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the solution set.

gether mold the design process and ultimately determine a program’s

structure. Such conceptual patterns structure thought in that they deter-
mine the form of valid programs. They control how we think about and formulate
solutions, and even whether we arrive at solutions at all.

Once we can visualize a solution via a paradigm’s conceptual patterns, we must
express it within a programming language. For this process to be effective, the
language’s features must adequately reflect the paradigm’s conceptual patterns. A
language that reflects a particular paradigm well is said to support that paradigm.
In practice, a language that supports a paradigm well is often hard to distinguish
from the paradigm itself,

A language rarely supports just one paradigm. Typically, it will borrow liberally
from many paradigms for its features and support more than one. In this article, we
discuss various programming paradigms independent of supporting languages.

In his 1978 Turing Award Lecture, R.W. Floyd! stated his belief that

q programming paradigm is a collection of conceptual patterns that to-

- . the current state of the art of computer programming reflects inadequacies in our stock
of paradigms, in our knowledge of existing paradigms, in the way we teach programming
paradigms, and in the way our programming languages support, or fail to support, the
paradigms of their user communities.

Floyd described three categories of paradigms: those that support low-level
programming techniques (for example, copying versus sharing data structures),
those that support methods of algorithm design (divide and conquer, dynamic
programming, etc.), and those that support high-level approaches to programming
(such as functional and rule-based paradigms). Floyd showed how different
programming languages support the paradigms in each of these categories. We
focus here on paradigms that support high-level programming.
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Further, we group them according to
their approach to problem solving. The
operational approach describes step-by-
step how to construct a solution. The
demonstrational approach is a variation
on it that illustrates the solution opera-
tionally for specific examples and lets
the system generalize these example so-
lutions for other cases. While the dem-
onstrational approach is definitely op-
erational, it produces some very different
results and is reviewed here as a sepa-
rate category. The definitional approach
is different. It states properties about
the solution to constrain it without de-
scribing how to compute it.

These three approaches can be viewed
on a continuum from operational to
definitional. We start our discussion with
the operational approaches, describing
each paradigm in a separate section. A
sidebar for each paradigm contains a
“pure” language solution to the prob-
lem of sorting a list into some linear
order. This problem allows many differ-
ent solutions and lets us illustrate dif-
ferent conceptual patterns associated
with each paradigm.

Inchoosing an algorithm for illustrat-
ing a particular paradigm, our objective
is to best illustrate the natural style of
the paradigm, not to find the most effi-
cient solution. In most cases, propo-
nents of these paradigms and the lan-
guages supporting them cansignificantly
improve the efficiency of our algorithms.

We have written the solutions in hy-
pothetical languages. In this way we
avoid communicating solutions that
depend on a particular language. Some
of these “pure” languages may resem-
ble real languages. While this resem-
blance may improve understandability,
we do not mean to imply association
with any existing languages. We do,
however, briefly describe real languag-
es that typify support for the paradigm.

Operational paradigms

Step-by-step computational sequenc-
es characterize operational paradigms.
The most difficult aspect of program-
ming within this approach is determin-
ing if the operationally computed value
set is, in fact, the solution value set.
Debugging and verification techniques
concentrate on these programming prob-
lems. The finer the operational control,
the harder it is to define the computed
value set and to verify it as identical
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Imperative paradigm

procedure swap (X, y)
temp = x
X:=y
y :=temp

procedure bubblesort (list)
fori:=1to MAX-1do
for j := MAX downto i+1 do
if list[j—1] > list[j] then
swap (list[j—1], list[j])

Procedure bubblesort repeatedly compares each of two neighboring el-
ements and exchanges them if they are out of order. The final state of the
list is the sorted list. Note that the original list is destroyed in the process.

Many programming languages support this model; most also include
extensions that support other paradigms to varying degrees. Today's im-
perative languages contain a variety of borrowed mechanisms, such as
non-side-effecting functions, recursion, and dynamic allocation via point-
ers. They nevertheless remain conceptually dominated by the machine

model.

with the solution value set. We must
often settle for a computed value set
that is “sufficiently close” to the solu-
tion value set, where we interpret “suf-
ficiently close” to mean that the two
value sets are indistinguishable over the
expected subclass of actual problems.

Operational paradigms are of two
basic types: those that proceed by re-
peatedly modifying their data represen-
tation (side-effecting) and those that
proceed by continuously creating new
data (non-side-effecting). Side-effect-
ing paradigms use a model in which
variables are bound to computer stor-
age locations. As a computation pro-
ceeds, these storage locations are re-
peatedly revised (that is, the variables
getmultiple assignments). When a com-
putation ends, the final values of speci-
fied variables represent the results.
There are two kinds of side-effecting
paradigms: imperative and object-ori-
ented.

Non-side-effecting paradigms include
those that were traditionally called func-
tional paradigms. Today, it is important
todistinguish functional approaches that
are operational from those that are def-
initional. This is a fine line. Most at-
tempts at general definitional approach-
estoprogramming are eventually tainted
by operational necessities that work their

way back into the supported paradigm.
Nevertheless, certain functional ap-
proaches are clearly operational and
will be discussed here, while others are
less operational and will be discussed
with the definitional approaches.

Operational paradigms define se-
quencing explicitly. Operational se-
quencing is either serial or parallel. If
parallel, it can be defined by cooperat-
ing parallel processes (asynchronous par-
allel) or single processes applied simul-
taneously to many objects (synchronous
parallel). Each operational paradigm
includes corresponding asynchronous
and synchronous parallel variants. We
discuss some of these at the end of this
section.

Imperative. The imperative paradigm
is characterized by an abstract model of
acomputer that consists of a large store.
The computer stores an encoded repre-
sentation of a computation and exe-
cutes a sequence of commands that
modify the store. This paradigm is best
represented by von Neumann-style
machine architectures. Although von
Neumann machines underlie the imple-
mentation of almost all the paradigms
discussed in this article, the imperative
paradigm uses this machine model for
conceptualizing solutions. The other
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paradigms, by contrast, use conceptual
models removed from this implementa-
tion model.

30

locations, and deriving a step-by-step
sequence of transformations to the store
so that the final state represents the
correct result values.

digm is dominated by determining what
data values will be required for the com-
putation, representing these data val-

Programming in the imperative para-  ues by associating them with storage

Object-oriented paradigm

Class Sequence
|
quickSort

| pivot lowerPart middiePart upperPart |

if ((self size) >= 2) then
pivot := self selectPivot.
lowerPart :=

((self class) new) addAll: (self select: [elt where elt < pivot])

middlePart :=

((self class) new) addAll: (self select: [elt where elt = pivot])

upperPart :=

((self class) new) addAll: (self select: [elt where elt > pivot])

lowerPart quickSort
upperPart quickSort

self updateFrom: lowerPart and: middlePart and: upperPart

|
selectPivot

return (self first)
|

All computations are accomplished by sending messag-
es to objects. The objects respond by following methods
of the same names. For example, the method definition
for quickSort says that when a sequence receives the
message quickSort, it creates three new local objects,
lowerPart, middlePart, and upperPart. The (built-in) meth-
od select: is used to construct a new smaller sequence
containing each element for which the predicate (con-
tained within the block surrounded by []) evaluates to true.
The reference to self refers to the object processing the
message, and the construct new is used to dynamically
create a new object of the specified class. Thus, a new
sequence is created and all selected elements are added
to it. Once the three subsequences have been created,
lowerPart and upperPart are sent messages to sort them-
selves. After these sorts are complete, the three sequenc-
es are used via updateFrom:and:and: to update the origi-
nal sequence in place.

The quickSort is highly polymorphic. It is defined here
for the class Sequence. All subclasses of this class (for
example, lists, arrays, and files) will inherit the quickSort
method. Through methods of their own or through inherit-
ance, the subclasses can interpret the messages size,
first, addAll:, updateFrom:and:and:, and select:. The con-
tents of these sequences can be any type of object as
long as the object understands the messages <, =, and >.
Thus, one definition suffices for sorting files of numbers,

T

arrays of names, lists of personnel records, etc. This com-
bination of polymorphic methods and inheritance provides
much of the power of the object-oriented paradigm.

Smalltalk' is the preeminent object-oriented language,
both historically and in the extent of its compatibility with
the paradigm. It fully supports encapsulation, inheritance,
and message-passing. Everything in the language is mod-
eled as an object. In addition to the basic language, the
Smalitalk environment includes a large library of pre-
defined objects for basic data structures like lists, arrays,
and coliections.

Although most object-oriented languages support the
class-based model presented here, an alternative ap-
proach supports a bottom-up view of objects. In this view,
an object’s characteristics and capabilities are determined
not by the class of which it is a member, but rather by the
object it most closely resembles (termed the prototype).
The Self language is an example of this prototype-based
approach.?
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In its pure form, the imperative para-
digm supports only simple commands
that modify the store and carry out con-
ditional and unconditional branching.
Even when a simple form of procedural
abstraction is added, this model remains
basically unchanged. Parameters are
aliases for a portion of the store, no
values are returned, and a procedure
alters the store through its parameters
and/or direct global references.

Object-oriented. With the imperative
paradigm, the conceptual model is a
single store into which abstract data
values are represented and on which
one or more procedures are applied.
Each procedure deals directly with the
stored representation. The object-ori-
ented paradigm retains much of this
model, but procedures operate on ab-
stract values, called objects, rather than
on stored representations. As a result,
this paradigm requires the capabilities
of defining new objects composed of
existing objects and of manipulating
them by defined procedures (called
methods). Object-oriented program-
ming first defines suitable objects for
the problem at hand, then uses these
objects to describe step-by-step opera-
tional sequences.

Manipulation of abstract values rather
than concrete representations requires
respect for the encapsulated state of
objects (that is, the right of objects to
define their concrete representations
and to perform all manipulations
upon such representations). This is
accomplished by sending messages
that describe the desired manipula-
tions and leaving it to the objects to
perform them. Objects, which are
implemented via other subobjects, use
operational sequences to alter their
internal representations. Suchsequences
include sending messages to their
subobjects.

This process recurses until at some
level the objects and the methods de-
fined on them are primitive. Thus, sort-
ing involves sending an object a mes-
sage to sort itself. The message sender
does not care how the object sorts itself,
only that it gets sorted.

While the distinction between direct-
ly manipulating concrete representations
and applying methods to objects may
seem subtle, the impact on program-
ming is not. Object orientation encour-
ages thinking about individual concepts
rather than asingle global concept. Each
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Object orientation
encourages thinking
about individual
concepts rather than a
single global concept.

object is conceived and implemented as
self-contained.

We have thus far described only en-
capsulation — the mechanism for en-
forcing data abstraction. Inheritance is
a second characteristic associated with
object-oriented paradigms. It is based
on the concept of object classes. A class
is the definition of an object from which
instances of the definition are created.
Inheritance allows rapid definition of a
new object class from the concrete rep-
resentation and methods of an existing
class. The new class includes all of the
methods defined on the inherited rep-
resentation, as well as any new concrete
representations and new or revised
methods added to it.

The sidebar example defines sorting
for all sequences in such a way that
specific subclasses, such as lists, inherit
the sorting method. Under inheritance,
subsequent modifications to the origi-
nal class (called the superclass) are re-
flected in the new subclasses.

A third characteristic of object-ori-
ented paradigms is message-passing. We
come to think of objects as active enti-
ties that send messages to one another.
This view encourages us to think of
decomposing problemsinto players who
accomplish a task cooperatively. The
specification of any one player should
be relatively uncomplicated, with play-
ers organized into teams for more com-
plex tasks. Several languages have ex-
plicitly modeled this player concept.?

Some languages that support the ob-
ject-oriented paradigm are extensions
of languages that tend to be primarily
imperative. These extensions donot sup-
port objects as active entities that re-
ceive messages. Rather, they continue
to invoke procedures or functions that
pass objects. To support this model,
procedures must be polymorphic—that
is, multiply defined with particular in-

vocations determined by examining the
types of the parameter objects. While
the message-passing mechanism of the
object-oriented paradigm is computa-
tionally equivalent to the procedure-
call approach of these extended lan-
guages, it leads to a very different way
of looking at problem solutions. There
is a conceptual difference between
searching through procedures — all of
the same name — for a match of the
particular parameter types and sending
a message to a particular object that
knows only one such method. In the
former case, the main program controls
all the work, while in the latter, each
object has full responsibility for cor-
rectly handling requests made directly
to it.

Functional (operational). The func-
tional paradigm is based on the mathe-
matical model of functional composi-
tion. In this model, the result of one
computation is input to the next, and so
on until some composition yields the
desired result. There is no concept of a
location that is assigned or modified.
Rather, there are only intermediate
values, which are the results of prior
computations and the inputs to subse-
quent computations. For convenience,
these intermediate values can be given
names. There is no form of command,
and all functions are referentially trans-
parent.

Functional programming includes the
concept of functions as first-class ob-
jects. This means that functions can be
treated as data (that is, they can be
passed as parameters, constructed and
returned as values, and composed with
other forms of data).

Application developers conceive the
solution as compositions of functions.
For instance, to sort a list, we might
conceive the solution as a concatena-
tion of some smaller lists, each of which
isalready sorted. This reduces the prob-
lem to selecting the smaller lists.

The way functions are specified can
vary. In particular, we can specify them
operationally, or mathematically with-
out control sequencing. Here we ad-
dress only the operational case. The
mathematical case will be discussed
under “Definitional paradigms.”

The operational approach explicitly
controls the order in which computa-
tions occur. For instance, in sorting a
list, we might first determine if the list is
empty and proceed only if it is not. This
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explicit ordering of computations caus-
es an overspecification that character-
izes operational approaches and leads
to the discussion of parallel versus se-
quential control in the next subsection.

In practice, languages supporting this
operational form of the functional par-
adigm often include imperative con-
structs such as multiple assignment,
which destroy the non-side-effecting
nature of the paradigm and force fur-
ther sequencing considerations into the
construction of programs. Such com-
promises are in part historical. They
date back to a time when creating effi-
cient solutions required modeling a
machine’s store. Also, most imperative
and object-oriented languages have
adoptedsome form of function, but their

reliance on side effects and their lack of
functions as first-class objects prevent
them from fully supporting functional
programming.

Sequential versus parallel control
flow. Constructing parallel operational
programs requires extending the con-
ceptual models presented thus far. This
extensionisrequired to handle the over-
specification forced by explicit control
sequencing. For example, in each of the
two quicksort examples we have de-
scribed, the two sublists are sorted se-
quentially and in a specified order,
when they might be sorted simultaneous-
ly, or at least in any order. The problem
is that once we define a rigorous order-
ing, the system must follow it. When

Functional paradigm (operational)

define function quicksort (Ist)
if Ist is null then
nil
otherwise

append (quicksort (choose_members (function (<), pivot (Ist), Ist)),
choose_members (function (=), pivot (Ist), Ist),
quicksort (choose_members (function (>), pivot (Ist), Ist)))

define function pivot (Ist)
first (Ist)

define function choose_members (function, val, Ist)

if Ist is null then
ni
otherwise

if function-call (function, first (Ist), val) then

append (list (first (Ist)),

choose_members (function, val, rest (ist)))

otherwise

choose_members (function, val, rest (Ist))

In this operational-style functional rendition of quicksort, the sequence of
the conditions given is important. For example, if the test for the null list in
choose_members were not first, the program would either fail to terminate or
end in error, depending upon the implementation of the functions <, =, and >.

“Pure” Lisp’ represents this paradigm best. However, the numerous en-
hanced versions of Lisp in use today, including Common Lisp, might equally
well support imperative programming. These languages include side-effect-
ing destructive modification, fixed storage data types (such as arrays and ob-
jects that are manipulated primarily by side-effect), and control-flow con-
structs (for example, iteration and exception handling).
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programmers realize that they are over-
stating control, they may desire a means
of telling the system when it is safe to
violate this ordering. This leads to the
extended models discussed here.

While parallel considerations extend
the paradigms we have discussed, the
efficient use of these extensions often
leads to algorithms that are more than
relaxed sequential algorithms. In par-
ticular, the neighborhood_sort algorithm
developed in the sidebar on asynchro-
nous paradigms assumes parallel evalu-
ation from its very conception. Without
these extensions to our paradigm mode,
we would not likely derive the solution
simply by eliminating sequential con-
trol from an algorithm that was previ-
ously stated sequentially. Thus, we con-
sider these parallel-extended paradigms
to be paradigms themselves.

Parallel programming languages his-
torically have followed one of three
approaches:

(1) automatically detect parallelism
in an otherwise sequential lan-
guage,

(2) add mechanisms that directly mim-
ic the parallel operations of a par-
ticular machine, or

(3) add general mechanisms for ex-
pressing the parallelism in the
problem.?

With the first option, the compiler
determines what parts of the applica-
tion can be executed in parallel. If par-
allelism was not a paradigm, this might
end up the most reasonable approach to
parallel programming. With the second
option, the language provides data and
program structures that directly reflect
the architecture of the machine. The
resulting software is finely tuned for a
particular machine and may not be suit-
able for any other architecture. With
the third option, the language provides
data and program structures that let the
software developer express the paral-
lelism inherent in a problem without
reference to the hardware. For exam-
ple, the language will provide the most
basic operations — ones that allow for
fine-grained parallelism. Such language
constructs encourage thinking of the
solution in terms of the parallelism in-
herent in the problem.

Parallel processes are either interfer-
ing or noninterfering. Interfering pro-
cesses have at least some potential for
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affecting the computation of each oth-
er. The primary problem associated with
interfering processes is restricting their
interference in controlled ways so that
they compute predictably. Interfering
processes tend to be coarse-grained (that
is, larger) processes and are often heter-
ogeneous due to the complexities of
coordinating interference.

Noninterfering processes are simpler
to specify, but usually much more fine
grained. For instance, adding twonxm
matrices requires n * m additions. Each
of these additions is noninterfering, but
perhaps just this one addition operation
is to be executed in parallel and the
execution is then to be sequentialized
again. Because of this fine-grained as-
pect, noninterfering processes tend to
resequentialize often, behavinginarath-
er synchronous manner.

We will refer to these two approaches
as asynchronous and synchronous par-
allelism.

Asynchronous parallelism. A simple
algorithm for sorting in parallel divides
the list into N sublists, sorts each in
paraliel, then merges the results. The
individual sorts can either use a sequen-
tial algorithm or recursively subdivide
again into N sublists, sort and merge,
etc. To handle the merge, we might
have each process repeatedly attempt
to access a common merged list, where
access is granted to only one process at
a time. Once the process gains access, it
merges its sorted list into the already
merged list (which is initially empty),
generating a modified merged list. The
process then releases control of the
merged list and terminates.

This sort has the properties of an
asynchronous approach: Each process
operates asynchronously on some pos-
sibly sizeable, probably heterogeneous
task during which it explicitly coordi-
nates its interactions with other pro-
cesses to prevent interference. This al-
gorithm is conceptually distinct from
any of the previous algorithms; it does
not result from a simple substitution of
parallel for serial control sequencing in
those algorithms. Carriero and Gelern-
ter* discuss asynchronous parallel pro-
gramming in detail.

Synchronous parallel. A straightfor-
ward approach to a synchronous paral-
le] sort would be to use the quicksort
algorithms and simply extend the mod-
el to allow the three sublists to be pro-
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cessed in parallel. However, freed of
the constraints of sequentiality, we might
imagine other approaches, such as com-
paring simultaneously all adjacent pairs
and reversing all pairs that are out of
order. By alternating between odd and
even pairs, the list will eventually sort.
At each step where adjacent pairs are
processed in parallel, such processing is
noninterfering. The regularity of the
data enables the same operations to be
applied in parallel with all processes
acting in unison.

Definitional paradigms

In definitional paradigms, a program
is constructed by stating facts, rules,
constraints, equations, transformations,
or other properties about the solution
value set. From this information, the
system must derive a scheme including
an evaluation ordering for computing a
solution. There is no step-by-step de-
scription of how to reach the solution.
These paradigms allow variables, but

Asynchronous paradigm

sort (list)
if (length (list) <= 1)
list
otherwise

sublist_size := length (list) / NUM_PROCESSES

forall i <= NUM_PROCESSES

fork (sort_process(THIS_PROCESS_ID,
sublist (i, sublist_size, list)))

list :=]

repeat
receive (sorted_list)
merge (list, sorted_list)

send (parent_process_id, list)

sort_process (parent_process_id, list)

sort (list)
send (parent_process_id, list)

In this example, sort divides the sorting task by creating child processes
and splitting the initial list among them. Each child process operates in par-
alle! with the parent as a separate entity, ultimately returning the sorted sub-
list to the parent via a message. The actual sort used to accomplish this task
could be any sort algorithm, or each child process might further delegate
and make use of other asynchronous processes to accomplish this task.

Send sends a message to a process specified by the sender of the mes-
sage. The message is sent without blocking subsequent processing on the
sender’s part. Receive receives a message. If no message is waiting, the re-
ceiver process is suspended until a message arrives. A process can only
service one message at a time. The system queues up any additional mes-
sages that may arrive. Thus, as the individual sort_processes accomplish
their individual tasks, only one list at a time will be received and merged into

the final list.

Many approaches have been developed to facilitate cooperation, synchro-
nization, and/or communication between asynchronous processes. These
mechanisms are designed with course-grained parallelism in mind. Linda' is
an example of a language that adds such facilities to base languages like C

and Fortran.
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not as repositories of state information
— rather, as convenient names for in-
termediate values. They usually include
variations of single assignment.

Since definitional paradigms attempt
to specify the solution value set without
necessarily specifying how to compute
a solution, in principle this approach
eliminates the need to prove that the
computed value set is the solution value
set. In practice, the situation is often

more complex. While many of the par-
adigms have no control sequencing and
no side effects that require a notion of
state, solutions are still often stated as
constructionsrather than specifications.
This raises the question of whether or
not these constructions produce the
desired solutions. In addition, some
definitional paradigms have difficulties
that are resolved by working operation-
altechniques back into these paradigms.
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Synchronous paradigm

neighborhood_sort (list)

index
ODD = { the set of odd array indices }
EVEN = { the set of even array indices }

var
temp : paraliel indexed array [1..MAX]
n:integer

for n := 1 to (MAX div 2) do
if list{ODD] > listfODD + 1] then
templ#] := list[#]
list[#] := list[# + 1]
list[# + 1] := temp[#]

if listfEVEN] > listtEVEN + 1] then
templ#] := list[#]
list[#] := list[# + 1]
list[# + 1] := temp[#]

This synchronous sort algorithm® has several characteristics that are typi-
cal of synchronous languages. The list parameter passed into the routine is
an-array that can be accessed in parallel. The index references, EVEN and
ODD, describe a subset of the array range.

The if-then can operate in parallel on every element in the array or on
some subset of them. The first comparison in this algorithm is the simulta-
neous comparison of the ODD array elements with the corresponding ODD +
1 elements. The # symbol within the body of the if-then statement represents
the set of indices for which the comparison is true. The operations within the
body of the if-then statement are then performed in parallel for the set of indi-
ces that passed the comparison.

The end of the body of the if-then statement becomes a synchronization
point. A similar process then takes place for the EVEN array indices.

Most languages designed to support synchronous parallelism are exten-
sions to an existing language base. Many of these extended languages are
designed around a specific machine architecture. Others provide data and
program structures that allow the programmer to express the parallelism in-
herent in the problem without exploiting a particular architecture. For exam-
ple, Actus’ and Paralation Lisp? provide architecture-independent constructs.
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The resulting paradigms and support-
ing languages are not truly definitional.
We refer to these tainted approaches as
pseudodefinitional. The pseudodefini-
tional approaches discussed in this sec-
tion are functional, transformational, and
logic.

Some paradigms do not have the dif-
ficulties that require reintroducing con-
trol sequencing. These are form-based,
dataflow, and constraint-programming.
The form-based and dataflow paradigms
avoid these difficulties primarily through
restrictions on the form of equations
allowed and the dependency-driven
evaluation models employed. The con-
straint programming paradigm avoids
the difficulties by making no restric-
tions; however, its generality also limits
the use of this paradigm.

In principle, definitional paradigms
are not inherently serial or parallel be-
cause they do not address control se-
quencing and thus do not alter the nat-
ural parallelism of algorithms. However,
the pseudodefinitional paradigms re-
quire at least a limited degree of se-
quencing and thus have parallel and
serial versions. The techniques associ-
ated with these parallel approaches and
their impact on the corresponding par-
adigms are similar to those already dis-
cussed for operational paradigms.

Functional (definitional). The func-
tional paradigm attempts to match the
mathematical model by expressing func-
tions as mathematicians do. For instance,
given the mathematical definition

expr,(x), cond | (x)
Flx)= expr,(x), cond, (x)

expr,(x), cond, (x)

a function fis interpreted as expr,(x), if
exactly one guard condition cond,(x)
holds; otherwise, it is not well defined.
Aslong as exactly one of the conditions
is valid for any particular value of the
input domain, we need not specify the
order of evaluation of the guards.

The distinction between the functional
paradigm as discussed in the operation-
al section and here hinges on whether
or notsequencing is explicitly specified.
With the operational style, the software
developer is responsible for the com-
plete sequencing of instructions, includ-
ing proper termination. By contrast, the
definitional style provides for termina-
tion without requiring explicit control
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sequencing. The differences, while sub-
tle, are significant in framing our con-
ceptual model of programming. In the
operational style, we approach the prob-
lem as a construction in which we de-
scribe a sequence of steps that will use
functional composition to compute the
desired result. In the definitional style,
we approach the problem as a collec-
tion of disjoint transformations that,
taken collectively, define a computa-
tional function.

Often this mathematical definitional
model utilizes lazy evaluation (also called
nonstrict evaluation). Simply stated, in
lazy evaluation the arguments to a func-
tion are not evaluated until and unless
they are individually needed. This is in
contrast to conventional evaluation,
called eager evaluation, which evalu-
ates all arguments prior to invoking the
function call. Besides making it possi-
ble to evaluate arguments selectively, a
feat otherwise accomplished only via
special primitives, lazy evaluation also
provides anatural means of dealing with
infinite structures. Since evaluation is
performed only when there is a need for
a particular value, and then only to ob-
tain that one value, definitions of func-
tions that generate infinite sequences
can be used in place of the actual se-
quence as long as only a finite number
of the sequence’s values are ever actu-
ally required.

If we in any way relax the require-
ment that exactly one guard holds, then
the order of evaluation is again impor-
tant. It is this last point that leads to the
designation “pseudodefinitional.” It is
statically undecidable whether or not
any particular set of guards is disjoint;
thus, most functional paradigms define
the evaluation order and leave it to the
programmer to ensure either that the
guards are disjoint or that the condi-
tions are properly ordered.

Hudak®presents an excellentin-depth
discussion of functional languages.

Transformational. Transformational
paradigms employ pattern-matching and
term-rewriting techniques. Evaluation
proceeds by repeatedly applying trans-
formation rules to derive from an initial
input token sequence a series of trans-
formed token sequences leading to the
solution token sequence. For instance,
beginning with the word Jelly and trans-
formation rules that replace J by H and
ybyo,the system might construct either
the derivation Jelly — Helly — Hello or
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the derivation Jelly — Jello — Hello.
The programming task specifies the
necessary transformation rules, leaving
the system to choose and apply them.
A transformation rule consists of a
guard and an action. If the guard is true
(applicable) given a particular token
sequence, then the action can be ap-
plied to yield a new token sequence. At
each stepin the derivation,asingle trans-
formation rule is selected from those
whose guards are true. A derivation
continues until no rule is applicable.
To preserve correctness, the program-
mer must ensure at each step either that
only a single rule is applicable or that if
more than one rule is applicable, the
final solution does not depend on which
rule is chosen. For instance, in the der-
ivation from Jelly, both rules can be

applied to the initial token sequence.
Regardless of which rule is chosen first,
the other will be applied later and the
resulting token sequence will be the
same.

An alternative to forcing the program-
mer to guarantee order independence is
to concede an order for purposes of
determining the applicability of rules.
Forinstance, allowing that the rules will
be searched for applicability in a known
order and that the first applicable rule
will be used lets the programmer order
the rules such that when more than one
rule might apply, the desired rule will
be encountered first. This rule simpli-
fies the programming problem, but if
order is given significance in this way,
the paradigm is no longer completely
definitional.

Functional paradigm (definitional)

gsort ([XIXs])
= gsort (sublist (<, X, Xs))
I sublist (=, X, [XIXs])
Il gsort (sublist (>, X, Xs))
gsort ([)=]

sublist (f, val, [XIXs])

= [Xlsublist (f, val, Xs)] if f (X, val)
otherwise

= sublist (f, val, Xs)
sublist (f, val, [}) =[]

This definitional-style version of quicksort shows two ways of expressing
alternative interpretations of a function. First, where simple matching of pa-
rameters is possible, as in the treatment of the null list, separate formula-
tions of the function can be used. Second, where such parameter matching
fails, guards are employed to distinguish alternative expressions.

The first statement says that the result of gsort, when given a list of ele-
ment X and sublist Xs, is the result of appending (ll) the sorted sublist of el-
ements less than X to the sublist of elements equal to X and to the sorted

sublist of elements greater than X.

The example demonstrates the equational and pattern-matching aspects
of definitional functional languages. These aspects allow the function defini-
tions in the algorithm to be stated in any order. However, there is an evalua-
tion ordering assumption associated with the use of the otherwise statement
in sublist. This assumption could be removed by restating the previous

guard condition in the negative.

A good example of a modern functional language is Haskell,' which repre-
sents an effort by the functional programming language community to reach
a consensus and thereby encourage wider use of functional languages.
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Transformational paradigm

gsort ([1) {[1}
gsort ([PiXs]) { gsort (small (Xs, P)) Il [PI gsort (big (Xs, P)H 1}

small ({1, P){[]}

small ([XIXs], P) { X < P; small_aux (X, Xs, P) }
true; small_aux (X, Xs, P) { [X| small (Xs, P)] }
false; small_aux (X, Xs, P) {small (Xs, P)}

big ([1, P){[1}

big ([XIXs], P) { X >= P; big_aux (X, Xs, P) }
true; big_aux (X, Xs, P) { [XI big (Xs, P)] }
false; big_aux (X, Xs, P) { big (Xs, P) }

A transformational system consists of a set of transformation rules. Each
rule is made up of a head followed by a body written in braces {}. The system
finds a subexpression that matches the head of a rule. That subexpression is
then rewritten by substituting the body of the rule in place of the subexpres-
sion’s head.

Heads may contain variables that are capable of binding portions of the
matched subexpression. Such bound variables can then be used in expand-
ing the body of the rule. Expanding the body of a rule consists of either re-
placing variables with their bound values or replacing them with the result of
some computation on their bound values, such as the sum of two bound vari-
ables. The process is repeated until the subject expression contains no re-
ducible subexpressions.

Beginning with an original expression, gsort ([5, 6, 4, 1, 3, 9]), the system
will search for a rule whose head matches. initially, only the second rule will
match, resulting in a transformed expression gsort (small ([6, 4, 1, 3, 9], 5)) !l
(5 I gsort (big ([6, 4, 1, 3, 9], 5))]. Using this expression, the system will then
look for yet another applicable transformation rule; for instance, it might apply
the eighth rule, yielding gsort (small ([6, 4, 1, 3, 9], 5)) 11 [5 | gsort (6 >= 5;
big_aux (6, [4, 1, 3, 9], 5))]. This expression reduces to gsort (small ([6, 4, 1,
3, 9], 5)) 1 [5 | gsort (true; big_aux (6, [4, 1, 3, 9], 5))]. Then we can apply the
ninth rule to get gsort (small ([6, 4, 1, 3, 9], 5)) I [5 | gsort ([6 | big ({4, 1, 3,
9], 5))] and so on until only [1, 3, 4, 5, 6, 9] remains and no rule applies.

Bertrand' is a transformational programming language based on augment-
ed term rewriting. Augmented term rewriting is an extension to term rewriting;
it supports bindings, objects, and types. Because much of Leler's work in-
volves the use of these transformational techniques to build constraint-satis-
faction systems, Bertrand is often associated with constraint programming as
well.
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Logic. The logic paradigm assumes
that we begin with a set of known facts,
such as “Tom is a father,” and a set of
rules that allow deduction of other facts.
For example, “For all X, if X is a father,
then X is male” allows us to deduce that
Tom is male. Thus, logic programming
from the programmer’s perspective is a
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matter of correctly stating all necessary
facts and rules.

Kowalski® pioneered the logic para-
digm. To date, most logic programming
languages have been based on Horn
clauses, asubset of first-order predicate
logic. The clausal notation of predicate
logic combines variables, constants, and

expressions to express conditional prop-
ositions such as

Grandparent (x, z) < Parent (x, y),
Parent (y, z)

which states that x is the grandparent of
zifxisthe parentofy and y is the parent
of z. Horn clauses are a restricted form
of predicate logic with exactly one con-
clusion in any one clause.

Logic programming then is a state-
ment of only the logic component of an
algorithm. The system derives the con-
trol sequencing component. By sepa-
rating logic from control, the program
becomes merely a formal statement of
its specifications. Hence, its correctness
should be easily provable. In fact, since
logic programming can be viewed as
automated theorem proving, all logic
programs are “correct” by definition.
Of course, even if the programs are
correct when compared to their written
specifications (facts and rules), the ques-
tion still remains of whether or not the
specifications correctly reflect the true
problem.

Evaluation starts with a goal and at-
tempts to prove it by either matching it
with a fact or deducing it from some
rule. A goal is deduced from a rule if
bindings can be found for all free vari-
ables such that, once substituted, all
antecedents can be proved. These ante-
cedents become new subgoals that must
be matched with facts or proved via
other rules. The process terminates suc-
cessfully when all subgoals have been
proved. The final solution is determined
by applying the bindings developed along
the way to any free variables in the
initial goal.

Evaluation as just described is purely
definitional. It assumes that whenever
a rule is selected, either there is only
one possibility or the one needed to
derive the solution is somehow select-
ed. A solution is found if a suitable set
of rules and substitutions exists such
that applying the substitutions to the
rules produces a set of grounded rules
(that is, a set with no free variables)
sufficient to deduce the goal from
known facts.

A process known as unification de-
terministically develops substitutions for
free variables; however, there is no sim-
ilarly deterministic algorithm for select-
ing rules. This leads to difficulties. Im-
plementations must approach evaluation
with a breadth-first search, where each
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rule selection point initiates separate
independent computations, one for each
possible applicable rule. If a solution
exists, the evaluation algorithm will
eventually terminate, but this approach
can be very inefficient.

This inefficiency has led to the devel-
opment of many variants of logic pro-
gramming, each with different evalua-
tion algorithms. Popular among these
variants is to impose an order on the
selection of rules and to employ adepth-
first search with a backtracking algo-
rithm. When a rule must be selected,
this algorithm selects the “first” one. If
it eventually leads to a dead end, the
“next” one is selected, and so on until
all possibilities have been tried. Ateach
failure, backtracking is performed for
the most recent decision. If this fails
because there are no more possibilities
to try, then further backtracking occurs.
When all possibilities fail, no solution
exists.

By careful ordering of facts and rules,
a programmer can greatly impact per-
formance, as well as termination. Of
course, this changes the paradigm to
pseudodefinitional. Logic programming
is often used to refer to the pure form
discussed, while the pseudodefinitional
version is referred to by the name of the
language, for example, Prolog program-
ming.

There are other nondefinitional fea-
tures found in most implementations of
logic-programming variants, most no-
tably cuts. The cut is an extra-logical
device that creates a barrier inhibiting
the backtracking mechanism of the the-
orem prover. Cuts were introduced to
improve efficiency. They prevent re-
evaluation of rules during backtrack-
ing. In addition, they are often used to
specify logic.

The logic paradigm is intended for
general-purpose programming. Indeed,
pseudodefinitional logic is used for pro-
duction programming in industry, where
it is very well-suited to certain types of
problems. These include backtracking
search problems that may require mul-
tiple solutions; problems that are natu-
rally expressed in terms of production
rules, such as natural-language transla-
tion; and executable specifications for
rapid prototyping.

Form-based. The form-based para-
digm, as well as the dataflow paradigm
in the next subsection, defines a compu-
tation viaa collection of equations. These
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Logic paradigm

sort (Xs,Ys) « permutation (Xs,Ys), ordered (Ys)

permutation ({], [1)

permutation (Xs, [ZIZs]) « select (Z,Xs,Ys), permutation (Ys,Zs)

ordered ([X])

ordered ([X, YIYs]) « X <Y, ordered ([YIYs])

The permutation sort' states two facts (lines 2 and 4) and three rules.
These facts and rules characterize a fully sorted list, thus illustrating the de-
clarative nature of the logic paradigm. Collectively, they state:

« The list Ys is a sorted version of the list Xs if Ys is a permutation of Xs

and Y is ordered (line 1);

* An empty list is a permutation of itself (line 2);

« Given a list Xs and a list consisting of an element Z followed by a sublist
Zs, if Z can be selected from Xs leaving a remainder Ys that is a permuta-
tion of Zs, then Xs is a permutation of [ZIZs] (line 3);

« A list with only one element is ordered (line 4); and

« Given a list that starts with the elements X and Y, followed by the list Ys,
if X < Y and [YIYs] is ordered, then the original list is ordered (line 5).

The supporting code for select requires only one additional fact and one

additional rule:

select (X, [XIXs], Xs)

select (X, [Y1Ys], [YIZs]) < select (X, Ys, Zs)

Although the Prolog language’? has become synonymous with logic pro-
gramming, it actually includes a specific problem-solving strategy and a
number of features not true to the logic paradigm. While its pure logic fea-
tures provide the advantages of the logic paradigm, Prolog can be used in
an entirely different way that resembles an operational paradigm.
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equations avoid any expression of con-
trol sequencing, but a restriction placed
on the form of these equations guaran-
tees that the system can easily derive an
evaluation order sufficient to compute
a solution. For the form-based para-
digm, this restriction is that all equa-
tions are of form X =AY, Y,, ..., Y,)
where all of the Y;’s must be comput-
able independently from X.

In the form-based paradigm, the pro-
grammer designs a form including for-
mulas that ultimately compute values.
Each formula corresponds to the right-

hand side of an equation, that is, (Y,
Y,, ..., Y,). Typically, we associate a
description of the visual display of the
formula’s value with each formula. A
cell is a formula and its associated dis-
play description. In constructing for-
mulas, cell references to other cell val-
ues can be formed by pointing at the
corresponding cells.

The use of forms in this manner is
analogous to the way we use familiar
forms, such as tax forms. Designing a
form implies a two-dimensional syntax.
In practice, the form-based paradigm is
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Form-based paradigm

| To Sort: | 40

30

20

10

= MIN (above, rightAbove)

= MAX (above, leftAbove)

= MIN (above, rightAbove)

= MAX (above, leftAbove)

= above

= MIN (above, rightAbove)

= MAX (above, leftAbove)

= above

= MIN (above, rightAbove)

= MAX (above, leftAbove)

= MIN (above, rightAbove)

= MAX (above, leftAbove)

LSoned = above = MIN (above, rightAbove) : = MAX (above, leftAbove) = above
[ Tosot: | 40 30 20 10

30 40 10 20

30 10 40 20

10 30 20 40
| sorea: | 10 20 30 40

The top form displays each cell’s formula, and the bot-
tom form displays the values obtained from evaluating
these formulas. The value of each cell is defined by its
own formula. Only two distinct formulas are needed to fill
in the form: the minimum of a pair of elements and the
maximum of that pair. The n elements are initially select-
ed pairwise and the minimum of each pair is placed be-
fore the maximum. Next, the elements are paired with the
neighbor on the other side, and the process is repeated.
This continues until the sequence is sorted.

In practice, the programmer merely specifies the first
pair of formulas and propagates them appropriately. The
actual mechanisms to do this vary with individual sup-
porting languages. Some languages provide a replication
facility, while others let a formula serve as a general defi-

based paradigm does not necessarily restrict the form
size to a fixed number of cells. One common approach
defines an infinite number of rows, relying on lazy evalu-
ation to ensure that only cells with actual values are
evaluated. Examples of form-based languages include
Forms/3'2 and Plane Lucid.?
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nition for a group of cells.

Although it appears that this solution may only apply to 3.
a fixed number of cells, this is not the case. The form-

supported only by visual programming
languages. Further, the distinction be-
tween the user and the programmer
tends to blur under this paradigm, be-
cause the concept of defining the form
as well as filling one in are comfortable
tasks for users. Supporting languages
tend to be highly interactive, fostering
an “experimental” approach to program-
ming.

A natural practice of the form-based
paradigm is the collection of partial re-
sults or values down and across the form,
approaching a solution at the bottom
andright ofit. The neighborhood sortin
the sidebar shows an example of this
two-dimensional approach. It builds up
the intermediate results on successively
lower rows of the form, until eventually
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the final result is achieved on the bot-
tom row.

Because a form is a collection of for-
mulas that are functional expressions,
the form-based paradigm has a lot in
common with the functional paradigm.
However, the collection of formulas in
the form-based paradigm allows for for-
mula dependencies whose graph is any
directed graph, not just the hierarchical
graphs of pure functions.

Dataflow. In the dataflow paradigm,
streams of data flow like fluids through
a network of nodes, each of which per-
forms a computation that consumes the
data flowing into the node and produc-
es new data that flows out of the node.
The programmer specifies only the node

W. Du and W. Wadge, “A 3D Spreadsheet Based on Intensional
Logic,” IEEE Software, Vol. 7, No. 3, May 1990, pp. 78-89.

equations. The evaluation order is im-
plied by data dependencies in the node
equations. The system schedules com-
putations whenever all the input data to
a node is available.

Dataflow programming can be dem-
onstrated graphically with dataflow di-
agrams such as the one in Figure 1. In
the figure, data elements, called tokens,
enter a node representing addition. The
computation consumes these input to-
kens and produces the sum as a new
token.

Computations are composed by us-
ingnode outputs as inputs to new nodes.
Like the form-based paradigm, the data-
flow paradigm requires equations to be
expressed in the form X=fY,, Y5, ...,
Y,);however, the codependency restric-
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tion is loosened. In the dataflow para-
digm, evaluation is viewed as a continu-
ous process in which each equation is
computed each time a new set of input
valuesis available. Thus, a variable rep-
resents a stream of values, one for each
time its formula equation is evaluated.
Given this model, if X' represents the
ith value in the stream for X, then the
dataflow restriction is that X' can de-
pend on X/, directly or indirectly, only
as long as i > j. This prevents circular
dependencies of the type that would
inhibit computation. (Note that if we
reduce all streams to length one, the
dataflow restriction is equivalent to the
form-based restriction.)

We can view the notion of dataflow
streams that flow into and out of nodes
as sequences of values along a time di-
mension. Conceptually, this allows a
node’s output arc to bend around and
serve as an input stream to the same
node (that is, it allows feedback in the
dataflow graph). This time dimension
notion is readily captured in graphical
dataflow languages because the rela-
tions between input and output sequenc-
es are explicitly shown via the arcs be-
tween the nodes. Some of the textual
dataflow languages deal with these re-
lations implicitly rather than explicitly,
requiring special constructs to access
specific previous values in a controlled
way.

While this restriction allows for feed-
back, and thus iteration, programmers
usually employ recursion. This is com-
pletely in keeping with the dataflow
concept of routing data between nodes,
where each recursive invocation is log-
ically another node in the dataflow graph.

Two execution models are used in
dataflow programming. Both are strict-
ly dependency driven. In the data-driv-
en model, a node may execute as soon
as all required input is available. This
model encourages parallelism, butitcan
cause overproduction of data. In the
demand-driven model, a node does not
execute unless all required input is avail-
able and its output is requested. While
overproduction of data cannot occur
using demand-driven evaluation, paral-
lelism may be impaired because nodes
that could be computing will wait until a
demand for their output occurs.

The dataflow paradigm has some sim-
ilarities to the functional paradigm.
Much of the literature discusses it as a
variant of functional programming and
many textual dataflow languages are
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Dataflow paradigm

NonEmptyQSort

QSort

Split V Append

QSort expects a stream of unsorted vectors and produces a stream of
sorted vectors. The definition of the QSort node (a) consists mainly of an
If node. Whenever a result flowing out of Empty? is true, then the corre-
sponding original vector of values is produced by If and thus by QSort.
Otherwise, the result of node NonEmptyQSort is produced. in NonEmp-
tyQSort (b), unsorted vectors are routed through a node Split, yielding
three separate vectors of values respectively less than, equal to, and
greater than the first (pivot) element. Once split, two of these streams flow
into QSort nodes for sorting. The resulting streams and the third stream
from Split are then appended to generate the final stream of sorted vec-

tors.

The emphasis on dataflow relations rather than control flow is easily
seen in visual representations. This has led to the development of visual
dataflow languages such as Show and Tell.!

Reference

1. T.D. Kimura, J.W. Choi, and J.M. Mack, “Show and Tell: A Visual Programming Lan-
guage,” in Visual Programming Environments, E.P. Glinert, ed., |[EEE CS Press, Los
Alamitos, Calif., Order No. 1973, 1990, pp. 397-404.

based on functional languages. Howev-
er, from a paradigm perspective, there
are significant differences. A functional
program isrepresented by asingle equa-
tion; a dataflow program is a collection
of equations. Dataflow nodes operate
on streams of data; thus, they do not
obey either eager or lazy evaluation.

Figure 1. Addition consumes pairs of
input tokens and outputs a new token
for each sum.

Dataflow does not treat functions as
first-class objects (that is, nodes do not
construct and produce new functions).
Dataflow equations require continuous
evaluation, producing a stream of out-
put values rather than just a single val-
ue. As with the form-based paradigm,
dataflow dependency graphs include all
directed graphs, not just hierarchically
structured graphs. Philosophically, the
dataflow approach defines a programin
terms of data flowing through nodes,
each of which consumes its input data
and produces new output data.

The dataflow paradigm supports par-
allelism. The data dependencies are only
those that are natural to the algorithm.
The paradigm makes these dependen-
cies explicit automatically. There is no
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Constraint programming

[ x; where x; <= x;+1 for all x; ]

A group of elements x is sorted if the above constraint is met. A constraint
specifies a relation that must be maintained. The programmer is responsible
for specifying the relation, and the system is responsible for maintaining it.

If the constraint is not already satisfied, the system is responsible for tak-
ing appropriate action to satisfy the constraint. Currently, general con-
straint-solving techniques are weak, and thus constraint systems tend to be
application-domain specific. An example constraint system is the visual lan-
guage Thingl.ab." Within its specific problem domain (simulations), Thing-
Lab implements the constraint paradigm in a manner that, while not strictly
definitional, successtully encourages a definitional problem-solving ap-

proach.
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explicit control sequencing; the order
of computation can be determined strict-
ly from the interdependencies in the
data. This paradigm is often used to
research parallel computing, and paral-
lel machines based on dataflow archi-
tectures have been proposed.” In addi-
tion, the dataflow paradigm is naturally
expressed visually, making it popular
for use in visual programming.

Constraint programming. The cen-
tralidea of the constraint-programming
paradigm is to sufficiently constrain the
solution value set such that only the
desired solution or solutions are possi-
ble. Then, ideally, an intelligent system
will employ some means to realize what
the solution must be.

Toillustrate constraint programming,
consider the following program to con-
vert centigrade temperatures to Fahr-
enheit:

F=32+9/5xC

This program appears to be an equation
much like one we might write in other
paradigms. However, in other para-
digms, such a program can only be used
to produce Fahrenheit values from cen-
tigrade values. In constraint program-
ming, if the value of C is known, it can
be used to compute F. Likewise, if the
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value of F is known, it can be used to
compute C. Thus, this program is not a
statement of some computation to be
performed, butatrue equation express-
ing a relationship between F and C.
Furthermore, it is entirely equivalent to
the following program:

C =59 x (F - 32)

This ability to solve for any variable,
given the rest, is also present to some
degree in logic programming and to a
lesser extent in pseudologic program-
ming if the rules are carefully defined
for multiple uses.

A programis specified by a collection
of such constraining equations, called
constraints. Given a collection of such
constraints, it is up to the underlying
system to find a solution that satisfies
them. Constraints are not limited as
equations are in form-based and data-
flow paradigms. Instead, the problem
for constraint-satisfaction systems is how
to find a solution.

One approach, called equation solv-
ing, employs algebraic manipulation.
This approach has been used to solve
complex equations. For instance, equa-
tion-solving techniques can be used when
constraints are expressed as a system of
simultaneous linear equations.

The most common equation-solving

method is based on Gaussian elimina-
tion. This method has also been extend-
ed to include “slightly nonlinear” si-
multaneous equations, in which most of
the equations are linear. The solutions
of the linear equations provide enough
information to transform the nonlinear
equations into linear ones.

Linear programmingis another equa-
tion-solving technique thatis sometimes
used to find an optimal solution to a
group of simultaneous linear equations.
However, in general, equation solving
is limited and can only be applied to
specific problem domains.

Another approach is constraint satis-
faction. Prominent techniques include
local propagation of known states, re-
laxation, and local propagation of de-
grees of freedom. The first technique
propagates known values to other equa-
tions (that is, if we can solve for A, then
we propagate A’s value by substituting
the value of A for A in all equations).

The relaxation technique is often
employed in situations involving circu-
larity. A guess is substituted for some
variable thatis circularly dependent and
the computation is continued until the
circularity causes the computation of a
new value for the variable. The system
then interpolates between the initial
guess and the computed value, obtains a
new guess, and repeats the process. If
the difference converges to zero, a solu-
tion is reached.

The third technique, propagation of
degrees of freedom, temporarily re-
moves parts of a graph to try to solve the
remaining graph. The parts chosen for
removal are based on their degrees of
freedom from dependencies. Once the
remaining graph is solved, the removed
parts are returned and solved.

The combination of these three con-
straint-satisfaction techniques is again
sufficient for slightly nonlinear equa-
tions. For truly arbitrary sets of equa-
tions, general constraint-satisfaction
techniques are inadequate.

Constraint programming is highly in-
dependent of order. Although this fact
should make it a good candidate for
parallel applications, little research has
been done in that area. The most im-
portant deficiency of the paradigm re-
sults from the weakness of general con-
straint satisfaction techniques. This
keeps it from being used in general-
purpose programming. However, do-
main-specific languages have been suc-
cessful.
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Demonstrational
paradigms

When programming under the dem-
onstrational paradigm (also called by-
example or by-demonstration program-
ming), programmers neither specify
operationally how to compute a value
set nor constrain the solution value set.
Rather, they demonstrate solutions to
specific instances of similar problems
and let the system generalize an opera-
tional solution from these demonstra-
tions. Individual schemes for generaliz-
ing suchsolutions range from mimicking
an operational sequence to inferring
intentions. How and what a by-example
system should generalize is the major
issue for this paradigm and the active
area of research. Approaches can be
categorized by whether or not inferenc-
ing is involved.

Inferential systems attempt to gener-
alize using knowledge-based reasoning.
For instance, given the sorting example
in the sidebar, the main question to
answer is why the particular selections
were made at each step. Possible guess-
es include positional order or value.
Givensuch possibilities, the system may
proceed in a number of ways. It might
simply pick the guess it weighs most
likely. It might maintain all possibili-
ties, asking for further examples that
would help to discriminate further. It
might ask the user which is meant. The
very real possibility remains, of course,
that none of the deduced reasons is
correct. In this case, the only possibility
is for the user to override the system to
describe the correct intentions.

One inference-based approach at-
tempts to determine ways in which a
given group of data objects are similar,
drawing generalizations from these sim-
ilarities. Another approach is program-
mer assisted: The system observes ac-
tions that the programmer performs; if
they are similar to past actions, it at-
tempts to infer what the programmer
will do next. Myers® discusses the issues
of demonstrational systems using infer-
ence.

There are two major criticisms of in-
ferential systems. First, if unchecked
they may produce erroneous programs
that appear to work on the test exam-
ples but fail later on other examples.
Second, their inferential abilities are so
limited that the user must either guide
the process by working at a very low
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Using the sorting example, a user might proceed as follows. Given a vec-
tor with unsorted numbers shown in (a), the user first creates an empty vec-
tor of equal size and then begins to copy numbers from the unsorted vector
into the new vector. At each step the user selects a number from the unsort-
ed vector and places it in a location in the new vector. In particular, as
shown in (b), the user selects unsorted element 3 with value 1 and copies it
to new element 1, then unsorted element 1 to new element 2, and so on.

At issue is what knowledge the system was able to extract from this dem-
onstration. On the surface, all we know absolutely is that an operation the

user calls “sorting” rearranges vectors of length 5 into a new order corre-
sponding to the third, first, fourth, second, and fifth elements of the original
vector. Some approaches to generalizing from this demonstration rely solely
on user demonstrations and expect the users to demonstrate algorithms
with sufficient generality. Others expect to generalize using inference. An
example of a demonstrational language without inference is PT' and one

with inference is Metamouse.?
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level or edit the result at a level that
amounts to designing the program. The
most successful inferential systems have
been in limited areas where the system
has application-specific semantic knowl-
edge.

Without inferencing, the problem of
how and what to generalize is really the
problem of how the user should instruct
the system to generalize from concrete
examples. There are several approach-
es for doing this. (For a more complete
discussion, see Ambler and Hsia.?)

One approach is to work with ab-
stract data rather than specific data.
This prevents the user from picking a
particular value and operating on it.
The user must express constraints on
the abstract data (such as, “Pick X where
X is the largest element of the unsorted
vector™). Such constraints provide se-
lection criteria. Once a case is suitably
constrained, the programmer demon-
strates the desired action. In this exam-
ple, X is copied to the new vector (into

a constrained position Y). This process
is repeated for each possible set of con-
strained values. See Rubin'® for an ex-
ample of this abstract data approach.

Working with abstract data has cer-
tain limitations. Users tend to work more
accurately on a specific example than
they do in the general case.® The rea-
sons are clear: In the general case, the
human must think of every possible sit-
uation that could arise, while on a spe-
cific example, only the situation at hand
must be considered.

One approach to working with con-
crete data requires the user to demon-
strate selections as well as actions. For
example, in demonstrating the sort al-
gorithm, the user is required to demon-
strate a procedure for making the first
selection of an element from the unsort-
ed vector. For instance, the user might
indicate that the value is selected by
satisfying a predicate that tests for the
minimum value of a vector.

A major problem with demonstra-
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tional systems is knowing when a pro-
gram is correct. For operational sys-
tems, this decision is made by studying
the algorithm representation as well as
the results of sufficient test cases. For
demonstrational systems, the algorithm
representation is maintained in some
internal representation. Studying this
internal representation would somewhat
defeat the purpose of these systems.
Yet without some representation of the
generated algorithm, the correctness de-
cision must be made based solely on the
algorithm’s performance on specific test
cases.

s demonstrational programming re-
ally a paradigm? It does affect the me-
chanics of programming, but does it
encourage a different way of thinking
about problems or only a different way
of communicating the operational de-
tails to the computer? If we look at the
most successful approaches (that is,
nontrivial programming using concrete
examples), we can say that demonstra-
tional programming is generally a con-
crete bottom-up approach, and as such
takes advantage of our natural ability to
think concretely. This is opposite to pro-
gramming in most other paradigms,
which tend to encourage a top-down
abstract way of thinking about a prob-
lem. Thus, we include demonstrational
programming as a separate paradigm.

Operational-
definitional continuum

We can view the programming para-
digms discussed here on a continuum
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based on the relative degree to which
control sequencing is expressed. While
this continuum is not the only perspec-
tive on programming paradigms, we feel
that it helps clarify the relations be-
tween various paradigms.

Figure 2 shows the continuum. At the
far leftis the state-oriented approach to
operational paradigms. This approach
explicitly controls evaluation ordering.
Further, because of side effects and the
lack of any form of encapsulated ab-
straction, it is difficult to remove unnec-
essary ordering by means of analysis.
With encapsulated abstraction, at least
some measure of module independence
is achievable, allowing some elimina-
tion of evaluation ordering. On the oth-
er end of the continuum is a totally
abstract specification of the solution
using arbitrary constraints. For this ex-
treme definitional-paradigm approach,
it is difficult to derive any evaluation
ordering. A more practical approach
involves using computable equations for
which evaluation ordering can be readi-
ly derived. The middle position denotes
the crossover between explicit evalua-
tion ordering and derived evaluation
ordering.

rogramming paradigms affect our
P thought processes for solving

problems. They provide a frame-
work and determine the form in which
we express solutions. A number of pro-
gramming languages have evolved based
on particular programming paradigms.
We feel that stepping back from these
languages to understand the underlying
programming paradigms independent-

ly can broaden our programming skills,
develop new perspectives on how to use
particular programming languages and
styles, and perhaps stimulate curiosity
about alternatives to our favorite pro-
gramming paradigms. l
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