim. meshes O(n2) [Rolim et al. 1995]
grid graphs O(n5) [Papadimitriou and Sideri 1996]
treewidth ≤ k O(n2) [Soumyanath and Deogun 1990]
cube-connected cycles graphs O(n) [Manabe et al. 1984]
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Table V. Review of Families of Composite Graphs Optimally Solvable in Polynomial Time or with a
Closed Formula. Graph names and operators are defined in the text

Problem Class of graph Ref.

BANDWIDTH G1 + · · · + Gk [Lai et al. 1994]
Pn × . . .d × Pn [Chvátalová 1975]
Pn × Cm [Muradyan 1982]
Cn × Cm [Lai and Williams 1995]
Kn[G], Pn[G], Cn[G] [Hendrich and Stiebitz 1992]
K1,n[G], Kn[G] for G ∈ {Pm, Tm, Cm}

or G = Cn1 × . . .× Cnk with ni ≤ 5
or G = Pn1 × . . .× Pnk with ni > 1 [Liu and Williams 1995]

Pr
n [G], Cr

n[G] [Chinn et al. 1995]
Pn × Pm[G], Pn × Cm[G] with 2n 6= m

and Cn × Cm[G] 6 ≤ 2n ≤ 2s [Zhou and Yuan 1998]
Kn ¯ Pm [Hendrich and Stiebitz 1992]
Pn ¯ Pm, Cn ¯ Pm, Pn ¯ Cm, Cn ¯ Cm [Lai and Williams 1995]
Pn ⊗ Pm, Cn ⊗ Pm, Cn ⊗ Cm [Lai and Williams 1997]
Pk ⊗ Knm [Williams 1994]
Pk ⊗ Kn, Ck ⊗ Kn [Williams 1996]
Kn ∧ Km, Cn ∧ K1, Pn ∧ K1, Cn ∧ (K1 ∪ . . . ∪ K1) [Chinn et al. 1992]

MINLA G1 + · · · + Gk all Gi are sum deterministic [Lai and Williams 1994]
Pn[Pm], Pn[Cm] [Liu 1992]
Kn[Pm], Kn[Cm] [Liu and Williams 1995]
Pk ⊗ Knm [Williams 1994]
Pn ∧ Pm, Kn ∧ K1 [Williams 1993]

CUTWIDTH Cr
n, Pn × Pm, Pn × Cm, Cn × Cm, Kn × Pm

and Kn × Cm, Cs
n × Cr

m, Kn × Km, Pn ¯ Cm [Liu and Yuan 1995]

SUMCUT G1 + G2 [Lin and Yuan 1994b]
Pn × Km, Cn × Km, Cn × Cm [Mai 1996]
Kn[G], Pn[G], Cn[G] [Lai 1997]
Pk × Knm [Lai 2001]
Pn ∧ G, Cn ∧ G, Kn ∧ G, Knm ∧ G [Lai 1997]
G ∧ H where H is a 1-caterpillar, Kn or Cn [Chang and Lai 2001]

multi-channel transmission of data
with that numbering [Berger-Wolf and
Reingold 2000]. The best known result,
due to Harper [2001], shows that the band-
width of the Hamming graph is asymptotic
to
√

2
π d nd as d →∞.

6. FIXED PARAMETER RESULTS

In defining a parameterization, the issue
is not whether a problem is hard, but
what makes the problem hard or easy to
compute. To study the structural hard-
ness of a difficult problem, the approach
is to split the input into two parts: a dif-
ficult part (the non-parameterized) and
an easy part (the parameterized), where
we impose some restrictions. For several
problems, it is known that the parame-
terization of the input does not break the

NP-completeness barrier. A classical ex-
ample is the coloring problem parameter-
ized by the number k of colors that can be
used. It is well known that the problem is
NP-complete, for k ≥ 3. On the other hand,
graph problems like the maximum inde-
pendent set or the minimum vertex cover
become polynomially solvable, for every k,
when we parameterize them by the size
k of the maximum independent set or the
minimum vertex cover.

Even in the cases where a parameter-
ization of an NP-complete problem leads
to a polynomial time algorithm, there are
different types of upper bounds of the
running time for the best known algo-
rithm. For instance if the problem has k
as a parameter, the running time could
be O(n f (k)), or it could be O( f (k)nα), or
it could be O( f (k) + nα), where f (k) is a
function of k and α ∈ N and the big-oh
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notations hide a constant independent of
k. A parameterized problem is said to be
fixed parameter tractable if there exists an
O( f (k)nα)-algorithm that solves the prob-
lem. The class FPT is the class of all fixed
parameter tractable problems. Downey
and Fellows defined a parameterized com-
plexity hierarchy, the W-hierarchy. Sim-
ilarly to the theory developed in struc-
tural complexity, the W-hierarchy consists
of classes of parameterized problems, with
different levels of parameterized complex-
ity, between FPT and W [P ]: FPT ⊆
W [1] ⊆ W [2] ⊆ · · · ⊆ W [ P ], along with
suitable notions of reducibility and com-
pleteness. The interested reader can have
a look at Downey and Fellows [1999] for
a nice exposition of parameterized com-
plexity. It is an open problem whether
the inclusion in the hierarchy is strict.
Moreover, there is evidence that if a prob-
lem is complete for some level of the W-
hierarchy, then it is not expected to have
an O( f (k)nα)-algorithm. For example, the
parameterized vertex cover problem be-
longs to FPT [Balasubramanian et al.
1998], while the the parameterized inde-
pendent set problem is known to be W [1]-
complete [Downey and Fellows 1995].

Several parameterized complexity re-
sults are known for some layout problems.
In these results the problems are param-
eterized by the minimum value of the lay-
out measure. For the case of BANDWIDTH,
we will consider the following parameter-
ization for the BANDWIDTH problem:

BANDWIDTH (k): Given a graph G,

determine whether MINBW(G) ≤ k.

We will use the same notation and the
same parameterization for the remaining
layout problems.

The earliest result proved that it is
possible to decide the BANDWIDTH (2) prob-
lem and the CUTWIDTH (2) problem in lin-
ear time [Garey et al. 1978]. Regarding
the BANDWIDTH problem, Saxe [1980] pre-
sented an O(nk+1) algorithm to decide
BANDWIDTH (k) for any constant k. Gurari
and Sudborough [1984] improved this re-
sult thanks to an O(nk) algorithm. This is

essentially the best that can be done, as
Bodlaender et al. [1994] proved that, for
any k, the BANDWIDTH (k) problem is W [k]-
hard. Recent work addresses the prob-
lem of simplifying the algorithm for the
BANDWIDTH (2) problem, see Makedon et al.
[1993] for biconnected graphs and and
Caprara et al. [2002] for general graphs.

In the case of CUTWIDTH , Gurari and
Sudborough [1984] presented a O(nk) al-
gorithm to decide the CUTWIDTH (k) prob-
lem for any input graph with n ver-
tices and any constant k. This result was
improved in Makedon and Sudborough
[1989] with an O(nk−1) algorithm. Lat-
ter, Fellows and Langston [1988] ob-
tained an O(n2) algorithm. The result for
CUTWIDTH (k) has recently been improved
in Thilikos et al. [2000], where a lin-
ear time algorithm is presented. Recall
that the treewidth notion is similar to the
pathwidth notion, but for a tree decompo-
sition rather than a path decomposition.

On the other hand, Fellows and
Langston [1988] have proved that VERT-
SEP and MODCUT are fixed-parameter
tractable. In particular, Bodlaender
[1996] proved that VERTSEP (k) can be
decided in linear time.

Furthermore, in Bui and Peck [1992] it
is shown that the EDGEBIS (k log n) can
be solved in polynomial time for planar
graphs.

Table VI summarizes these results.
The fixed parameter complexity of the

layout problems not included in Table VI
remains an open problem. Furthermore,
when considering the efficiency of the algo-
rithms for parameterized problems, bear
in mind that even if k is a constant, the
multiplicative factor hidden in the big-oh
notation is often exponential in k. This
rises as an open problem the quest of prac-
ticable linear time algorithms.

7. APPROXIMATION ALGORITHMS

One of the approaches to dealing with
intractable problems is to design an
approximation algorithm that, in polyno-
mial time will give a feasible solution
“close” to the optimal one. In this section
we state a formal definition of what it
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Table VI. Fixed Parameterized Complexity Results for Layout
Problems (n denotes the size of the graph and k the parameter)

Problem Complexity Ref.

BANDWIDTH (2) O(n) [Garey et al. 1978]
BANDWIDTH (k) O(nk+1) [Saxe 1980]
BANDWIDTH (k) O(nk) [Gurari and Sudborough 1984]
BANDWIDTH (k) W [k] [Bodlaender et al. 1994]

CUTWIDTH (2) O(n) [Garey et al. 1978]
CUTWIDTH (k) O(nk) [Gurari and Sudborough 1984]
CUTWIDTH (k) O(nk−1) [Makedon and Sudborough 1989]
CUTWIDTH (k) O(n2) [Fellows and Langston 1992]
CUTWIDTH (k) O(n) [Thilikos et al. 2000]

MODCUT (k) O(n2) [Fellows and Langston 1992]

VERTSEP (k) O(n2) [Fellows and Langston 1988]
VERTSEP (k) O(n) [Bodlaender 1996]

means to have a close solution and present
approximability results for layout prob-
lems. For a complete text on the theory
of approximability the reader can look at
Garey and Johnson [1979]; Ausiello et al.
[1999]; Vazirani [2001].

Recall that, given a minimization prob-
lem5, an r(n)-approximation algorithm is
an algorithm that, for any input x of size n,
finds a solution to 5 whose cost is at most
r(n) times the cost of an optimal solution
to the problem’s instance. When a prob-
lem 5 has some r(n)-approximation algo-
rithm, it is said to be r(n)-approximable.
When there exists an algorithm for5 such
that, for all ε < 1, Aε returns a feasible so-
lution σ such that the ratio between the
obtained value and the optimal value is
less than 1 + ε, and it runs in polynomial
time with respect to |x|, Aε is said to be
a polynomial time approximation scheme.
Moreover, when Aε runs in polynomial
time with respect to |x| and 1/ε, Aε is said
to be a fully polynomial time approxima-
tion scheme. A combinatorial optimization
problem belongs to the class APX if it is
ε-approximable for some constant ε > 1,
to the class PTAS if it admits an approxi-
mation scheme, and to the class FPTAS if
it admits a fully approximation scheme. It
is known that FPTAS ⊆ PTAS ⊆ APX ,
where the inclusions are strict if and
only if P 6= NP. There are other paral-
lel analogues to sequential approximation
classes; see Dı́az et al. [1997b] for an in-
troduction to parallel approximation.

For the graph layout problems under
consideration, the set of instances I corre-
sponds to the set of all undirected graphs,
an instance x ∈ I corresponds to a par-
ticular undirected graph G, the set of fea-
sible solutions S(G) corresponds to 8(G),
and the objective function is a layout
cost f ∈ {LA, BW, SC, VS, CW, MC, EB, VB}.

Many of the more recent positive re-
sults put the emphasis on improving the
approximation bounds, rather than im-
proving the time complexity. Two of
the techniques used are relaxations of
semidefinite programs and spreading met-
rics. A spreading metric on a graph is
an assignment of lengths to its edges or
its vertices, so that nontrivial subgraphs
are spread apart in the associated met-
ric space [Seymour 1995]. The volume of
a spreading metric, defined as the sum of
the lengths of all edges or vertices, pro-
vides a lower bound of solving the prob-
lem that guides a divide and conquer strat-
egy. The drawback of the algorithms based
on spreading metrics is that they require
solving a linear program with an expo-
nential number of constraints, which can
make them impractical. In fact, their run-
ning time is dominated by the complexity
of finding a spreading metric, which can
be computed by general linear program-
ming algorithms, as the Ellipsoid method.
In general, most of them takeÕ(m2n) time,
where Õ ignores poly-logarithmic factors;
see Even et al. [1999]. Flow metrics are a
new approach to approximate some layout
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problems [Bornstein and Vempala 2002].
Even if flow metrics do not improve previ-
ous results, they represent a much simpler
framework where the exponential number
of constraints is reduced to a polynomial
number.

For the BANDWIDTH problem, some par-
ticular kinds of graphs have approxi-
mation algorithms. In the case of γ -
dense graphs, there exists a polynomial
time 3-approximation, which appeared in
Karpinski et al. [1997]. Recall that a graph
with n vertices is γ -dense if its mini-
mum degree is at least γn. The proof
of this result uses the construction of
perfect matchings in bipartite graphs as
a building block, together with a sim-
plest 4-approximation algorithm. There
is a 2-approximation algorithm to band-
width for asteroidal triple free graphs, per-
mutation graphs and trapezoidal graphs
[Kloks et al. 1999]. There are also poly-
nomial time O(log n)-approximation al-
gorithms for caterpillars [Haralambides
et al. 1991], and for a larger class of trees,
denoted as GHB-trees, which are charac-
terized as trees such that for any node v,
the depth difference of any two non-empty
subtrees rooted at v is bounded by a con-
stant [Haralambides and Makedon 1997].
For the case of general trees and chordal
graphs, Gupta [2001] presents a random-
ized O(log2.5 n)-approximation algorithm.
For general graphs, bandwidth has sev-
eral polylogarithmic approximation algo-
rithms running in polynomial randomized
time, due to Blum et al. [2000], using
semidefinite-relaxation; to Feige [2000],
using spreading metrics and volume re-
specting embeddings; and to Dunagan
and Vempala [2001], using semidefinite-
relaxation and Euclidean embeddings. On
the negative side, in Blache et al. [1998]
it is shown that it is NP-complete to
find a 3

2 -approximation for general graphs,
and it is also NP-complete to find a 4

3 -
approximation for trees. As a consequence
BANDWIDTH does not belong to PTAS. In
fact, Unger [1998] proves that, for any
constant k, it is NP-complete to find
any k-approximation, even for caterpil-
lars. Therefore, BANDWIDTH does not be-
long to APX . The approximability of BAND-

WIDTH between a constant and a polyloga-
rithmic factor remains open.

Recall that graphs with n vertices and
m edges are dense if m = 2(n2). There
exist fully polynomial time approximation
schemes for dense graphs, Arora et al.
[1996, 1999], for MINLA and CUTWIDTH, and
Frieze and Kannan [1996] for EDGEBIS .
The regularity lemma of Szemerèdi is the
base technique to prove these results.

Several approximation algorithms
have been proposed for MINLA , CUT-
WIDTH and SUMCUT problems. The first
nontrivial approximation algorithm for
MINLA and CUTWIDTH on general graphs
was a direct application of an O(log n)
approximation algorithm for finding bal-
anced partitions in a graph [Leighton and
Rao 1999], which produced an O(log 2n)
approximation algorithm for MINLA and
CUTWIDTH . The original paper appeared
as a conference paper in 1989. Using
ideas from the previous work, Hansen
[1989] gave an O(log 2n)-approximation
algorithm for MINLA. Using the spreading
metrics technique Even et al. [2000] gave
an O(log n log log n)-approximation algo-
rithms for MINLA and SUMCUT . Up to date,
the best polynomial time approximation
algorithms for MINLA and SUMCUT are
O(log n)-approximations for general
graphs, and O(log log n)-approximations
for planar graphs. Both results appear
in Rao and Richa [1998], who also use
the spreading metric technique. Their
technique works for the general case of
graphs with weighted edges.

In the case of the VERTSEP problem,
Bodlaender et al. [1995a] present a poly-
nomial time O(log 2n)-approximation al-
gorithm for general graphs, and show how
to use results from Seymour and Thomas
[1994] to get an O(log n)-approximation al-
gorithm for planar graphs.

The first approximation algorithm for
the EDGEBIS problem on general graphs
with sublinear approximation ratio, was
given in Feige et al. [2000], this re-
sult was further improved in Feige and
Krauthgamer [2002], where an O(log 2n)
approximation ratio is obtained. For
graphs, excluding any fixed graph as a mi-
nor (e.g. planar graphs), an improved ratio
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of O(log n) is obtained. Albeit its impor-
tance in many contexts, no better approx-
imability results are currently known for
this problem.

Table VII summarizes these approxima-
bility results.

8. RANDOM GRAPHS

Worst-case analysis does not always catch
the real difficulty of a problem. A stan-
dard way of evaluating the real efficiency
of an algorithm or heuristic, from a practi-
cal point of view, is to evaluate its perfor-
mance on random instances.

Recall that a sequence of events (En)n≥1,
occurs with high probability if Pr [En] →
1, and with overwhelming probability if
Pr [En] ≥ 1 − 2−Ä(n) for all n. Also, if
(X n)n≥1 is a sequence of random variables,
and X is a random variable, it is said
that X n converges in probability to X
(X n

Pr−→X ) if Pr [|X n − X | > ε]→ 0, for all
ε > 0.

8.1. Binomial Random Graphs

Given a positive integer n and a proba-
bility pn, the class of binomial random
graphs, Gn, pn , is a probability space over
the set of undirected graphs G = (V , E)
on the node set V = [n] determined by
Pr [uv ∈ E] = pn, with these events mutu-
ally independent [Janson et al. 2000]. This
well studied model offers a natural start-
ing point from which to analyze approx-
imability properties of layout problems in
a probabilistic setting, see Figure 7(a).

BANDWIDTH can be approximated within
a constant on binomial random graphs;
see Bollobás [1985 page 374] and Turner
[1986]. The same result for EDGEBIS was
obtained in Boppana [1987]. These re-
sults can be extended to all layout prob-
lems considered in this survey, using
a unique framework involving “mixing
graphs”, which is a concept close to ex-
pander graphs developed in Crescenzi
et al. [2001]. The following result appears
in Dı́az et al. [2001c].

THEOREM 8.1 Let ε ∈ (0, 1
6 ), γ ∈ (0, 1)

and define Cε,γ = 3(1 + ln 3)(εγ )−2. Con-
sider a sequence (cn)n≥1 such that Cε,γ ≤

cn ≤ n for all n ≥ n0 for some natural
n0. Then, with overwhelming probability,
BANDWIDTH , MINLA , CUTWIDTH , MODCUT ,
SUMCUT , VERTSEP , EDGEBIS and VERTBIS ,
can be approximated within an O(ε + γ )
factor on binomial random graphs Gn, pn

where pn = cn/n.

Actually, the proof of the above theo-
rem shows that any algorithm comput-
ing a feasible layout, no matter how good
or bad, will perform rather well on ran-
dom graphs, pointing out that evaluat-
ing heuristics on binomial random graphs
may be unworthy for layout problems.

Theorem 8.1 has been improved for
EDGEBIS : Luczak and McDiarmid [2001]
show that if c > ln 4, then MINEB(Gn,c/n) =
2(n) with high probability; while if c <
ln 4, then MINEB(Gn,c/n) = 0 with high
probability.

8.2. Random Grid Graphs

Given an integer m and a probability p,
the class of random grid graphs, Lm, p, is
a probability space over the set of grid
graphs G = (V , E) on the node set V ⊆
[m]2 determined by Pr [u ∈ V ] = p with
these events mutually independent and
E = {uv : u, v ∈ V ∧ ‖u− v‖1 = 1}.

The study of random grid graphs is
based on percolation theory [Grimmett
1999]. Consider a site percolation process,
where nodes from the infinite grid (Z2) are
selected with some probability p. Let C0 be
the connected component where the ori-
gin belongs. A basic question in percola-
tion theory is whether or not C0 can be in-
finite. Let ϑ(p) denote the probability that
|C0| = ∞ and set pc = inf{p : ϑ(p) > 0},
the critical value of p. In the subcritical
limiting regimes p ∈ (0, pc), all compo-
nents are almost surely finite.

The following theorem from Dı́az et al.
[2000] states the behavior of some lay-
out problems on subcritical random grid
graphs:

THEOREM 8.2 Let p ∈ (0, pc); then there
exist constants 0 < c1 < c2 such that

lim
m→∞ Pr

[
c1≤ VS(Lm, p)√

log m
≤ CW(Lm, p)√

log m
≤ c2

]
=1
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and there exist two constants βLA(p) > 0
and βSC(p) > 0 such that, as m→∞,

LA(Lm, p)/m2 Pr−→βLA(p) and

SC(Lm, p)/m2 Pr−→βSC(p).

Results for the supercritical case p ∈
(pc, 1) are derived in Penrose [2000]:

THEOREM 8.3 Let p ∈ (pc, 1). Then,
there exists a constant c > 0 such that, with
overwhelming probability,

cm2 ≤ MINSC(Lm, p) ≤ m2, cm2 ≤ MINLA(Lm, p) ≤ 4m2,
cm ≤ MINBW(Lm, p) ≤ m, cm ≤ MINVS(Lm, p) ≤ m,
cm ≤ MINCW(Lm, p) ≤ 4m.

Moreover, for all p such that ϑ(p) > 1
2 , with

overwhelming probability,

cm ≤ MINEB(Lm, p) ≤ 4m.

MINEB(G(n; rn)) Pr−→0, MINVB(G(n; rn)) Pr−→0,

MINLA(G(n; rn))/n
Pr−→β̃LA(λ), MINSC(G(n; rn))/n

Pr−→β̃SC(λ),

Pr
[
c1 ≤ VS(G(n; rn))

log n/ log log n
≤ c2

]
→ 1, Pr

[
c3 ≤ CW(G(n; rn))

(log n/ log log n)2 ≤ c4

]
→ 1.

8.3. Random Geometric Graphs

Random geometric graphs G(n; rn) are
graphs whose n nodes are n points uni-
formly distributed in the unit square, and
whose edges between any pair of nodes
exist when their distance is smaller than

MINCW(G(n; rn)) = 2(n2r3
n

)
, MINEB(G(n; rn)) = 2(n2r3

n

)
,

MINSC(G(n; rn)) = 2(n2rn
)
, MINLA(G(n; rn)) = 2(n3r3

n

)
,

MINVS(G(n; rn)) = 2(nrn), MINBW(G(n; rn)) = 2(nrn).

some parameter rn, see Figure 7(c). Ran-
dom geometric graphs have been proposed
as a possible model to take into account
the structural characteristics of instances
that appear in many practical applications
[Johnson et al. 1989; Berry and Goldberg
1999; Lang and Rao 1993].

As random grid graphs, random geomet-
ric graphs also exhibit a phase transition
[Penrose 1995]: When nr2

n → λ there ex-
ists a critical parameter λc such that if
λ < λc, graphs G(n; rn) are likely to have

O(log n) points in each connected compo-
nent, while if λ > λc, there is likely to be a
component with 2(n) nodes. The next two
theorems, proven in Dı́az et al. [2000] and
Penrose [2000] respectively, characterize

the behavior of several layout costs in the
subcritical and supercrital phases.

THEOREM 8.4 Suppose nr2
n → λ ∈

(0, λc). Then, there exist constants 0 < c1 <

c2, 0 < c3 < c4, β̃LA(λ) > 0 and β̃SC(λ) > 0
such that

THEOREM 8.5 Suppose nr2
n → λ ∈

(λc,∞). Then,
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Fig. 7 . Different models of random graphs.

Fig. 8 . Illustration of the projection (left) and dissection (right) algorithms. The pro-
jection algorithm creates a layout by ordering the vertices according to their projection
onto the x-axis. The dissection algorithm creates a layout dissecting the unit square
in boxes of the appropriate size and enumerating the points, following the order of the
boxes in lexicographic order (points in the same box are enumerated arbitrarily).

In the case that the radius is slightly
greater, Dı́az et al. [2001a] show that it is
possible to obtain nice approximations:

THEOREM 8.6 Let (ri)i≥1 be a sequence
of positive numbers with rn → 0 and
nr2

n/ log n→∞. Then, with high probabil-
ity, BANDWIDTH , MINLA , CUTWIDTH , MOD-
CUT , SUMCUT , VERTSEP , EDGEBIS and
VERTBIS can be approximated within a con-
stant on random geometric graphs G(n; rn).
Moreover, for BANDWIDTH and VERTSEP, the
approximation factor can be arbitrarily
close to 1.

The proofs of the above results involve
the use of isoperimetric inequalities to get
lower bounds, and the analysis of two sim-
ple heuristics using geometrical informa-
tion to get matching upper bounds; see
Figure 8. In the case of the bandwidth and
vertex separation problems, the solutions
returned by either of the heuristics are
asymptotically optimal.

These results on random geometric
graphs can be applied to give empirical
evidence of the goodness of several well-
known heuristics for layout and partition-
ing problems [Dı́az et al. 2001c]. These
heuristics include global methods, such as
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spectral, multilevel and greedy methods;
and local methods, such as simulated; an-
nealing or Kernighan-Lin.

Geometric graphs have also been con-
sidered as possible models for wireless
communication, where two transmitters
are in contact whenever their distance is
at most r. Therefore it seems natural to
investigate the behavior of layout prob-
lems with respect to unreliable random ge-
ometric graphs, that is, random geomet-
ric graphs whose edges or nodes may fail
at random independently. In Dı́az et al.
[2001b] it is shown that random geometric
networks can tolerate a constant edge or
node failure probability maintaining the
order of magnitude of the MINEB, MINLA and
MINCW measures.

9. UPPER AND LOWER BOUNDS

As we already indicated, all the layout
problems presented, are hard to solve for
general graphs. Therefore, it is important
to have algorithms to obtain good lower
bounds. On the other hand, it is also inter-
esting to have upper bounds for the lay-
out costs restricted to general classes of
graphs. Formally, given a layout cost F ,
we say that an algorithm L computes a
lower bound of the cost of a graph G for F
if F (ϕ, G) ≥ L(G) for all ϕ ∈ 8(G). Also,
we say that U is an upper bound of the
cost of a graph G for F if F (ϕ, G) ≤ U (G)
for all ϕ ∈ 8(G).

For some layout costs and some classes
of graphs, even if no exact solutions are
known, there exist lower bounds that
asymptotically match upper bounds. This
happens, for instance, for the edge and
vertex bisection of the de Bruijn and
Kautz graphs [Rolim et al. 1998], the cut-
width of the de Bruijn graph [Raspaud
et al. 1995], the edge bisection of trans-
position graphs [Stacho and Vrťo 1998],
the cutwidth of the d-dimensional mesh
of r-ary trees [Vrťo 2000], and for the
minimum linear arrangement and cut-
width on graphs with bounded maximal
degree and genus [Sýkora and Vrťo 1993].
In Barth et al. [1995], bounds on band-
width and cutwidth of a given graph

are obtained from bounds for its quo-
tient graphs, which is a useful result be-
cause some techniques involve clustering
of vertices. In Diks et al. [1993], edge
separation problems are investigated for
planar graphs, outerplanar graphs, and
trees of given maximum degree. The re-
sults lead to estimations on the edge bi-
section and the cutwidth of these graphs.
Specifically, Diks et al. [1993] prove that
the MINEB(G) and MINCW(G) are O(

√
kn)

for graphs G with n vertices and maxi-
mal degree k, and that there exist graphs
whose edge bisection and the cutwidth is
Ä(
√

kn).
The remainder of this section presents

several approaches to get lower bounds
for some of the layout problems under
consideration.

9.1. The Path Method

The path method was introduced in
Juvan and Mohar [1992] to compute a
lower bound for the MINLA and BAND-
WIDTH problems. Let Pk

n = (Vn, Ek
n) de-

note the k-th power graph of the path
graph: Vn = [n] and Ek

n = {i j : 0 <
|i − j | ≤ k}. A direct calculation
gives

MINLA(Pk
n ) = 1

6
k(k + 1)(3n− 2k − 1).

Let c(n, m) be the largest k for which
|E(Pk

n )| ≤ m. Then,

c(n, m) = n− 1
2

√
(2n− 1)2 − 8m− 1

2
.

The use of these expressions to get a lower
bound to MINLA and MINBW is given by
the following theorem due to Juvan and
Mohar [1992]:

THEOREM 9.1 Let G be a graph with
n nodes and m edges and let k =⌊
c(n, m)

⌋
. Then, MINLA(G) ≥ MINLA(Pk

n ) and
MINBW(G) ≥ k.
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9.2. Bounds Based on Spectral Properties

Let G = ([n], E) be a graph and let LG be
its Laplacian matrix, defined by

LG[u, v] =

−1 if uv ∈ E,
0 if uv 6∈ E,
deg(u) if u = v.

By construction, LG is positive semidefi-
nite. Therefore it has n nonnegative real
eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn.
The sequence λ1, λ2, . . . , λn is known as the
spectrum of the graph G. It is know that
the multiplicity of the value 0 as an eigen-
value of LG is equal to the number of con-
nected components of G; in particular, if
G is connected 0 = λ1 < λ2 [Mohar and
Poljak 1993].

The following theorem gathers results
from Juvan and Mohar [1992] and Mohar
and Poljak [1993].

THEOREM 9.2 Let G be a connected
graph with n vertices and let λ2 be the sec-
ond smallest eigenvalue of the Laplacian
matrix of G. Then,

MINLA(G) ≥ λ2(n2 − 1)/6,

MINCW(G) ≥ λ2

⌊
1
2

n
⌋⌈

1
2

n
⌉
/n,

MINEB(G) ≥
{
λ2n/4 if n is even,

λ2(n2 − 1)/4n if n is odd.

Newer bounds for the EDGEBIS problem
related to the level structure of a graph
can be found in Bezrukov et al. [2000b].

The following result, presented in
Helmberg et al. [1995], bounds the band-
width of a graph using the ratio be-
tween the two extremal eigenvalues of its
spectrum:

THEOREM 9.3 Let G be a graph with n
vertices and at least one edge. Let λ2 and λn
denote the second smallest and the largest
eigenvalue of the Laplacian of G, respec-

tively. Let α be the largest integer smaller
than nλ2/λn. Then,

MINBW(G) ≥
n− 1 if α ≥ n− 2,
α + 1 if α ≤ n− 2 and n is even,
α otherwise.

The same reference also contains lower
bounds for MINLA that involve more com-
plex eigenvalues. Lower bounds for VERT-
SEP and BANDWIDTH can be obtained using
the following theorem [Mohar and Poljak
1993]:

THEOREM 9.4 Let G = (V , E) be a con-
nected graph with n vertices and maximal
degree 1. Let λ2 be the second smallest
eigenvalue of the Laplacian matrix of G.
If S ⊂ V separates vertices sets A and B
then

|C| ≥ 4λ2|A||B|
1n− λ2|A∪ B| .

A slightly weaker version of this result
was obtained by Alon and Milman [1985].

9.3. Bounds Based on Fundamental Cuts

Let G = (V , E) be a graph with n ver-
tices and let s and t be two distinguished
vertices of G, which we call the source
and the sink, respectively. The well-known
max-flow min-cut theorem states that the
maximal flow value from s to t is equal to
the minimal edge cut separating s and t
[Ford and Fulkerson 1962]. As there ex-
ist efficient algorithms to compute such a
minimal cut, and there are 1

2 n(n− 1) pos-
sible choices for s and t, it is possible to
build a symmetric n × n matrix f where
f [i, j ] stores the maximal flow value be-
tween two distinct vertices i and j . In
Gomory and Hu [1975] it is shown that
matrix f can simply be represented by a
weighted spanning tree of G where each
edge represents a fundamental cut of G
and has weight equal to the corresponding
minimal cut. The maximum flow f [i, j ]
between any pair of vertices i and j can
be obtained by finding the unique path be-
tween i and j in the weighted spanning
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Fig. 9 . A graph G, its Gomory–Hu tree and its matrix f of max-flows min-cuts. Apply-
ing Theorem 9.5, MINLA(G) ≥ 19, MINCW(G) ≥ 3 and MINBW(G) ≥ 3. In fact, MINLA(G) = 21,
MINCW(G) = 3 and MINBW(G) = 3.

tree and finding the minimal weight over
all the edges in this path. Figure 9 shows a
graph, its corresponding Gomory–Hu tree
and its corresponding matrix f . An algo-
rithm to construct the Gomory–Hu tree
can be found in the same paper.

By construction, it is easy to see that
the maximal fundamental cut for a graph
is a lower bound of the cutwidth prob-
lem. Moreover, Adolphson and Hu [1973]
proved that the total cut capacity of the
n − 1 fundamental cuts is a lower bound
on the cost of the minimum linear ar-
rangement problem. Using Lemma 2.4 we
conclude that MINBW(G) ≥ ⌈

MINLA(G)/n
⌉
.

Therefore, we have the following lower
bounds:

THEOREM 9.5 Let G = (V , E) be a
graph and T = (V , E ′, w) its weighted
Gomory–Hu tree. Then,

MINCW(G) ≥ max
e∈E ′

w(e),

MINLA(G) ≥
∑
e∈E ′

w(e),

MINBW(G) ≥
⌈

1
|V |

∑
e∈E ′

w(e)

⌉
.

Adolphson and Hu [1973] also proved
that if the Gomory–Hu tree is a path, then
that path is the optimal layout for the
MINLA problem.

10. HEURISTICS

Resorting to heuristics is an alternative
method to obtain solutions for optimiza-
tion problems. In general, a heuristic is
a rule of thumb, simplification or guess
that reduces or limits the search for so-
lutions in domains that are difficult and
poorly understood. In the context of lay-
out problems, a heuristic is a procedure
that, given an input graph G, returns a
feasible layout ϕ ∈ 8(G). Unlike approxi-
mation algorithms, heuristics do not pro-
vide a theoretical guarantee on their cost
of the returned layout nor on their run-
ning time. In spite of that, heuristics are
often used in practice, but the assessment
of their effectiveness and efficiency is in-
herently empirical: “It works well with my
inputs.” In this section, we review several
heuristics for some layout problems.

10.1. Heuristics for Bandwidth

Due to their importance in engineering
applications, many heuristics have been
developed to reduce the bandwidth and/or
profile of sparse matrices. Chinn et al.
[1982] references a paper citing 49 dif-
ferent heuristics! The most well-known
heuristics for bandwidth/profile reduction
are the CutHill–McKee algorithm [Cuthill
and Mckee 1969], King’s algorithm [King
1970], and the Gibbs–Poole–Stockmeyer
algorithms [Gibbs et al. 1976]. Most of
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them belong to a family of heuristics
called level algorithms. Level algorithms
are based on a level structure of the graph,
which partitions its vertex set into levels
L0, . . . , Ls such that the endpoints of every
edge in the graph are either in the same
level Li or in two consecutive levels Li and
Li+1. The assessment of the goodness of
level algorithms for BANDWIDTH has been
considered by Turner [1986], who has
analyzed their behavior on a particular
distribution of random graphs with band-
width no larger than an integer B. Specifi-
cally, he considers graphs Gn, p,B, resulting
from the following experiment: The vertex
set is [n], and the edge set is made by
connecting, with probability p ∈ (0, 1),
any pair of vertices u, v ∈ [n] such that
0 < |u − v| ≤ B. Turner first proved that
for all ε > 0, almost all G ∈ Gn, p,B satisfy
1 ≤ B/MINBW(G) ≤ 1+ ε, and then proved
that for any level algorithm A, it holds that
A(G)/MINBW(G) ≤ (1+ ε)(3− p) for almost
all G ∈ Gn, p,k , provided that B = ω(log n)
and p is fixed. The research in Feige and
Krauthgamer [1998] improve on Turner’s
results, by allowing smaller edges
probabilities.

10.2. Heuristics for Edge Bisection

On the other hand, the areas of VLSI
and of parallel computing have given rise
to many heuristics for the edge bisection
problem; see Elsner [1997] for a nice sur-
vey. One of the first proposed heuristics
to bisect a graph was the Kernighan–Lin
heuristic [Kernighan and Lin 1970]. This
heuristic, originally developed to mini-
mize the number of connections in elec-
tronic circuits, belongs to a more general
family of local search heuristics [Aarts and
Lenstra 1997].

Helpful sets is a more recent local search
heuristic developed in Diekmann et al.
[1995]. The basic idea of this heuris-
tic, appears in the proof of a result
we have already mentioned to get up-
per bounds on the bisection of 4-regular
graphs [Hromkovič and Monien 1992].
Consider a bisection (V1, V2) of a graph
G = (V , E). For all u ∈ V , let ext(u) =
{uv ∈ E : u ∈ Vi ∧ v ∈ Vj , i 6= j } and

let int(u) = {uv ∈ E : u, v ∈ Vi, i ∈
{1, 2}}. Let S be a subset of vertices in V1;
then, for all u ∈ S, let int(u, S) = |{v ∈
S : uv ∈ E}|. The helpfulness of S is
h(S) = ∑

u∈S(ext(u) − int(u) + int(u, S)).
Any S with helpfulness h is said to be
h-helpful, as moving S to the other side
of the bisection decreases the edge bisec-
tion by h edges. On the other hand, given
an h-helpful set S in V1, a subset of ver-
tices S′ of V2 ∪ S is a h-balancing set of
S if |S′| = |S| and S′ is at least (1 − k)-
helpful. Local search algorithms based on
helpful sets find h-helpful sets S and swap
their vertices with the ones in some k-
balancing set S′. For instance, helpful sets
can be combined with simulated anneal-
ing to obtain a nice heuristic for edge
bisection [Diekmann et al. 1996].

Spectral bisection is another popular
heuristic for EDGEBIS based on spectral
properties (see Section 9.2). Its basic prin-
ciple is to compute the Fiedler vector of
the Laplacian matrix of an input graph
G = (V , E), compute the median M of
the components of the Fiedler vector, and
return a bisection (A, V \ A) where A is
made of vertices v∈V satisfying x(2)

v ≤M .
A related algorithm based on eigenval-
ues is presented and analyzed in Boppana
[1987]. Also, Spielman and Teng [1996]
show that spectral bisection methods work
well on bounded-degree planar graphs and
finite element grids.

There exist several papers that
compare the effectiveness of several
heuristics for EDGEBIS from an experi-
mental point of view; see Johnson et al.
[1989]; Lelandand Hendrickson [1994];
Diekmann et al. [1995]; Battiti and
Bertossi [1999]. Unfortunately, these
studies do not seem to give an indication
of the reason why these heuristics work.
Other heuristics for EDGEBIS include mul-
tilevel algorithms [Barnard and Simon
1994], tabu search [Glover and Laguna
1997, Section 8.6.2] or genetic algorithms
[Kadluczka and Wala 1995].

Simpler local search heuristics for the
edge bisection problem have been theo-
retically analyzed on particular random
graphs M. Jerrum and Sorkin [1998] an-
alyzed the metropolis algorithm for the
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edge bisection problem on graphs with a
planted bisection. Their results involve an
algorithm that, starting from a random
bisection, iteratively takes a pair of ver-
tices in different sides of the current bi-
section and interchanges them with prob-
ability 1/(1 + exp(δ/t)), where δ is the
increase of the cut size and t is a pa-
rameter called temperature. Their analy-
sis considers planted bisection G4n, p,r ran-
dom graphs, generated as follows: A G4n, p,r
graph has 4n vertices, half of them black
and half of them white; edges between ver-
tices of the same color are included in-
dependently with probability p, whereas
edges between vertices of different colors
are included independently with probabil-
ity r < p. They first prove that the planted
bisection, defined by the original coloring,
is, with high probability, the unique op-
timal bisection on G4n, p,r random graphs.
Then, they prove that, with overwhelm-
ing probability, for a certain choice of t,
the metropolis algorithm can find the
planted bisection of G4n, p,r random graphs
in time O(n2), provided p − r = Ä(n−1/6).
In his thesis Juels [1996] improves these
results. To cope with the simpler hill-
climbing algorithm: interchanges are ac-
cepted only if they decrement the size
of the bisection. His results state that
hillclimbing can find the planted bisec-
tion of G4n, p,r random graphs in ex-
pected time O(n2) with probability c >
0, provided p − r is constant. Repeated
executions can boost the probability of
success. Juels also reports experimental
results that show that hillclimbing may
be much more effective than what his
theoretical results indicate on the ran-
dom graphs he considers. The previous re-
sults of Jerrum, Sorkin and Juels have
been recently improved in Carson and
Impagliazzo [2001], where it is proved
that with a constant non-zero probabil-
ity, the hill climbing heuristic is also able
to find the minimal bisection of random
graphs in the G4n, p,r model with p − r =
Ä(n−1/4 log4 n).

Similar results for a generalized version
ofG4n, p,r graphs, but with a successive aug-
mentation heuristic rather than with local

search were proved in Condon and Karp
[2001]. Their heuristic is based on a greedy
algorithm that repeatedly selects a new
pair of vertices and adds one to each side of
the bisection. They show that their linear
time heuristic hits the planted bisection
with overwhelming probability, provided
p− r ≥ n−1/2.

10.3. Heuristics for M INLA

For the MINLA problem, a heuristic that
we call spectral sequencing was proposed
in Juvan and Mohar [1992]. Spectral se-
quencing first computes the eigenvector
x(2) corresponding to the second small-
est eigenvalue λ2 of the Laplacian matrix
L(G) of the input graph G and then ranks
each position of x(2). Thus, the heuristic re-
turns an arrangement ϕ satisfying ϕ(u) ≤
ϕ(v) whenever x(2)

u ≤ x(2)
v .

Another algorithm to get upper bounds
on MINLA(G) for arbitrary G is described
in Muradyan [1985]. This algorithm first
creates an initial arrangement of vertices
u1, u2, . . . , un, so that u1 is a vertex with
the minimal degree in G, u2 is a vertex
with the minimal degree in G \ {u1}, and
so on and working out this arrangement,
creates a new arrangement for which
MINLA(G) is estimated.

An experimental study of heuristics for
the MINLA problem was undertaken in
Petit [1998, 2001a, 2001b]. The empiri-
cal results are based on two random mod-
els (binomial random graphs and random
geometric graphs), “real life” graphs (in-
cluding graphs arising from finite element
discretizations, VLSI design and graph-
drawing) and graphs with known opti-
mal solutions (trees, hypercubes, grids).
The first goal was to obtain an evalua-
tion on the behavior of different families of
heuristics through experimental results.
The second goal was to use, in a system-
atic way, this experimental knowledge as
a fundamental method to guide the design
of new heuristics. Furthermore, approx-
imation heuristics and methods to find
lower bounds for MINLA were presented,
evaluated and compared experimentally
when applied to sparse graphs. The meth-
ods belong to the families of successive
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Fig. 10 . Two graphs used in the comparison of heuristic for the MINLA problem.

augmentation heuristics, local search
heuristics, and spectral sequencing. The
conclusion is that the best approximations
are obtained using simulated annealing,
which involves a large amount of com-
putation time. However, solutions found
by Spectral Sequencing are also good and
can be found in radically less time (see
Figure 11).

Motivated by the long running time of
simulated annealing compared to spec-
tral sequencing, Petit [2000] presents and
analyzes sequential and parallel versions
of a new heuristic to approximate the
MINLA problem on graphs embedded and
clustered in some geometry. The heuris-
tics consist in obtaining a first global
solution using spectral sequencing and im-
proving it locally through simulated an-
nealing. The measurements obtained on
a commodity cluster of nine work sta-
tions show that the new parallel, heuris-
tic maintains solution quality, decreases
the running time and offers an excellent
speedup when run in parallel, without sac-
rificing solution quality.

Figure 11 gives a sample of the obtained
measurements for the two graphs depicted
in Figure 10.

It must be remarked, however, that the
experimental results for MINLA evidence
a big gap between the best known upper

and lower bounds. Therefore it remains as
open problem to devise better techniques
to obtain better lower bounds.

10.4. Heuristics for S UMCUT

Several heuristics have also successfully
been applied for the SUMCUT problem in
order to reduce the profile of symmetric
matrices. The early heuristics of Cuthill
and Mckee [1969]; King [1970]; Gibbs et al.
[1976], have now been improved in or-
der to use simulated annealing, spectral
methods, multilevel algorithm and hy-
brid schemes; see for example Everstine
[1979]; Lewis [1994]; Barnard et al. [1995];
Kumfert and Pothen [1997]; Hager [2002].

10.5. Implementations

There exist several software libraries that
implement many of the above mentioned
heuristics. The Party library [Preis and
Diekmann 1996] and the Chaco library
[Hendrickson and Leland 1997] are pack-
ages that include a variety of different
methods to partition or bisect graphs. In
particular, Chaco enables a fast execution
of the spectral sequencing heuristic for
MINLA . Also, Metis is a library of pro-
grams for partitioning graphs and com-
puting profile reducing orderings of sparse
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Fig. 11 . Comparison of the relative effectiveness and efficiency of several heuristics for
the MINLA problem for the graphs in Figure 10. The results are shown using boxplots,
which summarize the distribution of the values of a group of samples. The box in a
boxplot shows the median value as a line and the first (25th percentile) and third quartile
(75th percentile) of the value distribution as the lower and upper parts of the box. The
bars shown at the sides of the boxes represent the largest and smallest observed values.
The average time elapsed to compute an individual of the sample is displayed at the
right of the corresponding boxplot.

matrices [Karypis 2001]. The llsh toolkit
offers several heuristics to approximate
the MINLA problem [Petit 2001a].

11. VARIATIONS ON THE BASIC MODEL

Several variations on the basic layout
model have been considered; there are
modifications in the type of layout or in the
fact that the graph carries additional in-
formation that must be preserved in some

particular way in the layout. We survey
here, some results on stack and queue
layouts, as well as associated problems
for weighted, directed and colored input
graphs.

11.1. Stack and Queue Layouts

Stack and queue layouts were moti-
vated from different contexts as VLSI
design, fault-tolerant processing, parallel
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processing, sorting networks and parallel
matrix computations [Chung et al. 1987;
Heath et al. 1992; Heath and Rosenberg
1992; Heath et al. 1993].

A k-queue layout of an undirected graph
G = (V , E) consists of a linear order ϕ
of the vertex set V and an assignment
ψ of each edge in E into exactly one of
k-queues. Observe that the ordering as-
signs a direction to each edge in E. The
queue policy operates as follows: the ver-
tices of V are scanned in left-to-right or-
der. When vertex i is encountered, any
edge assigned to a queue that has i as
right end-point must be at the front of the
queue, and it is dequeued. All the edges
that has i as left end-point are enqueued in
the assigned queues. The queue-number of
G, MINQN(G), is the smallest k such that
G has a k-queue layout. The queue layout
problem is to find a queue layout that uses
minimum number of queues, for a given
graph.

In the same manner, a k-stack layout of
an undirected graph G = (V , E) consists
of a linear order of the vertex set V and
an assignment of each edge in E to exactly
one of the k-stacks. The queue policy oper-
ates as before, scanning in left-to-right or-
der V . When vertex i is encountered, any
edges assigned to a stack that have i as
right end-point must be at the top of the
stack, and are popped. All the edges that
have i as left end-point are pushed in the
assigned stacks. Similarly, we can define
the stack-number of a given graph. The
stack layout problem is to find, for a given
graph, a stack layout that uses minimum
number of stacks.

Stack layouts were introduced in
Bernhart and Kainen [1979] under the
name embedding graphs in books; the
stack-number is also referred as the page-
number or the page thickness. In Chung
et al. [1987] and in Bilski [1993], opti-
mal stack layouts are constructed for
a variety of graph classes. The queue
layout problem is introduced Heath and
Rosenberg [1992]. In the same paper, the
authors prove that recognizing graphs
with queue-number 1 is an NP-complete
problem. On the other hand, recognizing
graphs with stack-number 1 can be done

in linear time as this class of graphs
equals the class of outerplanar graphs
[Bernhart and Kainen 1979]. Notice that,
when the vertex ordering of the layout
is fixed, the minimum number of queues
required for the layout can be obtained
in polynomial time, while computing the
minimum number of stacks is NP-hard
[Even and Itai 1971; Garey et al. 1980]. A
comparative study of the power of queues
and stack layouts was performed in Heath
et al. [1992].

11.2. Directed Acyclic Graphs

A linear layout ϕ of a directed graph is a
layout that provides a topological sorting
of the vertices, that is, for any arc (u, v) we
have that ϕ(u) < ϕ(v). This restricted type
of layout can only be possible for directed
acyclic graphs, and several layout prob-
lems have also been considered for this
class of directed graphs.

The BANDWIDTH problem remains NP-
complete for directed trees with maximum
in-degree 1 and maximum out-degree 2
[Garey et al. 1978].

The CUTWIDTH and MINLA problems for
directed acyclic graphs are NP-complete
[Even and Shiloach 1975], but they can
be solved in polynomial time for rooted
trees [Adolphson and Hu 1973]. A poly-
logarithmic factor approximation algo-
rithm for the MINLA problem on directed
acyclic graphs is given in Ravi et al.
[1991].

In some applications of stack and queue
layouts, the input graph is a directed
acyclic graph: Heath and Pemmaraju
[1999] provide several results for differ-
ent classes of directed acyclic graphs and
Heath et al. [1999] analyze both prob-
lems from an algorithmic point of view. In
this last paper it is shown that recogniz-
ing 1-queue directed acyclic graphs can be
done in polynomial time, but recognizing
4-queue or 6-stack directed acyclic graphs
are NP-complete problems. Extensions of
these results to directed acyclic graphs ob-
tained from posets are reported in Heath
and Pemmaraju [1997] and Heath et al.
[1999].
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11.3. Colored Graphs

There is a close relationship between in-
tervalizing graph problems and graph lay-
out problems on colored graphs. Interval
graphs have been studied intensively be-
cause of their wide applicability to practi-
cal problems [Golumbic 1980]. In the last
years quite a lot of effort has been devoted
to the study of problems where the goal is
to complete a graph into an interval graph.
This kind of problem is used to model am-
biguity in physical mapping or consistency
in temporal reasoning [Golumbic et al.
1995]. The problem of physical mapping
consists in determining the relative posi-
tion of several fragments of DNA, which
can be used by biologists to characterize
individual genes. As the DNA fragments
are obtained scrambled, in order to get a
map of the original sequence, it is nec-
essary to re-assemble them using infor-
mation of their pairwise overlaps [Karp
1993].

A k-coloring of a graph G = (V , E) is a
mapping κ : V −→ {1, . . . , k} such that no
two adjacent vertices have the same color.
A k-colored graph is a graph together with
a k-coloring. A colored layout of a given k-
colored graph (G, κ) is a layout ϕ of G such
that for any u, x, v ∈ V , if (u, v) ∈ E and
ϕ(u) < ϕ(x) < ϕ(v) then κ(u) 6= κ(x). A
proper colored layout of (G, κ) is a colored
layout ϕ of G such that for all u, v ∈ V and
x ∈ V with degree at least 2, if (u, v) ∈ E
and ϕ(u) < ϕ(x) < ϕ(v) then there ex-
ists a vertex y such that ϕ(v) < ϕ( y) and
(x, y) ∈ E. We consider the following lay-
out problems for colored graphs:

—Colored Layout Problem (CLP): Given a
k-colored graph (G, κ), decide whether
there is a colored layout ϕ of (G, κ).

—Proper Colored Layout Problem (PCLP):
Given a k-colored graph (G, κ), decide
whether there is a proper colored layout
ϕ of (G, κ).

Àlvarez et al. [1998] showed that the
CLP is NP-complete for caterpillars with
hairs of length at most 2 and that the prob-
lem can be solved in NC for caterpillars
with hairs of length at most 1, indepen-
dently of the number of colors. In Àlvarez

et al. [2001] it was shown that the prob-
lem is still NP-complete when the input
is restricted to be four colored caterpillar
with unbounded hair length. The PCLP is
also hard for caterpillars of hair length 2
see Àlvarez and Serna [1999]. These two
problems are closely related to intervaliz-
ing problems:

—Interval Colored Graph (ICG): Given a
k-colored graph (G = (V , E), κ), decide
whether there is an edge superset E ′
such that the graph G ′ = (V , E ′) is an
interval graph and κ is still a proper col-
oring of G ′.

—Proper Interval Colored Graph (PICG):
Given a k-colored graph (G = (V , E), κ),
decide whether there is an edge superset
E ′ such that the graph G ′ = (V , E ′) is
a proper interval graph and κ is still a
proper coloring of G ′.

The ICG problem is a special case of
the Interval Sandwich Problem [Golumbic
and Shamir 1993], and has received a lot
of attention, as a simplified model for re-
constructing the ordering physical DNA
mapping problems [Fellows et al. 1993].
Moreover, the problem was shown to be
NP-complete in Fellows et al. [1993] (see
also Golumbic et al. [1994]) and it is
polynomial time equivalent to the CLP
[Dinneen 1995; Àlvarez et al. 1998], there-
fore it is also hard for caterpillars. When
the problem was given parameterized on
the number of colors, hardness results
were obtained in Bodlaender et al. [1994].
Later it was shown that the problem is
NP-complete for the case of 4 or more col-
ors, while if we only have 2 and 3 col-
ors the problem is solvable in linear and
quadratic time respectively [Bodlaender
and de Fluiter 1996]. A different approach
to study the problem is to fix the num-
ber of colors and look at the complexity
of the problem considering the degree of
vertices. For fixed number of colors k and
degree bounded by a constant d , there is
a O(nk−1) algorithm for the ICG [Kaplan
and Shamir 1999].

In Kaplan and Shamir [1996] and
Kaplan et al. [1999] it was shown that
the parameterized version of the PICG
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problem, with parameter the number of
colors, is W [1]-hard, and this implies the
NP-completeness of PICG. They also gave
a polynomial time algorithm for constant
number of colors. For another simpler NP-
completeness proof for this problem see
Goldberg et al. [1995]. When the input
graph is a colored tree, the problem is hard
even for caterpillars of hair length 2. The
proof of this last result exploits the rela-
tionship with the PICG problem [Àlvarez
and Serna 1999].

11.4. Weighted Graphs

When we consider edge weighted graphs
the cost of a layout measure, involving
edges, is easily extended by multiplying
the contribution of an edge by its weight.
Some of the hardness results for lay-
out problems are stronger, for example
the CUTWIDTH is NP-complete for weighted
trees [Monien and Sudborough 1988].

The MINLA is solvable in polyno-
mial time for directed weighted trees
Adolphson and Hu [1973]. Interestingly,
the approximability results for several
graph layout problems of Even et al. [2000]
and Rao and Richa [1998] also apply to
weighted graphs.

The research reported in Chirravuri
et al. [1996] has shown that a formula-
tion of the physical mapping problem is
closely related to the MINLA problem on
edge weighted graphs.

11.5. Graph Labelings

A vertex labeling of a graph G is an as-
signment φ of labels to the vertices of G
that induces for each edge uv ∈ E(G) an
edge label depending on φ(u) and φ(v). A
function φ is called a graceful labeling of
a graph with m edges if φ is an injection
from V (G) to {0, 1, . . . , m}, such that, for
all uv ∈ E(G), each edge label |φ(u)−φ(v)|
is distinct. A function φ is called a harmo-
nious labeling of a graph with m edges if
φ is an injection from V (G) to the group of
integers modulo m, such that, for all uv ∈
E(G), each edge label φ(u) + φ(v)modm is
distinct. See Gallian [1998] for a survey on
graph labeling.

12. CONCLUDING REMARKS

In this paper we have presented a cur-
rent view on the main known results about
graph layout problems. The reader has
surely observed that plenty of problems
remain open: In general, everything that
in this paper is not referred as done might
turn into an interesting research problem.

For instance, with regard to complex-
ity, little is known about MINLA for sparse
graphs. It is not known if it is NP-complete
or it is in the class P . Also, as noted in
Bui and Peck [1992] and Papadimitriou
and Sideri [1996] the NP-completeness of
EDGEBIS for planar graphs remains open.
Also, it would be interesting to know
whether problems different from BAND-
WIDTH do or not belong to APX for general
graphs or even for planar graphs.

Another task to carry out would be
the study of other probabilistic classes of
graphs for which good estimations of their
optimal values could be found easily (bino-
mial random graphs and random geomet-
ric graphs are an example of such a class).
These classes could serve as a source of
new graph generators to help in the bench-
mark and analysis of heuristics as well as
in the design of networks with some speci-
fied properties. A concrete example of this
class of graphs could be non uniform ran-
dom geometric graphs, as they can be used
as a model for mobile computing networks.

Moreover, the design of efficient hy-
brid heuristics is another interesting area,
where plenty of research can be done.
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