
TOWARDSUNDERSTANDINGAPPLICATION SEMANTICS

OF NETWORK TRAFFIC

RUOMING PANG

A D ISSERTATION

PRESENTED TO THEFACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OFPHILOSOPHY

RECOMMENDED FORACCEPTANCE

BY THE DEPARTMENT OF

COMPUTERSCIENCE

ADVISOR: LARRY L. PETERSON

JUNE 2008

c© Copyright by Ruoming Pang, 2008. All rights reserved.

Abstract

This dissertation explores the problem of building asemantic network traffic analysissystem and using it

to investigate various aspects of network traffic.Semantictraffic analysis uncovers the application-layer

semantics conveyed in packets so that one can examine the specific requests, responses, status messages,

error codes, and data items embedded in a connection dialog.Analyzing these at the application layer, as

opposed to the syntactic byte-string layer, opens up much greater insight into the nature and context of the

exchange between two hosts. For this reason, semantic traffic analysis is a cornerstone for precise network

intrusion detection and also has broad applications in measurements of networking systems.

This dissertation advances semantic traffic analysis in twoaspects. First, we present tools and tech-

niques for building traffic analyzers and creating shared traces, including design and implementation of (1)

a declarative language,binpac , for writing application protocol parsers, and (2) a programming environ-

ment for packet trace transformation and anonymization. Second, we characterize two types of previously

unstudied network traffic, Internet background radiation and enterprise internal traffic. Both studies focus

on traffic semantics, aiming to understand the network applications that generate the traffic and to uncover

underlying causes of network usage patterns.

iii

Acknowledgments

I enjoyed my graduate study at Princeton so much that I hardlywanted to graduate. I would like to thank

many people for the great time.

First I am grateful to have Prof. Larry Peterson as my advisor. Besides being an exemplary advisor

with great vision and gentle guidance, Larry also gave me a lot of freedom in my research and supported

me through the years.

I am very fortunate to have the opportunity to work closely with Dr. Vern Paxson, first as a summer

intern at ICIR, then on a number of fascinating projects thateventually lead to this dissertation. I am most

impressed by Vern’s abundance of research ideas and rigorous treatment of measurements.

I want to thank my other dissertation committee members, notonly for serving on the committee, but

also for going out of their way to help me finish this dissertation: Prof. Jennifer Rexford, for her patience

in reading through my lengthy thesis multiple times and her insightful and constructive comments, Prof.

Brian Kernighan, for nagging me to finish my thesis whenever we meet at Google and for volunteering to

proof-read my thesis, and Prof. Vivek Pai, for teaching me how to build robust distributed systems when

we worked on CoDeeN.

I also want to thank other Princeton faculty and staff. I am especially grateful to Prof. Randy Wang for

attracting me to the field of computer systems, Prof. SanjeevArora and Prof. Amit Sahai for introducing

me to the captivating world of theoretic computer science, and last but not least, Melissa Lawson, for

bringing efficiency and warmth to the department.

I also would like express my deep appreciation to my collaborators and colleagues, from whom I learned

many things: Robin Sommer, Vinod Yegneswaran, Paul Barford, Mark Allman, Christian Kreibich, Yuqun

Chen, Lujo Bauer, David Walker, Ed Felten, Limin Jia, XiaohuQie, Liming Wang, KyoungSoo Park, Aki

Nakao, Scott Karlin, Tammo Spalink, Andy Bavier, Mark Huang, Marc Fiuczynski, and staff at Lawrence

Berkeley National Laboratory.

I dedicate this dissertation to my parents, my grandmother,and my wife, Zhiyan Liu, for making me

who I am.

This dissertation was supported by grants from NSF Awards CNS-0520053, CCR-0325653, ITR/ANI-

0205519, EIN-0335214, 0335241, 0205519, 0433702, ANI-9906704, STI-0334088, ARO grant DAAD19-

02-1-0304, DHS grant HSHQPA4X03322, DARPA contract F30602–00–2–0561, and the Intel Corpora-

tion.

iv

Contents

Abstract iii

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Background and Motivation 1

1.2 Challenges 3

1.3 Dissertation Contributions 4

1.3.1 Tools and Techniques 4

1.3.2 Measurement Studies 6

1.3.3 Thesis Outline 8

2 Traffic Semantic Analysis andbro 9

2.1 Traffic Capture 9

2.2 Extracting High Level Traffic Representation 9

2.2.1 TCP/IP Processing 10

2.2.2 Recognizing Applications 10

2.2.3 Parsing Application Protocols 11

2.3 Traffic Analysis and Manipulation 12

2.4 Summary .. . 15

3 binpac—A yacc for Writing Application Protocol Parsers 16

3.1 Problem Statement 17

v

3.2 Related Work 19

3.3 Characteristics of Application Protocols 21

3.3.1 Syntax and Grammar Issues 21

3.3.2 Concurrent Input 23

3.3.3 Robustness .. . 23

3.4 Thebinpac Language . 24

3.4.1 Data Model .. 24

3.4.2 State Management 33

3.4.3 Integrating Custom Computation 36

3.4.4 Separation of Concerns 36

3.5 Parser Generation 37

3.5.1 Incremental Input 37

3.5.2 Error Detection and Recovery 38

3.6 Experiences withbinpac . 41

3.7 Summary and Future Directions 42

4 A Programming Environment for Trace Anonymization 44

4.1 Problem Statement 45

4.2 Goals .. . 47

4.3 Generic Trace Transformation 48

4.3.1 Policy Script Programming Environment 48

4.3.2 Trace Parsing 50

4.3.3 Trace Composer .. . 51

4.3.4 Trace Rewriters for Trace Size Reduction 56

4.4 Trace Anonymization 57

4.4.1 Objectives of Anonymization 57

4.4.2 Anonymization Primitives 57

4.4.3 Inference Attacks 59

4.5 Case Study: FTP Anonymization 61

4.5.1 The Filter-In Principle 62

vi

4.5.2 Selected Details of FTP Anonymization 63

4.5.3 Refining with Manual Inspection 64

4.5.4 Reply Anonymization 66

4.5.5 Verification 68

4.5.6 Discussion .. . 69

4.6 Related Work 71

4.7 Summary .. . 72

5 Characteristics of Internet Background Radiation 73

5.1 Problem Statement 74

5.2 Related Work 75

5.3 Measurement Methodology 76

5.3.1 Application-Level Responders 77

5.3.2 Taming the Traffic Volume 81

5.3.3 Traffic Analysis 84

5.3.4 Experimental Setup 84

5.4 Passive Measurement of Background Radiation 86

5.4.1 Traffic Composition 87

5.4.2 Analysis of Backscatter Activity 89

5.5 Activities in Background Radiation 91

5.5.1 Details per Port 91

5.5.2 Temporal Distribution of Activities 99

5.6 Characteristics of Sources 102

5.6.1 Across Ports .. . 102

5.6.2 Sources Seen Across Networks 104

5.6.3 Sources Seen Over Time 105

5.7 Summary .. . 106

6 A First Look at Modern Enterprise Traffic 108

6.1 Problem Statement 109

6.2 Datasets 111

vii

6.3 Broad Traffic Breakdown 112

6.4 Origins and Locality 117

6.5 Application Characteristics 118

6.5.1 Internal/External Applications 120

6.5.2 Enterprise-Only Applications 130

6.6 Network Load 139

6.7 Summary .. . 142

7 Conclusions 143

7.1 Contributions 143

7.1.1 Thebinpac Language . 143

7.1.2 Semantic-Aware Traffic Anonymization 144

7.1.3 Internet Background Radiation 145

7.1.4 Enterprise Network Traffic 145

7.2 Future Directions 145

7.2.1 Traffic Analysis 146

7.2.2 Traffic Anonymization 148

7.3 Summary .. . 149

viii

List of Figures

2.1 Declarations ofbro events . 14

2.2 Sample Bro script: (a simplified version of) Email relay detection 14

3.1 A HTTP parser inbinpac with Bro event generation, complete except for MIME and

escape-sequence processing (Part 1) 26

3.2 An (abridged) DNS parser inbinpac (Part 1) . 28

3.3 Specifying dynamic byte order with&byteorder . 32

3.4 SUN/RPC per-connection state 35

3.5 Separatingbro event generation from protocol syntax specification withrefine 37

3.6 Specifying buffering length of a type 38

4.1 Data Flow in Trace Transformation 48

4.2 Source and the Resulting C++ Code of a Rewrite Function 53

4.3 Deferring Writes to HTTP Content-Length Header 55

4.4 Anonymization Log Entries 66

4.5 FTP Reply Message Templates 67

4.6 Message Template Extraction 67

4.7 Execution time of various FTP policy scripts 70

5.1 Top level Umbrella of Application Responders 77

5.2 Example summary of port 445 activity on Class A. 506,892 sessions in total. Arcs indicate

number of sessions. 79

5.3 Active response sequence for Samr-exe viruses 80

ix

5.4 Effectiveness of Filtering, Networks (top) and Services (bottom) 83

5.5 The Honeynet architecture at iSink and LBL 85

5.6 Number of background radiation packets per hour seen at LBL 88

5.7 Time series of weekly backscatter in the four networks. 90

5.8 The components of backscatter at the class A network besides the dominantRST, SYN-ACKs. 90

5.9 Typical HTTP request of a tickerbar host 94

5.10 Port 135 activities on March 29 95

5.11 Unknown packets on UDP port 53 (DNS port) 97

5.12 Observed Windows Messenger Pop-Up Spam packets. 99

5.13 The Big Exploits (Apr 20 to May 7, 2004), as observed on 5 /C networks at LBL. The

source hosts are counted every three hours. 100

5.14 Time series of activity on Agobot ports in the two UW /19 networks (on adjacent Class B

networks) .. 102

6.1 Fraction of traffic payload bytes of various applicationlayer protocols. 114

6.2 Fraction of packets of various application layer protocols. 115

6.3 Fraction of connections of various application layer protocols. 115

6.4 Locality in host communication. 119

6.5 HTTP fan-out. TheN in the key is the number of samples throughout the chapter—inthis

case, the number of clients. 122

6.6 Size of HTTP reply, when present. 124

6.7 SMTP and IMAP/S connection durations. 126

6.8 SMTP and IMAP/S: flow size distribution 128

6.9 Windows (CIFS and DCE/RPC) Traffic Structure 131

6.10 NFS/NCP: number of requests per client-server pair, for those with at least one request seen. 135

6.11 NFS: request/reply data size distribution (message headers are not included) 137

6.12 NCP: request/reply data size distribution (message headers are not included) 138

6.13 Utilization distributions forD4. 140

6.14 TCP retransmission rate across traces (for traces withat least 1000 packets in the category) 141

7.1 The spectrum of parallelism present in a high-level network security analysis pipeline. . . 147

x

List of Tables

3.1 Summary ofbinpac language constructs. 25

3.2 Number of lines of code (LOC), CPU time, and throughput ofprotocol analyzers 41

5.1 Summary of Data Collection 86

5.2 Protocol breakdown by packet rate. The rate is computed as number of packets per desti-

nation IP address per day,i.e.,with network size and sampling rate normalized 87

5.3 Protocol breakdown by number of sources. 87

5.4 The Most Popular TCP Ports. Ports that are visited by the most number of source IPs, as

in a one week passive trace at LBL. In total there are 12,037,064 packets from 651,126

distinct source IP addresses. 88

5.5 Abbreviations for Popular Activities. Each line reflects a separate connection. 92

5.6 Port 80 Activities (March 29, 2004) Note that to reduce trace size the active responders

at UW and Class A do not respond to"SEARCH /" to avoid getting the largeSrchAAA

requests. .. . 93

5.7 Port 445 activities 95

5.8 Summary of DNS activity seen in the Class A (24 hours) 98

5.9 24 hours of multi-port source activity at the four sites 103

5.10 Traffic from sources seen across networks: intersections vs. individual networks 104

5.11 Traffic from sources seen over time: intersections vs. individual periods 105

6.1 Dataset characteristics. 111

6.2 Fraction of packets observed using the given network layer protocol. 112

6.3 Fractions of scan connections (removed from further analysis) 113

xi

6.4 Fraction of connections and bytes utilizing various transport protocols. 113

6.5 Application categories and their constituent protocols. 114

6.6 Example application traffic characteristics. 120

6.7 Fraction of internal HTTP traffic from automated clients. 121

6.8 HTTP reply by content type. “Other” mainly includesaudio, video, andmultipart. 123

6.9 Email Traffic Size 124

6.10 Windows traffic connection success rate (by number of host-pairs, for internal traffic only) 131

6.11 CIFS command breakdown. “SMB basic” includes the common commands shared by all

kinds of higher level applications: protocol negotiation,session setup/tear-down, tree con-

nect/disconnect, and file/pipe open. 132

6.12 DCE/RPC function breakdown. 133

6.13 NFS/NCP Size 133

6.14 NFS requests breakdown. 134

6.15 NCP requests breakdown. 136

6.16 Backup Applications 136

xii

Chapter 1

Introduction

An important aspect of building, managing, and improving a large and complex computer system is mea-

suring its workload and behavior. This holds for computer networks, and is especially true for the Internet.

This dissertation deals with one aspect of network measurements,semantic traffic analysis, which involves

analyzing application layer payloads of network traffic to understand the behavior of network applications.

The first part of this dissertation presents techniques and tools that enable automated analysis of the

application-level traffic data. On this foundation, the dissertation further develops a programming environ-

ment and techniques for packet trace anonymization that preserves application level data. Trace anonymi-

zation is critical to sharing traffic traces for network measurements and repeatable experiments.

Exploring opportunities brought by semantic traffic analysis tools, the second part of this disserta-

tion presents measurements of two specific kinds of network traffic—Internet background radiation and

enterprise internal traffic—that had not been studied previously. Both studies focus on the behavior of

applications that are generating the traffic.

1.1 Background and Motivation

Network measurement can be roughly divided by which networklayer it is concerned with. Most previous

work has focused on lower layers and is generally concerned with understanding how bits move around the

network, including: network topology, how many bits are moving from one end point to another (traffic

matrix), what routes the bits are are taking (routing), and how to prevent congestion (congestion control).

1

Such studies are generally not concerned with the meaning ofapplication layer traffic data and consider

them as opaque bits.

This dissertation considers measurement at the application layer of the network: in particular, analyzing

the contents of application level traffic payload. Through uncovering the meaning of application layer bits

we can find out what applications are generating the traffic, for what functionality, whether the traffic is

benign or malicious, how often application level failures occur, and so on. We refer to this general notion as

semantic traffic analysis. It is worth noting that measurement of different network layers is closely related.

Understanding application layer traffic semantics often helps reveal the underlying causes of lower-layer

traffic patterns.

In practice, techniques developed for network traffic measurements can often be applied to real-time

monitoring as well. Thus, understanding network traffic semantics also helps us to detect and thwart mali-

cious activities (intrusion prevention), locate failures(trouble shooting), and project future usage patterns

(provisioning).

Fundamentally, we measure network traffic semantics so as tounderstand the applications that are

generating the traffic and, sometimes, the behavior of humanbeings using the applications. Thus, the

ultimate target of measurement is often not the network itself in the narrow sense—links and routers—but

rather the applications. Here we use the termnetwork applicationin the broad sense—it includes not only

the programs used directly by human users, such as Web browsers and email clients, but also any program

that communicates over the network, such as clients and servers of DNS (Domain Name Service) and NTP

(Network Time Protocol).

Interestingly, it is often easier to understand applications by measuring their network traffic than by

analyzing the applications themselves. First, applications may not be directly accessible in measurements.

For example, it is often infeasible to ask many users to install a Web browser extension for measuring Web

browsing behaviors from the client side. In contrast, it is usually easier to capture and analyze the Web traf-

fic on the network. Second, some applications do not have built-in mechanisms that record or report their

activities—consider, for example, characterizing network activities generated by all applications running

on a Windows desktop. Finally, even if applications do report their activities, for example, Web servers

usually record requests in a log, the records often have formats particular to the applications, making it dif-

ficult to measure multiple applications with a unified mechanism. In comparison, the structure of network

2

traffic is well-defined by the application protocols, and thus easier to parse. For all these reasons, network

traffic provides a good window into the behavior of applications.

1.2 Challenges

Measuring a complex system is challenging in and of itself. This is especially true for large computer

networks such as the Internet. Below is a short list of challenges network traffic measurement faces in

general. We also discuss how the challenges impact measurement studies in this dissertation and tools and

techniques we develop to overcome the difficulties.

Diversity of network applications. The Internet is a colorful world—it is used by hundreds of millions

of users with thousands of applications. Moreover, the continual shift of our daily life towards

computer networks ensures that the Internet diversity willcontinue to grow as we see ever more

network applications. The large number of applications challenges us to build analysis tools for a

wide range of the applications and protocols.

This dissertation tackles this challenge by presenting a language that facilitates the process of build-

ing analyzers for application protocols.

Irregularity in traffic data . Real-world traffic data contains various types ofirregularities, ranging

from deviation from standard protocol syntax, incorrect length fields or checksums, and completely

corrupted data fields, to missing packets because of imperfect traffic capture mechanisms. Thus,

measurement tools must be robust to handle such irregularity; measurement methodology should

also take traffic irregularity into account.

Limited traffic data . The Internet consists of many autonomous and geographically distributed networks.

It is often only possible to measure a very small part of it. Consider, for example, how many vantage

points one needs to measure the total number of bytes (or HTTPrequests) that fly over the Internet

in a day. Note that the difficulty lies not only in the geographical distribution or number of systems,

but also in the autonomy each system asserts. This latter factor is often more important, as most

institutions are reluctant to reveal their network structure and traffic information because of concerns

ranging from privacy and security to trade secrets. Becauseof the diversity of the Internet, lack of

shared traffic data creates a significant hurdle for network measurements. For example, it is difficult

3

to distinguish between universal and site-specific characteristics of network traffic based on traffic

data from only one or two networks.

One key to creating shared traffic data is traffic anonymization—a process that removes sensitive

data while preserving non-sensitive information which canbe used in network measurements. This

is another topic explored in this dissertation.

Asymmetric resource capacitybetween the measurement system and the system to measure. Even

when one is measuring a very small part of the Internet, the network still usually contains far more

computers than the measurement infrastructure does. As a result, much more computation resource

is available for traffic generation than for traffic measurement. This resource asymmetry challenges

us to design efficient measurement tools and sound sampling techniques, as explored in our study of

Internet background radiation.

1.3 Dissertation Contributions

The dissertation makes two sets of contributions. The first involves developing techniques and tools for

people toanalyze traffic semanticsandanonymize traces, motivated by the fact that lack of tools and traces

has significantly hindered measurements of network traffic semantics. The second consists of measure-

ments of two particular aspects of network traffic:Internet background radiationandmodern enterprise

network traffic. Both studies are the first characterizations of the respective type of traffic. Next we discuss

each contribution in further details.

1.3.1 Tools and Techniques

To understand network traffic semantics we need to obtain traffic traces and build analysis tools. Below we

discuss how this dissertation advances state of the art in both areas.

We note that the two problems are in fact closely related. An important channel to obtain network traces

is through sharing anonymized traces. Trace anonymization, however, depends on semantic analysis tools

that expose the semantics of data elements in the traffic, so that each element can be sanitized based on its

application level meaning. On the other hand, in developingtraffic analysis tools it is critical to have access

4

to network traces so that the tools can be made robust enough to handle the irregularity found in real-world

traffic.

A Declarative Language for Protocol Analyzers

A traffic analysis framework such asbro [89] processes network traffic in two stages (Chapter 2

offers a more detailed description of the process). In the first stage, the packets are translated into

a high-level representation of the traffic, in case ofbro , a sequence of application levelevents.

For example, abro eventmay represent an HTTP request, a DNS query, or begin or end of a

connection. In the second stage, one can specify a rich set ofanalysis tasks that operate on the high

level representation of the traffic. Under this model, deep traffic analysis can be expressed with a

short script and carried out efficiently on high volume real-time traffic or large packet traces.

One of the main challenges in building such a network traffic analyzer such asbro is to parse a wide

range of application protocols in order to generate the high-level events. Protocol parsers are usually

built manually in a general-purpose programming languagessuch as C/C++ [29]. The construction

and maintenance of analyzers requires a considerable amount of effort, because of the complexity of

network protocols. For example, Netware Core Protocol has hundreds of message types for a wide

range of functionalities from remote file access to printingand directory service. Furthermore, new

application protocols are constantly emerging, so the analyzers must also be frequently updated. The

question, naturally, is: How can we make it easier to build and maintain protocol parsers? The answer

presented in this dissertation is a high-level, declarative language for specifying protocol parsers. The

language’s compiler generates efficient protocol parsers in C++ from the specification of (1) physical

layout of protocol data, (2) semantic relations between protocol fields, and (3) custom computation

(for example,bro event generation) to carry out during parsing. High-level specifications reduces

complexity in two ways: (1) the compiler generates code for common and usually tedious tasks in

traffic parsing, such as trans-coding byte order, checking boundaries, and buffering incomplete data,

and thus reduces programming complexity and human errors; and (2) the separation of concerns—

such as protocol syntax vs.bro event generation—makes the code easier to maintain and reuse. Use

of this high-level language considerably reduces the complexity of building protocol parsers, and has

helped us to quickly developbro parsers for complicated protocols such as CIFS/SMB, DCE/RPC,

and NCP in the study of enterprise traffic.

5

Semantic-aware Traffic Anonymization

Lack of packet traces has always been at the top of the list of impediments to network measurements

[90, 5]. Lucky researchers may collect traces at their own institutions; unlucky ones have to live with

nothing but synthetic traces. In an ideal world of network research, there would be packet traces

of any type of traffic, with full payloads, collected on operational networks all over the world, and

all available to the public. It would not only mitigate the problem of limited visibility in Internet

measurements, but also allow comparing different techniques with the same data set and repeating

experiments conducted by other researchers. A major reasonwe are not in such a world is that packet

traces contain a lot of private information that cannot be released to the public.Trace anonymization

is a process that removes sensitive information from tracesin the hope that the remaining information

is useful in measurements. Before the work presented in thisdissertation, trace anonymization had

been limited to TCP/IP headers, crippling research on Internet traffic semantics.

With the ability to understand network traffic at application semantic level, it is natural to go one step

further—to build a programming environment fortransformingnetwork traffic, again, at application

semantic level [80]. The goal is to allow a simplebro script to perform tasks such as replacing

user ID “Alice” with “Bob”, inserting new HTTP headers, and substituting Web items with their

MD5 hashes. The underlying support environment makes corresponding changes at various protocol

layers to keep the traffic well-formed. With thebro trace transformation framework, we solve two

problems in trace anonymization: (1) how to find out what information is contained in the traces; (2)

how to put transformed data back together as well-formed traces. We also investigate the remaining

problem of how to obscure identities and other sensitive information through anonymizing FTP traces

from the Lawrence Berkeley National Lab for public release,and in the process, developed methods

to validate that anonymizations are both correctly specified and correctly applied.

1.3.2 Measurement Studies

Measurement of network traffic semantics is a largely unexplored area. Using the tools and techniques

developed in this dissertation, we conducted first-time studies of two specific aspects of network traffic.

As defined shortly below,Internet background radiationtraffic is mostly generated by malicious programs

(malware) that scan Internet addresses. Our study provides a broad view of ongoing activities of such

6

Internet malware, previously analyzed only on an individual basis. The enterprise traffic study, on the other

hand, offers a broad look at the normal network trafficwithin an institution or corporation. It shows how the

network traffic in a local, managed, and semi-closed environment differs from the well-studied wide-area

Internet traffic.

Internet Background Radiation

Monitoring any portion of the Internet address space reveals incessant activity. This holds true even

when monitoring traffic sent to unused addresses, which we term background radiation. While the

general presence of background radiation is well known to the network operator community, the

measurement presented in this dissertation is the first broad characterization of the radiation traffic

[81]. One of our main objectives is to discover theintentionsbehind the packets sent to unused

addresses. We buildnetwork telescopes—application responders on unused addresses to engage in

conversation with the radiation sources, mimicking ordinary personal computers, till the intentions

are revealed. As most radiation sources turn out to be Internet malware—worms and autorooters,1

Internet background radiation offers a comprehensive and up-to-date view of Internet malware that

scans the Internet for victims. We characterize the radiation traffic from various angles, for example,

how many are active, how they probe and break into systems, and how they evolve over time.

Enterprise Network Traffic

Like background radiation,enterprise network trafficis also a previously unexplored realm. While

many enterprise networks—institution/corporation internal networks—are connected to the Internet,

activities occurringwithin internal networks usually do not appear in the wide-area traffic. Therefore,

while the wide-area traffic had been well studied, little wasknown about the workload of enterprise

internal networks. Because an enterprise network is managed by a single authority in a semi-closed

environment, its workload may differ significantly from that of the wide-area network. The lack of

measurement is a bit striking given the pressing problem of developing enterprise network manage-

ment technologies. Modern enterprise networks have grown quite large and complex and become

hard to manage. The largest enterprise networks today are larger than the entire Internet fifteen years

ago—when the first measurements of the wide-area traffic werecarried out. In this dissertation we

1“autorooter” is a jargon referring to software that automates the process of scanning and cracking systems to gain privileged
access to computers.

7

present a first broad overview of modern enterprise traffic with traces from Lawrence Berkeley Na-

tional Lab [77]. Our main goal is to provide a first sense of ways in which modern enterprise traffic

is similar to wide-area Internet traffic, and ways in which itis quite different. We find enterprise

internal traffic dominated by applications not commonly found in wide-area Internet traffic; and take

a first look into these previously unstudied applications.

1.3.3 Thesis Outline

In summary, this dissertation advances our understanding of the meaning of Internet traffic by (1) build-

ing tools for developing application protocol parsers and traffic anonymizers, allowing wider, semantic

access to Internet traffic beyond administrative limits; and (2) characterizing previously unstudied aspects

of Internet traffic, including Internet background radiation and enterprise network traffic.

The rest of this dissertation is organized as follows. Chapter 2 gives an overview of the semantic struc-

ture of Internet traffic and the process of semantic traffic analysis. Chapter 3 then describes a high-level,

declarative language for building a critical component of atraffic analysis platform—application protocol

parsers. Chapter 4 presents a programming environment for packet trace transformation and anonymiza-

tion. Chapter 5 and 6 present our characterization of Internet background radiation and modern enterprise

traffic, respectively. This dissertation concludes in Chapter 7. As various areas of networking research

overlap with different aspects of this dissertation, the related work is discussed separately in each Chapter.

8

Chapter 2

Traffic Semantic Analysis andbro

As many parts of this thesis are built aroundbro —a network traffic processing platform, this chapter

presents an overview of the traffic semantic analysis process. It identifies where the challenges are, de-

scribes how they are handled bybro , and reports what open problems remain.

2.1 Traffic Capture

Measuring network traffic semantics starts with tapping network links to capture the traffic transmitted on

the link. The captured traffic is usually in the form of a sequence of packets. Depending on the capture

mechanism, the packets may contain various link layer headers. After stripping link layer headers, however,

one can usually obtain packets in the Internet Protocol (IP)[93]. For simplicity, this dissertation assumes

that a traffic analyzer can tap network links and observe all the IP packets flying by.1

2.2 Extracting High Level Traffic Representation

With traffic captured, the next step is to translate packets to a high-level representation of the traffic appli-

cation behaviors. The translation process involves the following three steps.

1In practice, however, this assumption turns out to be a little over-optimistic. Sometimes the raw traffic contains too much sensitive
information to be analyzed directly. Instead, the traffic data must be first “anonymized” to remove any sensitive information. In other
cases high traffic volumes prohibit capture of full traffic and/or cause packet drops. People usually apply packet filtersto capture
traffic selectivelyand yet packet drops are still a common problem. However, fornow suppose that the preceding assumption does
hold.

9

2.2.1 TCP/IP Processing

The captured IP packets are the same as those seen by network routers. Each IP packet has a header,

analogous to the envelope of a letter, with source and destination addresses and other relevant information

for the packet to travel from the source host to the destination host. The format of IP packet payload—the

contents of the “letter”—is defined by transport layer protocols.

If we consider packets between a pair of end hosts, the transport layer is responsible for carrying

data between applications. Multiple applications on the same end host are indexed byport numbers; thus

between the same pair of hosts there can be multiple channels, which are termedconnections. There are two

main transport layer protocols, TCP [94] and UDP [92]. Each TCP connection carries two streams of bytes,

one on each direction, between applications; each UDP connection2 carries two streams of datagrams. The

structure of bytes and datagrams is determined by their respective applications.

As IP, TCP, and UDP are well known and simple protocols, it is relatively straightforward to extract

what bytes or datagrams—which we termapplication level data—are sent between two applications with

IP packets as input. To discover the meaning of these bytes, for example, whether the string “root ”

represents an administrator user ID or something else, one needs to determine (1) which applications are

sending the bytes, and (2) how the bytes in the TCP byte streams or UDP datagrams are organized according

to the specific application protocol. These are discussed below.

2.2.2 Recognizing Applications

The usual way to tell which applications are generating the traffic is by the port number of the server appli-

cation, as ports are assigned to applications running on a host. (Note that we are interested in recognizing

the general application category, such as Web vs. SMTP, instead of any particular software implementation,

such as IIS vs. Apache Web server.)

Ports between 1 and 1024 are called “well-known ports” and are assigned to applications by IANA

[46]. For instance, port 80/tcp is assigned to Web servers, and 53/udp for DNS servers. The assignment of

well-known ports is a convention between clients and servers, so that the client applications, such as Web

browsers, know to which port to send data for a particular service. There is nothing preventing one from

running a mail server on the Web port, as long as the clients know to which port to connect.

2The UDP protocol is “connectionless”, but we can consider each bidirectional pair of UDP datagram flows between the same pair
of ports as a “connection”.

10

There are also many applications that use ports above 1024. For example, the peer-to-peer application

BitTorrent runs its “tracker” on port 6969. Some such ports are well-known, though they are not officially

assigned.

Moreover, some applications do not run on any fixed port, but rely on some port mapping mechanism

to direct clients to servers. For example, a client that wants to contact the Windows Messaging Service on

another host first connects to the DCE/RPC port mapping server on port 135/tcp, which tells the client that

the messaging service runs on portX; the client then connects to portX for the particular service. In such

cases, one needs to parse the port mapping process to obtain the port-application mapping.

In summary, distinguishing applications by ports works well for a large fraction of network traffic (as

evidenced by use of port-based firewalls as a basic tool for network defense). In some cases, it needs to be

supplemented with semantic analysis of port mapping traffic. On the other hand, there is significant benefit

in recognizing the part of traffic generated by well-known applications running on non-standard ports. Such

traffic can potentially be moreinterestingbecause it might have been set up to evade detection and analysis.

Ideally we would like to recognize applications bycontentsrather than byconvention(well-known ports),

Recent efforts by Dreger et al. [26] are an important step on this direction. In theory the problem is not

completely solved because writing precise protocol recognizers requires manually deriving heuristics from

protocol standards and tuning them with real traffic. However, in practice the heuristics tend to be quite

robust and stable, and the problem is largely solved for well-known protocols.

2.2.3 Parsing Application Protocols

The second part of analyzing application level data involves dissecting byte streams and datagrams accord-

ing to application protocols and generating high-level representations of the traffic. The task appears to be

straightforward, yet in reality there are several major challenges.

First, there are a large number of application protocols. For instance,Ethereal [29], a network traffic

monitor known for handling a wide range of application protocols, was able to parse 724 protocols as of

November 2005. But the protocols handled byEthereal represent only a small portion of all application

protocols found in the Internet traffic [47].

Moreover, certain protocols are used for a wide range of purposes and thus are very complex. For

example, Windows systems provide almost all their services, including file sharing, messaging, user au-

thentication, and printing, through the combination of theCIFS protocol [19] and the DCE/RPC services.

11

There are 72 message types in the CIFS protocol, each type having several dozens of fields. The DCE/RPC

protocol, including its various services, is even more complicated.

The number and complexity of protocols calls for a quick and reliable way to build protocol parsers.

Second, there is no public documentation for some protocols. Many protocols are standardized and well

documented, but for some it is difficult to find any documentation in the public domain, either because the

protocols are proprietary or just because the software vendor does not bother to make any documentation

available. The vast number of protocols and lack of documentation makes it an intriguing research problem

to reverse-engineer protocols automatically.

Third, the actual network traffic does not always conform to the protocols. Examples range from

syntactic miscues, such as using a singleCRor LF, instead of the standardCR+LF, as link breaks, to

behavior deviations such as pipelining all SMTP commands, regardless whether they are pipelinable or

not. To handle such deviations, the protocol parsers must berobust enough tolerate certain nonconformant

behaviors and be able to recover from others.

Related to protocol irregularity is the problem of dealing with missing data. Traffic data can be incom-

plete due to packet drops in capturing network traffic or in observing long-standing connections that are

established before traffic capture starts. A promising direction in handling incomplete traffic data is to build

re-synchronizationmechanisms into protocol analyzers, so that the analyzers can make good guesses as to

where the messages are aligned and the state of the application session—for example, whether an SMTP

connection is in command/reply conversation or in the middle of data transfer, and thereby recover from

missing data.

Finally, there is the question of how to build protocol parsersreusablefor a variety of analysis tasks with

different requirements. To illustrate the problem,Ethereal provides a graphical user interface for people

to investigate the traffic interactively, but it lacks support for automated traffic analysis.Ethereal ’s

parsers are difficult to reuse as they are tightly integratedwith the rest of the system. Without parser reuse,

it will take a significant amount of effort to build one’s own parsers for each different type of analysis.

2.3 Traffic Analysis and Manipulation

With protocol parsers we are able to obtain a semantic level representation of the traffic. In the case ofbro ,

the representation is in the form of one or multiple application leveleventsfor each packet. For example,

12

a bro eventmay represent an HTTP request, a DNS query, or begin or end of aconnection (Figure 2.1).

The next question is how to utilize the high-level traffic representation and build specific traffic analyzers.

bro ’s approach is to provide aprogramming environmentfor traffic analysis. Traffic analysis is pro-

grammed as a collection ofeventhandlers in thebro scripting language. Thebro language is Turing-

complete, procedural, and strongly typed. It has built-in features commonly used in network traffic analysis,

such as hash tables, regular expressions, and asynchronousevents.

Consider, for example, building an Email relay detector that monitors traffic at the gateway of an en-

terprise network to detect Emails relayed through the enterprise network, based on the SMTP Message-ID

headers [48]. Figure 2.2 shows a short script for detecting SMTP (Email) relays. It detects relays by

looking for Email message ID’s (as appear in the “MESSAGE-ID” header) that appear in multiple SMTP

connections. The script maintains a mapping of message ID’sto the first connections in which the ID’s

appears in hash tablemsg id table . (A table entry will expire and be evicted from the table if itis not

accessed in a day.) The table is updated in event handlermime all headers .

bro generates amime all headers event for each set of Email headers it encounters in an SMTP

connection. The event carries two parameters—the connection in which the headers appear and the set of

headers. Each header is represented by arecord type with two members:name andvalue . The event

handler in the script looks for headers of name “MESSAGE-ID”and looks up every message ID (found in

the corresponding header value) in hash tablemsg id table . It inserts message ID’s of first appearance

to the table; for message ID’s that have appeared before the script calls functioncheck relay for further

processing.

This simple example highlights a few couple of key characteristics of traffic analysis in thebro pro-

gramming environment. First, the analysis scripts operateon high-level data elements, such as names and

values of Email headers, instead of packets or bytes. Second, the analysis can keep state across events and

connections and may use data structures such as records and hash tables. Furthermore, the programming

environment provides mechanisms to prevent accumulation of stale state—a common problem in network

traffic analysis—by automatically expiring stale table entries.

The main challenge in building thebro programming environment is to understand requirements of

traffic analysis and to design language features or run-timeenvironment elements to meet the requirements.

For example, hash tables are commonly used to keep state across events. For instance, the SMTP relay

detection script keeps a table of seen message ID’s. It is often necessary to make table entries expire over

13

event new_connection(c: connection);
event connection_finished(c: connection);

event http_reply(c: connection, version: string, code: co unt, reason: string);
event smtp_request(c: connection, is_orig: bool, cmd: str ing, arg: string);

Figure 2.1: Declarations ofbro events

A mapping from Email message ID to connection.
global msg_id_table: table[string] of connection &read_e xpire = 1 day;

event mime_all_headers(c: connection, hlist: mime_heade r_list)
{
for (i in hlist)

{
local h = hlist[i];
if (h$name == "MESSAGE-ID")

{
local msg_id = h$value;
Have we seen this message ID before?
if (msg_id !in msg_id_table)

msg_id_table[msg_id] = c;
else

check_relay(msg_id, msg_id_table[msg_id], c);
}

}
}

Figure 2.2: Sample Bro script: (a simplified version of) Email relay detection

14

time to limit memory consumption.bro scripts may specify a read or write expiration interval on a hash

table and, optionally, a function to call when an entry expires.

Going one step further beyond traffic analysis, this dissertation also presents a framework for semantic-

level traffic manipulation, built on top of thebro system. With the framework, a shortbro script can

insert or remove messages or headers, transform protocol fields, and write the resulting traffic data to a

trace file. The trace will look as if the actual traffic was captured, i.e. the protocol fields (such as lengths

and checksums) will remain consistent with each other afterthe transformation. Such a traffic manip-

ulation mechanism provides a foundation for application-level trace anonymization (discussed further in

Chapter 4).

2.4 Summary

With this overview we can see that traffic semantic analysis is a new field with many areas yet to be ex-

plored or advanced. The important open issues include recognizing applications by content, dissecting

numerous and complex application protocols, recovering from errors, designing language features to facil-

itate analysis programming, and manipulating and anonymizing traffic.

Our main vehicle to explore these areas is Bro—a powerful traffic semantic analysis tool. In the process

of building protocol analyzers for Bro, we also use Bro to investigate various kinds of network traffic and

to anonymize traffic data. Consequently the dissertation aims to make contributions in multiple areas. It in-

cludes both techniques to facilitate analysis of traffic semantics and studies of Internet traffic at application

semantic level.

15

Chapter 3

binpac—A yacc for Writing

Application Protocol Parsers

A key step in the semantic analysis of network traffic is to parse the traffic stream according to the high-level

protocols it contains. This process transforms raw bytes into structured, typed, and semantically meaningful

data fields that provide a high-level representation of the traffic. However, constructing protocol parsers by

hand is a tedious and error-prone affair due to the complexity and sheer number of application protocols.

This chapter presentsbinpac , a declarative language and compiler designed to simplify the task of

constructing robust and efficient semantic analyzers for complex network protocols. It discusses the design

of thebinpac language and a range of issues in generating efficient parsers from high-level specifications.

We have usedbinpac to build several protocol parsers for the “bro ” network intrusion detection system,

replacing some of its existing analyzers (handcrafted in C++), and supplementing its operation with ana-

lyzers for new protocols. We can then usebro ’s powerful scripting language to express application-level

analysis of network traffic in high-level terms that are bothconcise and expressive.binpac is now part of

the open-sourcebro distribution.

The rest of this chapter is organized as follows. It begins with a discussion of background and moti-

vation in Section 3.1, and related work in Section 3.2. Section 3.3 discusses specific characteristics of ap-

plication protocols compared to languages targeted by traditional parser-generators. Section 3.4 describes

the binpac language for specifying protocol syntax and the associatedsemantic analysis. Section 3.5

16

discusses the process of generating a parser from abinpac specification, including buffering of streaming

input and performing robust error detection and recovery. Section 3.6 presents our experiences with using

binpac to develop protocol parsers for thebro NIDS, and we compare their performance with that of

manually written ones. Section 3.7 summarizes the chapter.

3.1 Problem Statement

Many network measurement studies involve analyzing network traffic in application-layer terms. For ex-

ample, when studying Web traffic [7, 32] one often must parse HTTP headers to extract information about

message length, content type, and caching behavior. Similarly, studies of Email traffic [52, 130], peer-to-

peer applications [102], online gaming, and Internet attacks [81] require understanding application-level

traffic semantics. However, it is tedious, error-prone, andsometimes prohibitively time-consuming to build

application-level analysis tools from scratch, due to the complexity of dealing with low-level traffic data.

We can significantly simplify the process if we can leverage acommon platform for various kinds of

application-level traffic analysis. A key element of such a platform is application-protocol parsersthat

translate packet streams into high-level representationsof the traffic, on top of which we can then use

measurement scripts that manipulate semantically meaningful data elements such as HTTP content types

or Email senders/recipients, instead of raw IP packets. Application-protocol parsers are also useful beyond

network measurements—they form important components of network monitoring tools (e.g., tcpdump [49],

Ethereal [29], NetDuDe [58]), real-time network intrusiondetection systems (e.g., Snort [100, 101] and

bro [89]), smart firewalls, and application layer proxies.

Building application-protocol parsers might appear straightforward at first glance, given a specification

of the corresponding protocol. In practice, however, writing an efficient and robust parser is surprisingly

difficult for a number of reasons. First, many of today’s protocols are complex. For example, when an-

alyzing the predominant HTTP protocol, one has to deal with pipelined requests, chunked data transfers,

and MIME multipart bodies. The NetWare Core Protocol [95]—acommon protocol used for remote file

access—has about 400 individual request types, each with a distinct syntax. Second, even for simpler pro-

tocols, it is tedious and error-prone to manually write codeto parse their structure: the code must handle

thousands of connections in real-time to cope with the traffic in large networks, and protocol specifications

are seldom comprehensive (i.e., they often ignore corner-cases, which a parser nevertheless must handle

17

robustly as theydo occur in real-world traffic). In potentially adversarial environments, an attacker may

even deliberately craft ambiguous or non-conforming traffic [98, 43]. Furthermore, several severe vulner-

abilities have been discovered in existing protocol parsers ([119, 120, 121, 122])—including one which

enabled a worm to propagate through 12,000 deployments of a security product worldwide in tens of min-

utes [108, 60]—which demonstrates how difficult it is to comprehensively accommodate non-conforming

input with hand-written code.

Given the care that writing a good protocol analyzer requires, it is unfortunate that existing analyzers

are generally not reusable, because their operation is usually tightly coupled with their specific application

environments. For instance, the two major open-source network intrusion detection systems (NIDSs),

Snort [101] andbro [89], both provide their own HTTP analyzers, each exhibiting different features and

shortcomings. Ethereal contains a huge collection of protocol parsers, but it is very difficult to reuse them

for, e.g.,bro due to their quite different interfaces and data structures. Even inside a single software

product, low-level code is generally inlined rather than factored into modules. For example, the Ethereal

version 0.99 source code contains more than 8,000 instancesof incrementing or decrementing by a hard-

coded numeric constant, the vast majority of which are adjusting a pointer or a length while stepping

through a buffer. Any instance of an incorrect constant can of course result in an incorrect parsing of a

protocol, but the mistake would not be detectable at compile-time since using the wrong numeric constant

still type-checks.

We believe that the major reason for all of these difficultiesis a significant lack of abstraction. In the

programming language community, no one writes parsers manually. Instead, there are tools likeyacc and

ANTLR [83] that supportdeclarativeprogramming: one expresses the syntax of the language of interest

in a high-level meta-grammar, along with associated semantics. The parser generator then translates the

specification into low-level code automatically. In this work, we propose to use similar abstractions for

application-layer network protocols. By doing so, users building analyzers can concentrate on high-level

protocol semantics, while at the same time achieving correctness, robustness, efficiency, and reusability.

However, we observe that existing parser-generation toolsare not suitable for parsing network proto-

cols. Common idioms of network protocols, such as data fieldspreceded by their actual length (sometimes

not adjacent), cannot be easily expressed as a context-freegrammar. Furthermore, when analyzing proto-

cols, we often need to correlate across the two directions ofa single connection; sometimes even syntax

18

depends on the semantics of the byte stream in the other direction. Finally, parsers generated by these tools

process input in a “pull” mode and thus cannot concurrently parse multiple, incomplete input streams.

To improve this situation we designed and implementedbinpac —a declarative language and its

compiler—to simplify the task of building protocol analyzers. Users specify parsers by defining mes-

sage formats, dependencies between message fields, and additional computations to perform (e.g., printing

ASCII records or triggering further analysis) upon parsingdifferent message elements. The compiler trans-

lates the declarations into parsers in C++.binpac takes care of all the common and tedious (and thus

error-prone) low-level tasks, such as byte-order handling, application-layer fragment reassembly, incre-

mental input, boundary checking, and support for debugging. binpac also facilitates protocol parser

reuseby supporting separation of different components of analyzers. One can readily plug in or remove

one part of a protocol analyzer without modifying others. Such separation allows analysis-independent

protocol specifications to be reused by different analysis tasks, and simplifies the task of protocol extension

(for example, adding or removing NFS to the RPC parser).

Our goal is to ensure that the generated parsers are as efficient as carefully hand-written ones, so that

they can handle large traffic volumes. Our main strategy is toleveragedata dependency analysis—to tailor

the generated parser to the analysis requirements atcompilation time. For example,binpac identifies

appropriate units for buffering of incomplete input based on the data layout specified by the user.

To demonstrate the power of our approach, we have usedbinpac to build several protocol parsers

for the bro NIDS, including HTTP, DNS, CIFS/SMB, DCE/RPC, NCP, and Sun RPC. (We emphasize

thatbinpac is not however tied in any significant way tobro .) Having written many protocol analyzers

manually in the past, our experience is thatbinpac greatly eases the process. In future work we envi-

sion further using thesebinpac specifications to compile analyzers to alternative execution models: in

particular, directly to custom hardware, without any intermediate C++ code, as sketched in [85].

3.2 Related Work

Considerable previous work has addressed facets of describing data and protocol layouts using declarative

languages. First, there are various Interface DescriptionLanguages for describing the service interface for

specific protocols. For instance, the External Data Representation Standard (XDR) [111] defines the way

to describe procedure parameters and return values for the Remote Procedure Call (RPC) protocol [110].

19

The XDR compiler generates the underlying code to marshall/unmarshall data to/from raw bytes. Targeting

a wider range of protocols, ASN.1 [8] is a language for describing the abstract syntax of communication

protocols, including a set of encoding schemes. Unlikebinpac , these languages dictate the underlying

data representation, whilebinpac tries to describe the data layout of a wide range of existing (thus,

already designed) protocols that span a variety of formats and styles.

Augmented BNF (ABNF) [20] is used in many protocol standardsto specify the protocol syntax. How-

ever, the goal of ABNF is to provide a concise, yet incomplete, way to define a protocol, rather than for

complete protocol specification from which one can generatea parser. In addition, ABNF targets ASCII

protocols.

People have also designed languages for writing network protocol implementations, including both

protocol parsing and processing logic. Abbott et al. [1] proposed a language for designing and implement-

ing new network protocols. Prolac [56] is a language for writing modular implementations of networking

protocols such as TCP. Biagioni et al. [14] experimented with implementing a TCP/IP network stack in

ML. These efforts differ frombinpac in that the goal is to build end-system implementations, instead of

analyzers, of protocols. They also target protocols at the network and transport layers, rather than the wide

range of application protocols.

More related tobinpac , there are efforts in the abstract description ofexistingprotocol syntax. Mc-

Cann and Chandra introduced PACKETTYPES [65], a language that helps programmers to handle binary

data structures in network packets as if they were C types. Borisov et al. designed and implemented

GAPA [15], a framework for application protocol analyzers.Its protocol specification language, GAPAL,

is based on (augmented) BNF, but supports both ASCII and binary protocols. A protocol specification

in GAPAL includes both protocol syntax as well as analysis state and logic. While GAPA andbinpac

both target application-level traffic analysis in general,they are designed with different sets of goals and

therefore take quite different approaches. First, GAPA targets traffic analysis at individual end hosts, and

uses an interpreted, type-safe language. Thebinpac compiler, on the other hand, generates C++ parsers

intended to process traffic of much higher volume at network gateways. Second, GAPA is a self-contained

system that handles both protocol parsing and traffic analysis with a single script.binpac is designed as

a building block for the construction of parsers that can be used by separate traffic analysis systems such

asbro , and thebinpac language stresses separation of parsing and analysis.

20

Beyond network protocols, there are a number of languages for describing data formats in general.

DATASCRIPT [10] is a scripting language with support for describing and parsing binary data. Developed

more recently, PADS is a language for describing ad hoc data formats [34]. PADS’s approach to data

layout description is similar to that ofbinpac in a number of ways, such as the use of parameterized

types. On the other hand, it is designed for a more general purpose than parsing network protocols, so it

lacks abstractions and features particular to processing communication traffic, and the generated parsers

cannot handle many input streams simultaneously. Related to PADS, Fisher et al. [35] described a calculus

for reasoning about properties and features of data description languages in general. The calculus is used to

discover subtle bugs, to prove the type correctness of PADS,and to guide the design of language features.

Hand-written application-layer protocol parsers are an important part of many network analysis tools.

Packet monitors such as tcpdump [49], Ethereal [29], and DSniff [27] display protocol information. Net-

DuDe [58] provides both visualization and editing of packettraces. NIDS such as Snort [101],bro [89],

and Network Flight Recorder [75] analyze protocol communications to detect malicious behavior. Protocol

parsers are also components of smart firewalls and application-layer proxies.

3.3 Characteristics of Application Protocols

In this section we examine characteristics of network protocols which differ significantly from the sorts

of languages targeted by traditional parser-generators. We discuss them in terms of syntax and grammar,

input model, and robustness.

3.3.1 Syntax and Grammar Issues

In terms of syntax and grammar, application-layer protocols can be broadly categorized into two classes:

binary protocols and human-readableASCII protocols. The messages of binary protocols, like DNS and

CIFS, consist of a (not necessarily fixed) number of datafields. These fields directly map to a set of basic

datatypessuch as integers and strings. Clear-text ASCII protocols, on the other hand, typically restrict

their payload to a human-readable request/reply structure, using only printable ASCII-characters. Many

of these protocols, such as HTTP and SMTP, are primarily line-based, i.e., requests/replies are separated

by carriage-return/line-feed (CR/LF) tuples, and their syntax is usually specified with grammar production

rules in protocol standards.

21

While these two types of protocols appear to exhibit quite distinct language characteristics, we in fact

find enough underlying commonality between binary and ASCIIprotocols that we can treat both styles in

a uniform fashion within declarativebinpac specifications, as we will develop below. On the other hand,

there are some critical differences between the grammars ofnetwork protocols (binary as well as ASCII)

and those of programming languages:

Variable-length arrays. A common pattern in protocol syntax is to use one field to indicate the length of

a later array. Such a length field often delimits the length ofa subsequent (not necessarily contiguous) byte

sequence, e.g., the HTTP “Content-Length” field, but can also indicate the number of complex elements,

such as in the case of DNS question and answer arrays. A conceptual variant of variable-length arrays is

padding, i.e., filling a field with additional bytes to reach a specificlength.

As long as the length-field has constant width, it is theoretically possible to describe arrays and padding

with a context-free grammar. However, doing so is cumbersome and leads to complex grammars.

Selecting among grammar production rules.Both binary and ASCII protocols often use one or multiple

data fields to select the interpretation of a subsequent element from a range of options. For example, DNS

uses a type field to differentiate between various kinds of “resource records”. HTTP uses multiple header

fields to determine whether the message body is a consecutivebyte sequence, a sequence of byte chunks,

or multipart entities. Sometimes the selector even comes from the opposite flow of the connection, e.g., the

syntax of a SUN/RPC reply depends on program and procedure fields in the corresponding RPC call [110].

In general such a selector can be easily expressed in a grammar by parameterizingnon-terminal symbols—

a very limited form of context-sensitive grammar which we describe later in Section 3.4.1, However it is

very hard to specify a selector with acontext-freegrammar.

Encoding. In binary protocols, record fields directly correspond to values. Therefore it is crucial to con-

sider the correct byte-encoding when parsing fields. For example, integers are often either encoded in

big-endian or little-endian byte order. Similarly, stringcharacters may be given in a (single-byte) ASCII

encoding or in a (two-byte) Unicode representation. To complicate the problem, the byte order need not be

fixed for a given protocol. For example, there is a field in DCE/RPC header which explicitly indicates the

byte order in which subsequent integers are encoded. In CIFS, a similar field gives the character encoding

for strings (which in fact does not apply to all strings: certain ones are always in ASCII; similarly in CIFS,

22

not all integers use the same byte-order). Handling data encoding is a tedious and error-prone task when

writing a parser manually, and it is hardly expressible by means of an LALR(1) grammar1.

3.3.2 Concurrent Input

A fundamental difference between a protocol parser and ayacc -style parser is their input model. A

protocol-parser has to parse many connections simultaneously and, within each connection, the two flows

on opposite directions,in parallel. For example, in persistent HTTP connections each request needs to

be associated with the correct reply. Similarly, the syntaxof a SUN/RPC reply depends on program and

procedure fields in the corresponding RPC call [110].

Parsers generated byyacc/lex process input in a “pull” fashion. That is, when input is incomplete,

the parser blocks, waiting for further input. Thus, a threadcan handle only one input stream at a time.

To handle flows simultaneously without spawning a thread foreach one, the parsers must instead process

input incrementallyas it comes in, partially scanning and parsing incomplete input and resuming where the

analysis left off when next invoked.

3.3.3 Robustness

Parsing errors are inevitable when processing network traffic. Errors can be caused by irregularity in real-

world traffic data (protocol deviations, corrupted contents) as well as by incomplete input due to packet

drops when capturing network traffic, asymmetric routing (so that only one direction of a connection is

captured), routing changes, or “cold start” (a connection was already underway when the monitor begins

operation). Unlike compilers, protocol parsers cannot simply complain and stop processing, but must

robustly detect and recover from errors. This is particularly important if we consider the presence of

adversaries: an attacker might specially craft traffic to lead a protocol parser into an error condition.

1LALR(1) grammar stands for Look-Ahead LR(1) grammar—a grammar family accepted by common parser generators such as
yacc . Please see [3] for a detailed discussion of LALR and LR grammars.

23

3.4 ThebinpacLanguage

In the previous section we examined the grammatical characteristics of network protocols. This section

describes the design of thebinpac language and its compiler, which are specifically tailored to address

these properties.

We begin with a description ofbinpac ’s data modelin Section 3.4.1, corresponding to production

rules in BNF grammars. In Section 3.4.2 we discuss state-holding, in Section 3.4.3 how to add custom

computation, and finally in Section 3.4.4 the “separation ofconcerns” to provide reusability.

Throughout the discussion we will refer to the examples in Figures 3.1 and 3.2, which show speci-

fications of HTTP and DNS parsers inbinpac , respectively. We use them to illustrate features of the

binpac language. Note that the HTTP parser shown in Figure 3.1 iscompleteby itself (though simplified

from the fully-featured one we built forbro , and evaluate below), except for the MIME-decoding of HTTP

bodies and escape sequences for URIs. The former takes significant additional work to add; the latter can

be incorporated easily by processing the raw, extracted URIwith an additional function call. Due to space

limitations, we only show an excerpt of the DNS parser, though this includes the technically most difficult

element of parsing the protocol, namely compression-by-indirection of domain names.

In the language, text between %.*{ and %} embeds C/C++ code.binpac keywords reflecting op-

tional attributes start with “&” (e.g.,&oneline). Keywords starting with “$”, such as$context and

$element , are macros instantiated during parsing. In the examples, we highlightbinpac keywords

(except for elementary types, introduced below) using boldslant fonts. Table 3.4 summarizes thebinpac

language constructs.

3.4.1 Data Model

binpac ’s data model provides integral and composite types which allow us to describe basic patterns in

protocol data layout, parameterized types to pass information between grammar elements, and derivative

data fields to store intermediate computation results. We discuss these in turn.

24

Language Construct Brief Explanation Section Example

%header { ... % } Copy the C++ code to the generated header
file

Fig. 3.1, #15

%code{ ... % } Copy C++ code to the generated source file
%member{ ... % } C++ declarations of private class members of

connection or flow
§3.4.2 Figure 3.4

analyzer ... withcontext Declare the beginning of a parser module and
the members of$context

§3.4.2 Fig. 3.1, #1

connection Define a connection object §3.4.2 Fig. 3.1, #37
upflow/downflow Declare flow names for two flows of the con-

nection
§3.4.2 Fig. 3.1, #38

flow Define a flow object §3.4.2 Fig. 3.1, #40
datagram = ... withcontext Declare the datagram flow unit type §3.4.2 Fig. 3.2, #64
flowunit = ... withcontext Declare the byte-stream flow unit type §3.4.2 Fig. 3.1, #41
enum Define a “enum” type Fig. 3.1, #5
type ... = Define abinpac type §3.4.1 Fig. 3.1, #11
record Record type §3.4.1 Fig. 3.1, #49
case ... of Case type: representing an alternation among

case field types
§3.4.1 Fig. 3.1, #45

default The default case §3.4.1 Fig. 3.1, #103
〈type 〉[] Array type §3.4.1 Fig. 3.1, #87
RE/.../ A string matching the given regular expres-

sion
§3.4.1 Fig. 3.1, #11

bytestring An arbitrary-content byte string §3.4.1 Fig. 3.1, #73
extern type Declare an external type §3.4.1 Fig. 3.1, #13
function Define a function §3.4.2 Fig. 3.2, #67
refine typeattr Add a type attribute to thebinpac type §3.4.4 Fig. 3.5
〈type 〉 withinput 〈input 〉 Parse〈type〉 on the given〈input〉 instead of

the default input
§3.4.1 Fig. 3.2, #59

&byteorder Define the byte order of the type and all en-
closed types (unless otherwise specified)

§3.4.1 Fig. 3.2, #7

&check Check a predicate condition and raise an ex-
ception if the condition evaluates to false

§3.5.2 Fig. 3.2, #34

&chunked Do not buffer contents of the bytestring, in-
stead, deliver each chunk as$chunk to
&processchunk (if any is specified)

§3.4.1 Fig. 3.1, #100

&exportsourcedata Makes the source data for the type visible
through a member variablesourcedata

§3.4.1 Fig. 3.2, #7

&if Evaluate a field only if the condition is true Fig. 3.2, #16
&length = ... Length of source data should be ... §3.4.1 Fig. 3.1, #101
&let Define derivative types §3.4.1 Fig. 3.1, #63
&oneline Length of source data is one line §3.5.1 Fig. 3.1, #63
&processchunk Computation for each$chunk of bytestring

defined with&chunked
§3.4.1

&requires Introduce artificial data dependency
&restofdata Length of source data is till the end of input §3.4.1 Fig. 3.1, #73
&transient Do not create a copy of the bytestring §3.6
&until End of an array if condition (on$element

or $input) is satisfied
§3.4.1 Fig. 3.1, #87

Table 3.1: Summary ofbinpac language constructs.

25

1 analyzer HTTP withcontext { # members of $context
2 connection: HTTP_Conn;
3 flow: HTTP_Flow;
4 };
5 enum DeliveryMode {

6 UNKNOWN_DELIVERY_MODE,
7 CONTENT_LENGTH,
8 CHUNKED,
9 };

10 # Regular expression patterns
11 type HTTP_TOKEN = RE/[ˆ()<>@,;:\\"\/\[\]?={} \t]+/;
12 type HTTP_WS = RE/[\t] * /;
13 extern type BroConn;
14 extern type HTTP_HeaderInfo;
15 %header{
16 // Between %.*{ and %} is embedded C++ header/code
17 class HTTP_HeaderInfo {

18 public:
19 HTTP_HeaderInfo(HTTP_Headers * headers) {

20 delivery_mode = UNKNOWN_DELIVERY_MODE;
21 for (int i = 0; i < headers->length(); ++i) {

22 HTTP_Header * h = (* headers)[i];
23 if (h->name() == 2 "CONTENT-LENGTH") {

24 delivery_mode = CONTENT_LENGTH;
25 content_length = to_int(h->value());
26 } else if (h->name() == "TRANSFER-ENCODING"
27 && has_prefix(h->value(), "CHUNKED")) {

28 delivery_mode = CHUNKED;
29 }

30 }

31 }

32 DeliveryMode delivery_mode;
33 int content_length;
34 };
35 %}
36 # Connection and flow
37 connection HTTP_Conn(bro_conn: BroConn) {

38 upflow = HTTP_Flow(true); downflow = HTTP_Flow(false);
39 };
40 flow HTTP_Flow(is_orig: bool) {

41 flowunit = HTTP_PDU(is_orig)
42 withcontext(connection, this);
43 };
44 # Types
45 type HTTP_PDU(is_orig: bool) = case is_orig of {

46 true -> request: HTTP_Request;
47 false -> reply: HTTP_Reply;
48 };
49 type HTTP_Request = record {

50 request: HTTP_RequestLine;
51 msg: HTTP_Message;
52 };
53 type HTTP_Reply = record {

54 reply: HTTP_ReplyLine;
55 msg: HTTP_Message;
56 };

Figure 3.1: A HTTP parser inbinpac with Bro event generation, complete except for MIME and escape-
sequence processing (Part 1)

26

57 type HTTP_RequestLine = record {

58 method: HTTP_TOKEN;
59 : HTTP_WS; # an anonymous field has no name
60 uri: RE/[[:alnum:][:punct:]]+/;
61 : HTTP_WS;
62 version: HTTP_Version;
63 } &oneline, &let {

64 bro_gen_req: bool = bro_event_http_request(
65 $context.connection.bro_conn,
66 method, uri, version.vers_str);
67 };
68 type HTTP_ReplyLine = record {

69 version: HTTP_Version;
70 : HTTP_WS;
71 status: RE/[0-9]\{3\}/;
72 : HTTP_WS;
73 reason: bytestring &restofdata;
74 } &oneline, &let {

75 bro_gen_resp: bool = bro_event_http_reply(
76 $context.connection.bro_conn,
77 version.vers_str, to_int(status), reason);
78 };
79 type HTTP_Version = record {

80 : "HTTP/";
81 vers_str: RE/[0-9]+\.[0-9]+/;
82 };
83 type HTTP_Message = record {

84 headers: HTTP_Headers;
85 body: HTTP_Body(HTTP_HeaderInfo(headers));
86 };
87 type HTTP_Headers = HTTP_Header[] &until($input.length() == 0);
88 type HTTP_Header = record {

89 name: HTTP_TOKEN;
90 : ":";
91 : HTTP_WS;
92 value: bytestring &restofdata;
93 } &oneline, &let {

94 bro_gen_hdr: bool = bro_event_http_header(
95 $context.connection.bro_conn,
96 $context.flow.is_orig, name, value);
97 };
98 type HTTP_Body(hdrinfo: HTTP_HeaderInfo) =
99 case hdrinfo.delivery_mode of {

100 CONTENT_LENGTH -> body: bytestring &chunked,
101 &length = hdrinfo.content_length;
102 CHUNKED -> chunks: HTTP_Chunks;
103 default -> other: HTTP_UnknownBody;
104 };
105 type HTTP_Chunks = record {

106 chunks: HTTP_Chunk[] &until($element.chunk_length == 0);
107 headers: HTTP_Headers;
108 };
109 type HTTP_Chunk = record {

110 len_line: bytestring &oneline;
111 data: bytestring &chunked, &length = chunk_length;
112 opt_crlf: case chunk_length of {

113 0 -> none: empty;
114 default -> crlf: bytestring &oneline;
115 };
116 } &let {

117 chunk_length: int = to_int(len_line, 16); # in hexadecimal
118 };

Figure 3.1: A HTTP parser inbinpac with Bro event generation, complete except for MIME and escape-
sequence processing (Part 2)

27

1 type DNS_message = record {
2 header: DNS_header;
3 question: DNS_question(this)[header.qdcount];
4 answer: DNS_rr(this)[header.ancount];
5 authority: DNS_rr(this)[header.nscount];
6 additional: DNS_rr(this)[header.arcount];
7 } &byteorder = bigendian, &exportsourcedata;
8 type DNS_header = record { ... };
9 type DNS_question(msg: DNS_message) = record {

10 qname: DNS_name(msg); qtype: uint16; qclass: uint16;
11 } &let {
12 # Generate bro event dns_request if a query
13 bro_gen_request: bool = bro_event_dns_request(
14 $context.connection.bro_conn,
15 msg.header, qname, qtype, qclass)
16 &if (msg.header.qr == 0); # if a request
17 };
18 type DNS_rr(msg: DNS_message) = record {
19 rr_name: DNS_name(msg);
20 rr_type: uint16; rr_class: uint16;
21 rr_ttl: uint32; rr_rdlen: uint16;
22 rr_rdata: DNS_rdata(msg, rr_type, rr_class)
23 &length = rr_rdlen;
24 } &let {
25 bro_gen_A_reply: bool = bro_event_dns_A_reply(
26 $context.connection.bro_conn,
27 msg.header, this, rr_rdata.type_a)
28 &if (rr_type == 1);
29 bro_gen_NS_reply: bool = bro_event_dns_NS_reply(...);
30 &if (rr_type == 2);
31 };
32 type DNS_rdata(msg: DNS_message, rr_type: uint16,
33 rr_class: uint16) = case rr_type of {
34 1 -> type_a: uint32 &check(rr_class == CLASS_IN);
35 2 -> type_ns: DNS_name(msg);
36 # Omitted: TYPE_PTR, TYPE_MX, ...
37 default -> unknown: bytestring &restofdata;
38 };

Figure 3.2: An (abridged) DNS parser inbinpac (Part 1)

28

39 # A DNS name is a sequence of DNS labels
40 type DNS_name(msg: DNS_message) = record {
41 labels: DNS_label(msg)[] &until($element.last);
42 };
43

44 # A label contains a byte string or a name pointer
45 type DNS_label(msg: DNS_message) = record {
46 length: uint8;
47 data: case label_type of {
48 0 -> label: bytestring &length = length;
49 3 -> ptr_lo: uint8; # the lower 8-bit of offset
50 };
51 } &let {
52 label_type: uint8 = length >> 6;
53 last: bool = (length == 0) || (label_type == 3);
54

55 # If the label is a pointer ...
56 ptr_offset: uint16 = (length & 0x3f) << 8 + ptr_lo
57 &if(label_type == 3);
58 ptr: DNS_name(msg)
59 withinput msgdata(msg.sourcedata, ptr_offset)
60 &if(label_type == 3);
61 };
62

63 flow DNS_Flow {
64 datagram = DNS_message withcontext (connection, this);
65

66 # Returns the byte segment starting at <offset> of <msgdata>
67 function msgdata(msgdata: const_bytestring,
68 offset: int): const_bytestring
69 %{
70 // Omitted: DNS pointer loop detection
71 if (offset < 0 || offset >= msgdata.length())
72 return const_bytestring(0, 0);
73 return const_bytestring(msgdata.begin() + offset,
74 msgdata.end());
75 %}
76 };

Figure 3.2: An (abridged) DNS parser inbinpac (Part 2)

29

Integral and Composite Types

A binpac typedescribes both the data layout of a consecutive segment of bytes and the resulting data

structure after parsing. Typeempty represents zero-length input. Elementary typesint8 , int16 ,

int32 represent 8-, 16-, and 32-bit integers, respectively, and so do their unsigned counterparts,uint8 ,

uint16 , anduint32 . As the specification ofHTTP ReplyLine shows (Figure 3.1), a string type can

be represented with a constant string (line 80), a regular expression (line 81), or a genericbytestring

either of a specific length (with&length , line 101) or running till the end of data (with&restofdata ,

line 92).

Elementary integer and string types map naturally to their counterparts in C++ (in the case of string,

we define a simple C++ class to denote the begin and end of the string). This is how the results are

stored and accessed, with one exception. We allow a string tobe “chunked” to handle potentially very

long byte sequences, such as HTTP bodies, with a&chunked attribute (Figure 3.1, line 100). A chunked

string is not buffered. Rather, with the&processchunk attribute one may define computation on each

chunk to process the byte sequence in a streaming fashion. For instance, to compute a MD5 checksum

for every HTTP body we may add a&processchunk as follows (assumingcompute md5 maintains

intermediate results across chunks):

http_body: bytestring &chunked,

&length = $context.flow.content_length(),

&processchunk($context.flow.compute_md5($chunk));

External C++ types, includingbool , int , and user-defined ones (declared withextern type), can

be used in computation, e.g., as types of parameters, but cannot appear as types of data fields in protocol

messages.

Users can define composite types: (1)record , a sequential collection of fields of different types;

(2) case , a union (in the C-language sense) of different types; and (3) array , a sequence of single-type

elements.binpac generates a C++ class for each user-defined type, with data fields mapped as class

members, and a parse function to process a segment of bytes toextract various data fields according to the

layout specification.

As we comparerecord andcase types with context-free grammar production rules, we can see a

clear correspondence between them: a concatenation of symbols maps to arecord type and multiple

30

production rules of a symbol map to acase type. But there is a difference in the latter mapping. In

the case of LR grammars, the choice of which production rulesto follow is determined by looking ahead

one or more symbols. In contrast, thecase type corresponds to a set of production rules withzero look-

ahead. Instead, a production rule is selected based on values of earlier fields—for example, DNS record

type determines how to parse the record contents—and, more generally, an explicit indexing expression

computed from other data fields or type parameters (Figure 3.1, line 99). This allows production rule

selection to be based on external information, and is in spirit similar to “predicated parsing” introduced in

ANTLR [83]. On the other hand, the zero-look-ahead restriction simplifies parser construction, but at the

same time poses little limitation on the range of protocols that can be specified inbinpac . The reason

that there are few protocol syntax patterns that require look-ahead, we believe, is by design of protocols.

Since protocol data is generated and processed by programs,it is usually organized in a way that simplifies

the (traditionally hand-written) implementation.

Although an array can be defined with recursive production rules, we find it a common enough idiom

in protocol syntax that it justifies a separate abstraction.In binpac , the length of an array can be spec-

ified with an expression containing references to other datafields, as in the definition ofDNSmessage

(Figure 3.2, line 3-6). An array can also be defined without a length, but with some “terminate condition”

that indicates the end of array. Such a condition is specifiedthrough the&until attribute with a condi-

tional expression. The expression can be computed from the input data to each element ($input), as in

HTTP Headers (Figure 3.1, line 87), or from a parsed element ($element), as inHTTP Chunks (line

106).

Type Parameters

As the examples of HTTP and DNS parsers show,type parameters(e.g., in typeHTTP Body , Figure 3.1,

line 98) allow one to pass information between types withoutresorting to keeping external state. This is a

powerful feature that can significantly simplify syntax specification.

31

type NDR_Format = record {
Note, field names taken from DCE/RPC spec.
intchar : uint8;
floatspec : uint8;
reserved : padding[2];

} &let {
ndr_byteorder = (intchar & 0xf0) ?

littleendian : bigendian;
};

type DCE_RPC_Message = record {
Raise an exception if RPC version != 5
rpc_vers : uint8 &check(rpc_vers == 5);
rpc_vers_minor : uint8;
PTYPE : uint8;
pfc_flags : uint8;
‘drep’--data representation
packed_drep : NDR_Format;
...

} &byteorder = packed_drep.ndr_byteorder;

Figure 3.3: Specifying dynamic byte order with&byteorder

Byte Orders

For use with binary protocols,binpac allows the user to specify the byte order using a&byteorder

attribute. Figure 3.3 shows the specification of dynamic byte-order in DCE/RPC, where at the bottom the

user specifies that the byte-order is taken from thendr byteorder field that is defined earlier.3

In most cases we also want to propagate the byte-order specification along the type hierarchy to the

other types. Conceptually we can pass byte order between types as a parameter (see Section 3.4.1), but in

practice the byte order parameter is required universally for binary protocols. Adding a parameter to each

type would be tedious and clutter the specification. To solvethis problem, we designate “byteorder” as an

implicit type parameterthat is always passed to referenced types unless it is redefined at the referenced

type. Thebinpac compiler traverses the type reference graph to find out whichtypes require byte-order

specification and adds byte order parameters to their parse functions.

We have not yet added support for ASCII vs. Unicode tobinpac , though conceptually it will be

similar to the support for byte-order.

3We discuss the definition of “derivative fields” such asndr byteorder in Section 3.4.1.

32

Derivative Fields

Sometimes it is useful to add user-definedderivative fieldsto a type definition to keep intermediate compu-

tation results (see the definition ofHTTP Chunk.chunk length in Figure 3.1, line 117), or to further

process parsing results (DNSlabel in Figure 3.2, line 58-60). Derivative fields are specified within &let

{... } attributes.

A derivative field may take one of two forms. First, a derivative field can be defined with an expression,

in the form of “<id> = <expression> ”, as in the HTTP example.

Second, it can be evaluated by mapping a type onto a piece of computed input, in the form of “<id>:

<type> withinput <input expression> ”. Here <input expression> evaluates to a se-

quence of bytes, which are passed to the parse function of<type> as input data. Suchwithinput

fields allow us to extend parsing beyond consecutive and non-overlapping pieces of original input data. For

instance, the computed input data might be (1) a reassembly of fragments (e.g. a fragmented DCE/RPC

message body), (2) a Base64-decoded Email body, or (3) a DNS name pointer, as shown in Figure 3.2, line

55-60. In the DNS example, a DNS label can be a sequence of bytes or a “name pointer” pointing to a DNS

name at some specific offset of the message’s source data. In the latter case, we define awithinput

field to redirect the input to the pointed location when parsing the DNS name (and add an attribute

&exportsourcedata to theDNSmessage to make the input visible as variablesourcedata).

The derivative members are evaluated once during parsing and can be accessed in the same way as

record or case fields in the generated C++ class. The order that derivative fields, along with non-derivative

ones, are evaluated depends on only the data dependency among fields; the order is undefined for fields that

do not depend on each other. (Note, this lack of ordering is deliberate, as it keeps the door open for future

parallelization.) On the other hand,binpac provides attributes for users to introduce artificial dependency

edges between fields, in case the user wants to ensure a certain ordering among evaluation of fields.

Derivative fields are also used to insert custom computation(such as event generation for thebro

NIDS) into the parsing process, as discussed in Section 3.4.3.

3.4.2 State Management

Up to this point we have explored various issues in describing the syntax of a byte segment. To model

the state of a continuous communication,binpac introduces notions offlow and connection. A flow

33

represents a sequence ofmessagesand state to maintain between messages. Aconnectionrepresents a

pair of flowsand state between flows. Note that hereconnectionsare not only TCP or UDP connections,

but any two-way communication sessions. For example, a DCE/RPC connectionmay correspond to a

TCP connection on port 135, a UDP session to the Windows messenger port, or a CIFS “named pipe” (a

DCE/RPC tunnel through the CIFS protocol).

As shown in the HTTP example (lines 38), the declaration of a connection consists of definitions of

flow types for each flow. The “upflow” refers to the flow from the connection originator to the responder,

and the “downflow” refers to the flow in the opposite direction. Like types, connections and flows can be

parameterized, too.

Without loss of generality, we assume a flow consists of a sequence of messages of the samebinpac

type. (If a flow consists of messages of different types, we can encapsulate the types with a case type.)

Thus one message type is specified for each flow, which we termflow unit type.

When specifying the flow unit type, we also specify how input data arrive in a flow: it may arrive as

datagrams, each containing exactly one message, or in abyte stream, where the boundary of data delivery

does not necessarily align with message boundaries, thoughthe bytes are guaranteed to arrive in order.4

The two input delivery modes are specified with keywordsdatagram andflowunit , respectively, as

we see in the examples of DNS and HTTP parsers (lines 64 and 41 respectively).

Per-Connection/Flow State

While type parameterization allows types to share informationwithin a message, in some scenarios we have

to keep state at per-connection or per-flow level. For instance, a DCE/RPC parser needs to remember onto

which interface a connection is bound, so that requests and replies can be parsed accordingly. As Figure 3.4

shows, a SUN/RPC parser keeps a per-connection table that maps session ID’s to call parameters, and when

a reply arrives, the parser can find the corresponding call parameters by looking up the reply message’s

session ID in the table. Connection/flow state is specified with embedded C++ code and corresponding

access functions defined inbinpac types.

Further abstraction of state is an important aspect of future work, as the abstraction can then expose

data dependencies in the protocol analysis and enable better parallelization or hardware realization. The

4Because the flows represent abstract flows, the delivery modeof a flow does not always indicate whether the underlying transport
protocol is TCP or UDP. For example, while the DNS abstract flow takes input as datagrams, it is used for both TCP and UDP, whereas
in the case of TCP, an addition thin layer between the DNS and TCP protocol delimits one DNS message from another in the TCP
byte stream.

34

connection RPC_Conn(bro_conn: BroConn) {
%member{

typedef std::map<uint32, RPC_Call * > RPC_CallTable;
RPC_CallTable call_table;

%}
Returns the call corresponding to the xid. Returns
NULL if not found.
function FindCall(xid: uint32): RPC_Call

%{
RPC_CallTable::const_iterator it = call_table.find(xid);
if (it == call_table.end())

return 0;
return it->second;
%}

function NewCall(xid: uint32, call: RPC_Call): void
%{
if (call_table.find(xid) == call_table.end())

call_table[xid] = call;
%}

#...
};

type RPC_Call(msg: RPC_Message) = record {
...

} &let {
Register the RPC call by the xid
newcall: void = $context.connection.NewCall(msg.xid, th is);

};

type RPC_Reply(msg: RPC_Message) = record {

...
} &let {

Find the corresponding RPC call.
call: RPC_Call = $context.connection.FindCall(msg.xid) ;

};

Figure 3.4: SUN/RPC per-connection state

35

main challenge in abstracting state lies in understanding which data structures, such as hash tables, FIFO

queues, and stacks, are commonly used in protocol parsers and providing ways to abstract them.

The $contextParameter

For types to access per-connection/flow state, the references to the corresponding connection and flow have

to be given to the type parse functions through function parameters. As the connection and flow might

be accessed by multiple types, we can propagate them as implicit parameters to relevant types, just as the

byte order flag does. More generally, state can also be maintained at granularity other than connection

or flow, e.g., at a multi-connection “session” level. We aggregate all such parameters as members of an

implicit contextparameter. The members of the context parameter are declared with analyzer <name>

withcontext at the beginning of abinpac specification (Figure 3.1, line 1). The member values are

instantiated in thewithcontext clause in the flow unit definition (Figure 3.1, line 42).

3.4.3 Integrating Custom Computation

In a yacc grammar one can embed user-defined computation, such as syntax tree generation, in the form

of C/C++ code segments, which the parser executes when reducing rules.binpac takes a slightly different

approach in integrating custom computation with parsing. The computation (e.g., generating an event in the

bro NIDS) is embedded through addingderivative fields(discussed in Section 3.4.1). As the definition of

typeHTTP Header in Figure 3.1 shows (line 94-96), abro event for a HTTP header is generated by call-

ing an external functionbro event http header in the definition of derivative fieldbro gen hdr .

The function is invoked after parsing the data fields it depends on,name andvalue of the header. Note

that these sorts of links are the only tie between thebinpac specification for HTTP and thebro system.

3.4.4 Separation of Concerns

“Separation of concerns” is a term in software engineering that describes “the process of breaking a pro-

gram into distinct features that overlap in functionality as little as possible.” [127] In the case ofbinpac ,

one would want to separate the definition of a protocol’s syntax from specifications of additional compu-

tation (such asbro event generation) on parsing results, because such separation allows us to reuse the

protocol definitions for multiple purposes and across different systems. For the same reason, one may

36

refine typeattr HTTP_Header += &let
process_header: bool =

$context.flow.bro_event_http_header(name, value);
;

Figure 3.5: Separatingbro event generation from protocol syntax specification withrefine .

also want to separate specification of sub-protocols (e.g. RPC Portmapper and NFS) from the underlying

protocol (e.g., RPC) and from each other.

binpac supports a simple but powerful syntactic primitive to allowseparate expression of different

concerns—parsing vs. analysis, a lower-level protocol vs.higher-level ones—and yet make the separated

descriptions semantically equivalent to a unified one. The language includes a “refine typeattr” primitive

for appending new type attributes, usually additional derivative fields, to existing types. For example, the

generation ofhttp header event in the HTTP example (line 94-96) can be separated from the protocol

syntax specification, as Figure 3.5 shows.

Such separation allows us to place related-but-distinct definitions in differentbinpac source files. A

similar refine casetype primitive allows insertion of new case fields to a case type definition (e.g.,

NFS Params as a new case for RPCParams), facilitating syntactical separation between closely related

protocols.

Note that the support for separation of concerns inbinpac is not complete in two ways. First, one

cannot easily change the set of parameters of a type (or function), which can limit extension of protocol

analyzers in some cases, an area for future exploration. Second,binpac does notenforceseparation of

concerns, or make it easier to describe things separately than describing them together. Thus, we rely on

binpac users practicing a discipline of separating their concernsfor better code maintenance and reuse.

3.5 Parser Generation

Two main considerations in parser generation are (1) handling incremental input on many flows at the same

and (2) detecting and recovering from errors. Below we examine them in turn.

3.5.1 Incremental Input

One approach to handle incremental input is to make the parsing process itself fully incremental, i.e., to

make the parse function ready to stop anywhere, buffer unprocessed bytes at elementary type level, return,

37

type DCE_RPC_Header = record
...
frag_length: uint16; # length of the PDU
...

;

type DCE_RPC_PDU =record
header: DCE_RPC_Header; # A 16-byte-long header
...

&length = header.frag_length;

Figure 3.6: Specifying buffering length of a type

and resume on next invocation. The parsing state of a composite type, such as arecord , can be kept by

an indexing variable pointing to the member to be parsed nextand a buffer storing unprocessed raw data.

However, incremental parsing at elementary type granularity is expensive, because boundary checks of

adjacent fields can no longer be combined. It is also unnecessary for all the protocols we have encountered.

As protocols are designed for easy processing, they often have a natural unit for buffering. Binary proto-

cols (such as DCE/RPC) often have a “length” header field thatdenotes the total message length. ASCII

protocols are usually either line-based (such as SMTP) or alternate between length-denoted and line-based

units (such as HTTP). Given such parsing boundaries, we still require support for incremental parsing, but

can carry it out at larger granularity and with reduced overhead.

Thus, binpac provides the attributes&length and &oneline to specify buffering units5.

&length gives a message’s length in bytes while&oneline triggers line-based buffering.&length

usually points to a corresponding length field in the header (Figure 3.6) but can generally take any ex-

pression to compute the length. Thebinpac compiler performs data dependency analysis to find out the

initial number of bytes to buffer before the length expression can be computed (in the case of a DCE/RPC

message, the first 16 bytes). The generated code will buffer the message in two steps, first the initial bytes

for computing the message length, then buffer up to the full length before parsing the remaining fields.

3.5.2 Error Detection and Recovery

Protocol parsers have to robustly detect and recover from various kinds of errors. Errors can be caused by

irregularity in real-world traffic data, including small syntax deviations from the standard, incorrect length

fields, corrupted contents, and even payloads of a completely different protocol running on the standard

5binpac ’s incremental analysis depends on the existence of these attributes. Viewing the record definitions as a tree of types,
each path from the root type to a leaf must contain one of them at a non-leaf node.

38

port of the parsed protocol. Errors can also result from incomplete input, such as due to packet drops when

capturing network traffic. In these cases, the parser might not know in the specific state of the dialog, e.g.,

whether what it now sees on HTTP flow is inside a data transfer or not. Errors may also arise through

incorrectbinpac specifications, e.g., through missing cases or trying to access an unparsed case field, or

due to adversarial manipulation, as discussed earlier.

Parsers generated by thebinpac compiler detect errors of various aspects, as we discuss below. When

an error is detected, the code throws a C++ run-time exception, which can then be caught for recovery.

Error Detection

Efficient Boundary Checking. Conceptually, boundary checking (whether scanning stays within the input

buffer) only need take place before evaluating every elementary integer or character type field, because all

other types are composed of elementary types. While it wouldbe easy to generate the boundary check-

ing code this way, the generated code would be quite inefficient. Instead, thebinpac compiler tries to

minimize the number of boundary checks. The basic idea is: before generating boundary checking code

for a record field, check recursively whether we can generatethe checking for the next field. If so, we

can combine them into one check. In this way, the compiler candetermine the furthest field for which the

boundary checking can be performed at a given point of parsing.

Handling dropped packets.When capturing network traffic, packet drops cannot always be avoided. They

can be caused by a high traffic volume, kernel scheduling issues, or artifacts of the monitoring environment.

Such drops lead tocontent gapsin application-level data processed by protocol parsers. Facing content

gaps, parsers not only are unable to extract data for the current message, but also may not even know where

the next message starts.

A particular, very common case of a content gap is one locatedinside a byte sequence of known

length. For example, within an HTTP entity body, a content gap can be handled without creating un-

certainty for subsequent protocol elements. If a byte sequence is defined as&chunked in a binpac

specification—and thus only passed to a potential&processchunk function, but not further referenced

by other expressions—then the generated parser can simply skip over such a gap. (If&processchunk

is defined for the sequence, the function is called with a specially marked “gap chunk” so it can take note

of the fact.) This mechanism allows us to handle most contentgaps for protocols in which the majority of

39

data is contained in long byte sequences. Hand-written protocol parsers inbro handle content gaps in a

similar way, but on an individual basis; the chunked byte string abstraction inbinpac allows them to be

handled universally for all protocols.

In general, it is trickier to handle content gaps which do notfully fall into a byte sequence of known

size. We discuss these below in Section 3.5.2.

Run-time type safety.The only access to parsing results provided tobinpac parsers is via typed inter-

faces. These leaves two aspects of type safety to enforce at run-time: (1) among multiple case fields in a

case type, the generated code ensures that only the case thatis selected during parsing can be accessed,

otherwise it throws a run-time exception; (2) access to array elements is always boundary-checked. On the

other hand, note thatbinpac cannot guarantee complete safety, as it allows arbitrary embedded C++ code

which it cannot control.

User-defined error detectionA user may also define protocol-specification error checking, using the

&check attribute. For example, one may check the data against some protocol signature (e.g., the first

4 bytes of a CIFS/SMB message should be “\xffSMB ”) to make sure the traffic data indeed reflects the

protocol.

Error Recovery

Currently errors are handled in a simple model: when the flow processing function catches an exception, it

logs the error, discards the unfinished message as well as theunprocessed data, and initializes to resume on

the next chunk of data.

One potential problem with this approach is that, for stream-based protocols, the next message might

not be aligned with the next payload chunk. In the future we plan to add support for re-discovering message

boundaries in such cases. Having such a mechanism will also help to further improve parsing performance,

as we can then skip large, semantically uninteresting messages, and re-align with the input stream after-

wards.

40

Protocol Hand-written binpac
LOC Time (seconds) Throughput LOC Time (seconds) Throughput

HTTP 1,896 538–541 244 Mbps / 36.7 Kpps 676 442–444 298 Mbps / 44.7 Kpps
DNS 1,425 37.3–37.5 18.6 Mbps / 13.3 Kpps 698 44.7–44.8 15.6 Mbps / 11.1 Kpps

Table 3.2: Number of lines of code (LOC), CPU time, and throughput of protocol analyzers

3.6 Experiences withbinpac

We have usedbinpac to add protocol parsers for CIFS/SMB, DCE/RPC (including its end-point mapping

protocol) and NCP tobro ’s traffic analysis engine.6 To comparebinpac with handwritten protocol

parsers, we also rewrote the parsers for HTTP and DNS (and SUN/RPC, which we have not yet evaluated)

in binpac . We use these latter to provide a comparison in terms of code size and performance between

binpac -based and hand-written parsers.

As Table 3.2 shows, thebinpac -based parsers for HTTP and DNS have code sizes of roughly 35–

50% that of the hand-written parsers, measured in lines of code (and the same holds in source file sizes),

respectively. We also note that for both protocols, the Bro-specific semantic analysis comprises well over

half of thebinpac specification, so for purposes of reuse, the specifications are significantly smaller than

shown.

To test the performance of the parsers, we collected a one-hour trace of HTTP and DNS traffic at

Lawrence Berkeley National Laboratory’s network gateway.The HTTP subset of the trace spans 19.8M

packets and 16.5 GB of data. The DNS subset spans 498K packetsand 87 MB. The drop rate reported by

tcpdump when recording the trace was below4 × 10
−6.

Table 3.2 shows the CPU time required for each type of analysis, giving the minimum and maximum

times measured across 5 runs, using a 3.4 GHz Xeon system running FreeBSD 4.10 with 2 GB of system

RAM. We also show the throughput in bits/sec and packets/sec, observing that on a per-packet basis, DNS

analysis is much more expensive than HTTP analysis, since many HTTP packets are simply entity data

transfers requiring little work.

For these numbers, we disabled Bro’s script-level analysisof the protocols, so the timings reflect the

computation necessary for the parser to generate the Bro events corresponding to the application activity

(including TCP/IP processing and TCP flow reassembly) with no further processing of those events.

6Given the complexity of CIFS, the parser does not yet cover the entire protocol, but only the commonly seen message types.

41

We see that thebinpac HTTP parser performs significantly better than the hand-written one. This

gain came after tuning the specification by adding a&transient attribute toHTTP header fields,

which instructsbinpac to not create a copy of the corresponding bytestring, instead, bytestrings will

point directly to portions of the input buffer. (Therefore transient strings are visible only within the parsing

function of the type, while non-transient ones, which are copied, can be accessed after parsing.) We have

not yet applied the same tuning to the DNS specification; as a result, it allocates many more dynamic

objects, and copies more strings than the hand-written one does. We do, however, believe that tuning it will

prove straightforward.

We also note that in developing our DNS parser we found two significant bugs in the hand-written

parser’s processing. These related to using incorrect fieldwidths and non-portable byte-ordering manip-

ulations, and provide direct examples of the benefit in termsof correctness for specifying analyzers in a

high-level, declarative fashion.

3.7 Summary and Future Directions

This chapter presentsbinpac , a declarative language for generating parsers of application-layer network

protocols from high-level specifications. Such parsers area crucial component of many network analysis

tools, yet coding them manually is a tedious, time-consuming, and error-prone task, as demonstrated by the

numerous severe vulnerabilities found in such programs in the past.

binpac reflects a different paradigm for building protocol parsers: abstracting their syntax into a high-

level meta-grammar, along with associated semantics. A parser generator then translates the specification

into low-level code automatically. By providing such an abstraction, a programmer can concentrate on

high-level protocol aspects, while at the same time achievecorrectness, robustness, efficiency and reusabil-

ity of the code.

In spirit, this approach is similar to that embodied in the use of yacc for writing parsers for program-

ming languages, but many elements of the network analysis problem domain require significantly different

underlying mechanisms. First, there are critical differences between the syntax and grammar of network

protocols and context-free languages. In addition, processing network traffic requires a fundamentally dif-

ferent approach in terms of handling input, namely the ability to incrementally parse many concurrent input

streams.

42

Our domain-specificbinpac language addresses these issues with a set of network-specific features:

parameterized types, variable byte ordering, automatic generation of boundary checking, and a hybrid

approach of buffering and incremental parsing for handlingconcurrent input.binpac supports both bi-

nary and ASCII protocols, and we have already used it to buildparsers for HTTP, DNS, SUN/RPC, RPC

portmapper, CIFS, DCE/RPC (including the endpoint mapper), and NCP. We integrated all of these into

the Bro NIDS, replacing some of its already existing, manually written ones. Our evaluation shows that

binpac specifications are 35–50% the size of handcoded ones, with the protocol description (independent

of the user’s analysis semantics) comprising less than halfof the specification. Our HTTP parser runs faster

than the handcrafted one it replaces (and with equal memory consumption), and we are confident that the

DNS will likewise soon exhibit performance equal to the one it replaces.binpac is open-source and now

ships as part of the Bro distribution.

In the future, along with specifying further protocols inbinpac , we envision exploiting its power

in two areas. First, we wish to explore the reusability ofbinpac -generated parsers by integrating them

into additional network tools. Second, we intend to add back-ends other than C++ tobinpac to generate

parsers for different execution models. As proposed in [85], we specifically aim to build highly parallel

parsers in custom hardware.

43

Chapter 4

A Programming Environment for Trace

Anonymization

Packet traces of operational Internet traffic are invaluable to network research, but public sharing of such

traces is severely limited by the need to first remove all sensitive information. Current trace anonymization

technology leaves only the packet headers intact, completely stripping the contents; to our knowledge,

there are no publicly available traces of any significant size that contain packet payloads. This chapter

describe a new approach to transform and anonymize packet traces. Our tool provides high-level language

support for packet transformation, allowing the user to write short policy scripts to express sophisticated

trace transformations. The resulting scripts can anonymize both packet headers and payloads, and can

perform application-level transformations such as editing HTTP or SMTP headers, replacing the content

of Web items with MD5 hashes, or altering filenames or reply codes that match given patterns. The chapter

also discusses the critical issue of verifying that anonymizations are both correctly applied and correctly

specified, and experiences with anonymizing FTP traces fromthe Lawrence Berkeley National Laboratory

for public release.

The rest of this chapter is organized as follows. The next section presents background and problem

statement. Section 4.2 enumerate goals of this work. Section 4.3 describes generic packet trace transfor-

mation. Section 4.4 explores issues in trace anonymization. Related work is discussed in Section 4.6. The

chapter concludes with a summary in Section 4.7.

44

4.1 Problem Statement

Researchers often use tools such astcpdump to capture network packet traces. Packet traces recording

real-world Internet traffic are especially useful for research on traffic dynamics, protocol analysis, workload

characterization, and network intrusion detection. However, sharing of Internet packet traces is very limited

because real-world traces contain many kinds of sensitive information, such as host addresses, emails,

personal web-pages, and even authentication keys. The traces must be first “anonymized” to eliminate any

private information, for example, IP addresses, user IDs, and passwords, before they can be shared among

researchers.

To date, Internet packet trace anonymization has been limited to only retaining TCP/IP headers [132,

91], with IP addresses renumbered and packet payloads completely removed. The lack of traces with

application layer data greatly limits research on application protocols. It is especially crippling for net-

work intrusion detection research, forcing researchers todevise synthetic attack traces that often lack the

verisimilitude of actual traffic in critical ways, resulting in errors such as grossly underestimating the false

positive rate of “anomaly detection” techniques. [61, 9]

In this work we develop a new method to allow anonymization ofpacket payloads as well as headers.

Traces are processed in three steps:

1. Payloads are reassembled and parsed to generate application-protocol-level, semantically meaningful

data elements.

2. A policy script transforms data elements to remove sensitive information and sends the resulting

elements to the composer.

3. The trace composer converts application protocol data elements back to byte sequences and frames

the bytes into packets, matching the new packets to the originals as much as possible, in order to

preserve the transport protocol dynamics.

Parsing allows the trace transformation policy script to operate on semantically meaningful data ele-

ments, such as user names, passwords, or filenames, making policy scripts more concise and comprehen-

sible than those operating directly on packets or byte sequences. Working at a semantic level also gives

the opportunity for less draconian anonymization policies. For example, the added information that the

string “root ” appears in a filename (“/root/.cshrc ”) rather than as a user name might, depending on

45

a site’s anonymization policy, allow the string to appear inan anonymized trace, whereas a purely textual

anonymization would have to excise it, because it could not safely verify that the occurrence did not reflect

a user name.

The design of trace composer aims to generate “correct” traces, for instance, as payload data is mod-

ified, checksums, sequence numbers, and acknowledgments are adjusted accordingly. The output traces

just look as if they were collected from the real Internet, except that they do not carry private information.

Accordingly, analysis tools that work on raw traces will likewise work on the anonymized traces.

In order to make the anonymization process amenable to validation, we follow a “filter-in” principle

throughout our design of the anonymizer: instead of focusing on “filtering out” sensitive information, the

anonymizer focuses on what, explicitly, toretain (or insert, in a modified form) in the output trace. With

this principle, it becomes much easier to examine a policy script for privacy holes.

An optional “manual inspection” phase can keep more non-sensitive information in the output trace

as the general anonymization script may have to make conservative judgments for some data elements;

for example, whether to allow the command “UUSER” to appear in a trace of anonymous FTP traffic (the

presence of such a typo can be useful for some forms of analysis, such as anomaly detection).

We implemented the anonymizer as an extension tobro [89], a network intrusion detection system, to

take advantage of its application parsers and its built-in language support for policy scripts.

Beside anonymization, our tool can also be used for generic trace transformations, providing a great

degree of freedom and convenience for various types transformation. For example, we can take a trace of

FTP traffic and remove from it all the connections for which the user name was not “anonymous ”; or all

the ones for which the FTP authentication was unsuccessful;or those that do uploads but not downloads. A

different type of transformation is for testing network intrusion detection systems by inserting attacks into

actual background traffic by slightly altering existing, benign connections present in a trace. Still another

type of transformation is to remove large Web items from HTTPconnections (including persistent sessions

with multiple items) in order to save disk space (see Section4.3.4).

In a sense, the tool spells the end of traces as being stand-alone evidence of any sort of application-level

network activity, since it makes it so easy to modify what a trace purports to show.

We developed trace transformations for FTP, SMTP, HTTP, Finger, and Ident. As a test of the approach,

we anonymized FTP traces from the Lawrence Berkeley National Laboratory (LBNL). Besides testing the

technology, one of the important questions behind the exercise was to explore what sort of anonymizations

46

a site might require, and being willing to abide, for public release of traces with contents. To this end,

working with the site we devised an anonymization policy acceptable to the site and approved for public

release. The corresponding traces are available from [79].

4.2 Goals

We designed the transformation tool with the following goals in mind:

1. Policy scripts operate on application-protocol-level data values. This means that instead of oper-

ating on packets or TCP flows, a policy script sees typed and semantically meaningful values (e.g.,

HTTP method, URI, and version). Likewise, the trace transformation scripts also specify application-

protocol-level data to the output trace, without needing todictate the details of generating the actual

packets.

2. The output traces contain well-formed connections: packets have correct checksums and lengths,

TCP flows can be reassembled from the resulting packets, and application-protocol data has correct

syntax1, so that other programs can process the transformed traces in the same way that they handle

original tcpdump traces.

3. The mechanism supports generic trace transformations besides anonymization.

4. The anonymization is “fail safe” and amenable to verification. Fail-safety means that the privacy

resulting from the anonymization does not depend on the tooland the policy script being completely

correct. Being amenable to verification means it is easy to examine and validate the policy script, the

anonymization process, and the output trace.

The first and third goals dictate where to separate mechanismand policy: (1) the mechanism part

should parse the input trace toexposeall application-protocol semantic elements, e.g., commands, reply

codes, MIME header types; (2) the mechanism should not restrict how the values are changed, but leave that

to the policy script. We discuss mechanism and anonymization policy in the next two sections, respectively.

1Or not, if the policy script decides to keep the “dirtiness” of the original trace.

47

Figure 4.1: Data Flow in Trace Transformation

4.3 Generic Trace Transformation

Trace transformation consists of three steps: parsing, data transformation, and composition. These are

shown as the right-hand components of Figure 4.1. The parsing and composition parts do not depend on

the type of trace transformation, and we have implemented them in bro as built-in mechanisms. The

second step (data transformation) is fully programmable, however, and so is implemented as abro policy

script.

We first look at the process from the viewpoint of the policy script, focusing on the trace input/output

interface, and then discuss details of trace parsing and composition.

4.3.1 Policy Script Programming Environment

Thebro policy script language is procedural, with strong typing that includes support for several network-

specific types (e.g., addresses and ports), as well as relative and absolute time, aggregate types (hash tables

and records), regular expression matching, and string manipulation. More details about thebro language

can be found in [89, 86].

From the point of view of a policy script, the parsing part isbro ’s event engine, and the composer is a

family of library functions, which we call “rewrite functions”.

A policy script for a protocol usually contains several “event handlers”, which are execution entry points

of the script. Through event parameters, each event handlerreceives protocol-semantic data elements as

well as a record corresponding to the particular TCP connection. An event handler may call other functions

to process the data, and writes the transformed data to the output trace by calling the rewrite functions.

48

When calling a rewrite function, the policy script specifiesa connection, and sometimes also direction of

the flow, to write the data to. The destination connection is usually the same connection of the event, but

can also be any other connection present in the input trace atthe same time.

For example, a line in an SMTP message “MAIL From:<alice@bob.org> \r \n” arriving on con-

nectionC generates the following event:

smtp_request(

conn: connection = C,

command: string = "MAIL",

argument: string = "From: <alice@bob.org>")

The policy script receives the command and argument and decides what to write to the output trace—e.g.,

it could call:

rewrite_smtp_request(C, "MAIL", "From: <name123@domain 111>")

to change the sender in the trace from “alice@bob.org ” to “ name123@domain111”.

There is usually a correspondence between protocol events and rewrite functions: e.g., for event

smtp_request , there is functionrewrite_smtp_request , and they have the same or very sim-

ilar set of parameters.

Explicit Rewriting . Note that the trace composer API requires explicit rewrites, i.e., for a data element to

get into the output trace, it must be explicitly placed thereby the policy script calling a rewrite function.

Alternatively, another style we could have chosen for the composer API would be to have the policy script

only specify data elements that should bechanged, and pass the rest through unmodified. With this style, we

could implement a single generic interface by which scriptswould directly specify the element to change.

For example, the SMTP rewrite above would be specified as:

modify_element(smtp_request_arg, "From: <name123@doma in111>")

and the composer would alter the location in output trace occupied by the variablesmtp_request_arg

to contain the new text rather than the original.

While appealing because a single rewrite function would suffice for all protocols (though the application

parsers would have to annotate each script variable with itslocation in the connection’s byte stream), instead

49

of having a family of rewrite functions for various protocols, we choose the heavier API because it presents

a safer interface for trace anonymization. First, requiring explicit rewrite forces the policy script writer to

put consideration into every element, so it will be less likely that they overlook a privacy hole. Second,

it is easier for other people to examine a policy script for privacy leaks, as the examiner only needs to

look at elements written in the script (rather than having tokeep in mind all the protocol elements that are

implicitly not being changed because they don’t show up in the script). This design choice shows how the

“filter-in” principle affects our design. Additionally, this interface allows type-checking on trace-rewrite

operations to catch inconsistency between output data elements.

4.3.2 Trace Parsing

Trace parsing usually consists of three steps: flow reassembling, (optional) line breaking, and protocol-

specific parsing.

Flow Reconstruction. bro ’s application parsing begins by reassembling IP fragmentsand then reassem-

bling the TCP byte stream. (We ignore herebro ’s UDP processing, though our techniques could be applied

to it, too.) In case of TCP retransmission or packet reordering, the bytes that arrive first are not delivered

until the gap is filled, at which point the bytes are deliveredtogether. For example, suppose an SMTP com-

mand arrives in three packets with the last two in reverse order: “MAIL Fro ”, “ bob.org> \r \n”, and

“m:<alice@ ”. The reassembler will emit “MAIL Fro ” on the first packet arrival, nothing on the second

because it comes out of order, and “m:<alice@bob.org> \r \n” after processing the third packet.

Breaking into Lines. Many protocols (e.g., SMTP, FTP, the non-data part of HTTP)process application

data one line at a time. For such protocols, there is an intermediate step that structures the bytes from

reassembler into lines before protocol-specific parsing. Following the above example, the line divider will

emit a line “MAIL From:<alice@bob.org> ” after it sees\r \n.

Protocol-Specific Parsing. The parser takes plain bytes as input and emits typed and semantically mean-

ingful data fields. It first divides the bytes according to protocol syntax, then converts bytes of each field

to typed values—e.g., string, integer, boolean, record—and groups the values by events, finally placing

the events in an event queue. (As event parameters, each dataelement carries a semantic meaning.) Cur-

rentlybro has parsers for most commonly seen protocols, including DCE/RPC, DNS, FTP, HTTP, MIME,

Netbios, NFS, Rlogin, RPC, SMB, SMTP, SSH, and Telnet.

50

A major challenge in parsing is that the parser often cannot strictly follow the RFCs that define the

application protocol, since in practice there are frequently deviations from the letter of the standards, or

deficiencies in the traffic being analyzed. Two particular difficulties relevant for our discussion are:

Line Delimiters Line-oriented protocols (e.g., SMTP, HTTP) generally are specified to use the two-byte

sequence CRLF (\r \n) as the delimiter between lines. However, some end hosts also interpret single LF

(\n) and/or CR (\r) as the end of the line. Ideally, we would like to identify which delimiter each host

uses, and consistently apply that interpretation.

Content Gaps. For traces captured under high-volume traffic conditions,sometimes the packet filter fails

to capture all of the packets. Such “content gaps” are generally unsolvable, but we found that most of them

occur within the data-transfer section of an application dialog rather than in the command/reply exchange.

We developed a content gap recovery mechanism for SMTP and HTTP that skips over gaps that appear

consistent with being wholly contained within a data transfer. With this heuristic, we find that most content

gaps no longer disrupt parsing. (We note that content gaps are also delivered as events, and the policy script

may decide to eliminate them or keep the gaps in the output trace.)

In summary, there can be some loss of fidelity when data goes through the trace parser. This is in fact

a general problem for any network monitoring tools.

4.3.3 Trace Composer

The trace composer consists of rewrite functions and a packet generator. As discussed above, the rewrite

functions are called during event processing. A rewrite function generates a byte string on each invocation

and buffers the string for the packet generator.bro then invokes the packet generator to process buffered

bytes and generate output packets. Below we look at the rewrite functions and packet generation in detail.

Rewrite Functions

A rewrite function performs the inverse of parsing: it prints the typed data elements to a byte string in

a protocol specific format, placing them in the right order and adding proper delimiters. For example,

rewrite_finger_request takes four parameters:c (the associated connection, of typeconnection ,

which is a record of connection information),full (a boolean flag indicating whether the Finger request

was for the “full” format),username andhostpart (both strings). The rewrite function concatenates

51

username andhostpart , adds\r\n to the end, and inserts “/W ” to the beginning of the line when

full is true. Thus, with parameters(T, "alice", "host123") , the function generates the string

“ /W alice@host123\r\n ”, and with parameters(F, "bob", "") , it generates “bob\r\n ”.

Rewrite Function Compiler. When implementing the rewrite functions for various protocols, we found

a number of commonalities: they all need to convertbro values to C++ native values and fetch the con-

nection object, and for each built-in function we need to write abro -language prototype declaration and

add initialization code to bind thebro built-in function to the C++ function. So we looked for ways to

facilitate code reuse to avoid the tedious and error-prone task of repeating the similar code at each place.

To do so, we developed a “rewrite function compiler”. We write rewrite functions withbro -style

function prototypes and C++ bodies. The compiler inserts code for the value conversion and connection

record fetch, extractsbro function prototypes, and generates function binding code.With the rewriter

compiler, most rewrite functions can be implemented with around 10 lines of code each. Figure 4.2 shows

the source code and the resulting C++ code of “rewrite_finger_request ”. Note that each rewrite

function has a hidden first parameter: “c: connection ”, which is inserted into the C++ code and the

bro prototype during compilation.2

Currently we have implemented rewrite functions for FTP, HTTP, SMTP, Finger, and Ident.

Packet Generation: Framing

After rewriter functions emit byte sequences, thepacket framerdecides how to pack the bytes into packets.

It cares about (1) whether the bytes should fit into a single packet or be split across multiple ones, and

(2) what timestamp to attach to each packet.

The central concern of the packet framing algorithm is to keep the traffic dynamics as close to the

original as possible and yet to remain transparent to the policy scripts. For example, an HTTP request can

be transmitted line-by-line, one packet per line, or all in one packet; for each of these cases, we would like

the rewritten request to maintain the original packet structure and the timestamps.

Note that we cannot directly reuse the packet structure—sizes and ordering—of the input trace because

there is not necessarily a one-to-one mapping between bytesin the input and output traces, as a policy

script can change data lengths, insert or remove objects, orchange the ordering among objects. So in

general it is only possible toapproximatethe original dynamics. Also, because the policy script doesnot

2The boolean variable “isorig = 1” means the direction of the TCP flow is from the connection originator (the Finger client).

52

[Source Code]

Write a finger request to trace.
rewriter finger_request %(full: bool,

username: string, hostpart: string%)
%{
const int is_orig = 1;
if (full)

@WRITE@(is_orig, "/W ");
@WRITE@(is_orig, username);
if (hostpart->Len() > 0)

{
@WRITE@(is_orig, "@");
@WRITE@(is_orig, hostpart);
}

@WRITE@(is_orig, "\r\n");
%}

[Resulting C++ Code]

Val * bro_rewrite_finger_request(val_list * BiF_ARGS)
{

if (BiF_ARGS->length() != 4)
{
run_time("finger_request() takes exactly 4 argument(s)");
return 0;
}

TCP_Rewriter * trace_rewriter = get_trace_rewriter((* BiF_ARGS)[0]);
if (! trace_rewriter)

return 0;
int full = (int) ((* BiF_ARGS)[1]->AsBool());
StringVal * username = (StringVal *) ((* BiF_ARGS)[2]->AsStringVal());
StringVal * hostpart = (StringVal *) ((* BiF_ARGS)[3]->AsStringVal());

const int is_orig = 1;
if (full)

trace_rewriter->WriteData(is_orig, "/W ");
trace_rewriter->WriteData(is_orig, username);
if (hostpart->Len() > 0)

{
trace_rewriter->WriteData(is_orig, "@");
trace_rewriter->WriteData(is_orig, hostpart);
}

trace_rewriter->WriteData(is_orig, "\r\n");

return 0;
} // end of finger_request

Figure 4.2: Source and the Resulting C++ Code of a Rewrite Function

53

explicitly specify the mapping between original and new data objects, when it calls rewrite functions, the

trace composer has to derive an implicit temporal mapping from bytes to packets, as follows.

In the common case, transformed data is written to the same TCP flow (i.e., same direction of a TCP

connection) as the input packet currently being processed.The framer places the bytes in thecurrent output

packet. If the payload size exceeds the MTU, it generates another output packet with the same timestamp

to hold the rest of the data.

Usually the data written by the policy script originates from data in the current input packet; thus, the

output trace has a similar packet structure as the input trace. However, there are two cases in which the data

to write actually comes from an earlier or later input packet:

1. When an event consists of data from multiple packets, the data may range across packet boundaries

or appear in retransmitted packets. In this case, the transformed data will be written with respect to

the last packet associated with the event, i.e., the packet whose arrival makes the trace parser generate

the event.

2. In some cases, the policy script cannot decide immediately what to write before seeing later data.

For example, when rewriting HTTP messages, the new Content-Length header for an HTTP entity

cannot be decided until the entity is entirely transformed.

For the first of these, we find it tolerable to simply associatethe data with the event’s last packet, because

to do otherwise would require a great deal of work—tracing each event parameter’s origin throughout

the trace reassembly and parsing hierarchy in order to know from exactly which input packet the data

originates.

Deferring Writes . The second case, of the policy script having to defer its transformation decision,

presents a larger problem, because it not only leads to imprecise timestamps for output packets, but also

causes inconvenience for transformation script programming: in the HTTP message case, the Content-

Length header has to be written before the data entity, so thescript must buffer up all the transformed data

entity until it finishes processing the entire entity. To address this problem, we added support for deferring

writes so that the script can essentially write packets out of order.

The trace composer supports deferring writes by allowing the policy script to reserve slots in current

output packets. The script may then seek the reserved slot ata later point, write data to it, and release the

slot. (Figure 4.3)

54

Reserve a slot when the original Content-Length header
arrives on connection c
msg$header_slot = reserve_rewrite_slot(c);

...

After the entire data entity is processed, seek the
slot
seek_rewrite_slot(c, msg$header_slot);

Write the header to the slot
rewrite_http_header(c, is_orig, "Content-Length",

fmt(" %d", data_length));

And release the slot
release_rewrite_slot(c, msg$header_slot);

Figure 4.3: Deferring Writes to HTTP Content-Length Header

Packet Generation: TCP/IP header fields

Once packet payloads are determined, the trace composer attaches TCP and IP headers to output packets.

Also, if no data is written in the current packet cycle, but the trace composer needs to construct a packet

to carry a TCP flag (SYN, RST, or FIN) or simply an acknowledgment, it generates an empty packet and

attaches the headers to the packet.

For every output packet, the trace composer first fetches theTCP and IP headers of the most recent input

packet on the same TCP flow and generates the new headers by modifying the following header fields:

1. If the trace is being anonymized, the source and destination addresses in the IP header are anony-

mized, as discussed in Section 4.5.2.

2. As the output trace does not have IP fragments (bro reassembles fragments early in its protocol

processing, making it too difficult to track their contribution to the final byte stream), the composer

clears fragment bits in the IP header.

3. The composer keeps the original IP identification field, unless the (source IP, ID) pair has already

appeared in the output trace, in which case we increment the ID till no conflict is found.

4. TCP sequence/acknowledgment numbers are adjusted to reflect new data lengths, as is the IP packet

length field. The composer then recomputes the TCP and IP checksums. (Note that, similar to the

55

case of fragments in the input trace, becausebro discards packets with checksum failures early in

its processing, it is too difficult to propagate checksum errors into the transformed output.)

5. Currently the composer discards IP options, becausebro lacks an interface to access them, and

some of them would take significant effort to address. The composer keeps certain TCP options,

such as maximum segment size, window scaling and SACK negotiation (but not SACK blocks, due

to the ambiguity of the location of the SACK’d data in the transformed stream), and timestamps; and

replaces other options with the NOP option.

6. TCP flags are propagated, except that the composer removesthe FIN flag. This is because additional

packets may be inserted after the last one present in the input stream, and these must still be num-

bered in the sequence space before the final FIN to comply withTCP semantics. We can imagine a

“conceptual” FIN that is reordered together with the payloads and comes only at the end of the data

flow. Therefore, the trace composer inserts a FIN flag only when the flow reassembler has delivered,

and the transformation script has processed, the last chunkof the flow.

4.3.4 Trace Rewriters for Trace Size Reduction

As a demonstration of the utility of trace transformation inaddition to anonymization, we implemented

trace rewriters for HTTP and SMTP to reduce thesizeof traces rather than the privacy of their embedded

contents. At LBNL, for example, the volume of HTTP traffic often exceeds 50 GB per day. The site wants

to continuously record this traffic (for intrusion detection analysis), but the volume proves problematic.

HTTP trace rewriter replaces HTTP entities beyond a specified size with their MD5hash values, changes

the Content-Length header to reflect the new data length, andkeeps the original Content-Length and the

actual data length in an “X-Actual-Data-Length” header (see Appendix 7.3 for an example). Testing it

on a 729 MB trace file, and setting the threshold to 0 bytes (so all entities are replaced by hashes), the

rewriter reduces the trace size to 25 MB, a factor of 29. If we compare thegzippedsizes of the traces

(which the site often does with traces, in order to keep them longer before the disk fills up), the reduction

becomes a factor of 69 (from 377 MB to 5.5 MB). Alternatively,we can implement more selective size

reductions, such as stripping out only non-HTML objects in order to keep the cross-reference structure

intact. Operationally, the site keeps the first 512 bytes of each entity, and keeps those with a MIME type

of “text” in their entirety; this results in about a factor of10 in size savings, yet retains enough information

56

for intrusion analysis—one can analyze most HTTP attacks inthe resulting traces to determine whether the

attacks succeeded.

SMTP trace rewriter replaces mail bodies with MD5 hash values and size information, but keeps all

SMTP commands/replies and mail headers.

4.4 Trace Anonymization

In this section we discuss general issues in trace anonymization and analyze four types of possible attacks

against anonymization. against any anonymization scheme is inevitably dependent on the specific policy

approved by the site, the general techniques are often applicable to many sites and protocols.

4.4.1 Objectives of Anonymization

The information we try to hide through anonymization falls into two categories:identities, including iden-

tity of users, hosts, and data; and confidentialattributes, e.g., passwords, or specifics of sensitive user

activity [30].

The first step of developing an anonymization scheme is to decide what information in the trace we

need to hide. For example, in anonymizing FTP traces, we aim to hide identitiesof clients, private data

(hidden files), and private servers; and sensitiveattributes: e.g., passwords, authentication keys, and in

some cases filenames.

Confidential information can be exposed via direct means, orinferred via indirect means. Therefore,

to hide the identity of client hosts, it may not be enough to just anonymize their IP addresses. We analyze

four kinds of inference attacks that may reveal confidentialinformation through indirect means, but before

doing so we first discuss the anonymization primitives, i.e., how we anonymize basic data elements.

4.4.2 Anonymization Primitives

Constant Substitution. One way to anonymize a data element is to substitute the datawith a constant,

e.g., replace any password with the string “<password> ”.

Constant substitution is usually used to anonymize confidential attributes. Applying constant substi-

tution to identifiers (e.g., IP addresses), however, is generally undesirable, as we would then no longer be

57

able to precisely distinguish objects from one another. Instead, identifiers are usually anonymized with a

1-1 mapping, such as sequential numbering or hashing, so that the anonymized identifiers are still unique,

as follows.

Sequential Numbering. We can sequentially number alldistinct identifiers in the order of appearance,

e.g., mapping files names to “file1 ”, “ file2 ”, etc.

Hashing. One shortcoming ofsequential numberingis that we have to keep the whole mapping history

to maintain a consistent mapping during the anonymization process and across anonymizations. Instead,

we can use a hash function as the mapping. Doing so requires noadditional state during the anonymiza-

tion process, and in addition using the same hash function across anonymizations will render a consistent

mapping (assuming that the range of the hashing function is large enough so that likelihood of collision

is negligible). To preserve confidentiality, the hash function must be one-way and preferably resistant to

chosen plain-text attack, so that an adversary can neither discover the input from the output nor compute the

hash by themselves. HMAC-MD5 (with a secret key) satisfies these requirements. Assuming the adversary

can neither reverse MD5 nor extract the secret HMAC key,hashingis as secure assequential numbering.

Prefix-Preserving Mapping. Sometimes it is valuable to preserve some of the structuralrelationships

between the identifiers, whichsequential numberingandhashingcannot do. For example, IP addresses can

be anonymized in a prefix-preserving way [66, 132] such that any two IP addresses sharing a prefix will

share a prefix of the same length in their anonymized form. Prefix-preserving mapping can be similarly

applied on the directory components of file names. While being valuable for some forms of analysis,

prefix-preserving mapping also reveals more information about the identifiers and thus is more vulnerable

to attacks [135].

Adding Random Noise. We can add noise to numeric values, e.g., file sizes, to make the result more

resistant to fingerprinting attacks such as matching file sizes in the trace with public files [114]. We have not

applied this primitive in our experiments, however, so we donot have experience regarding how effective

it is and the degree to which it diminishes the value of the trace.

58

4.4.3 Inference Attacks

Besides anonymizing certain identifiers and attributes to eliminate direct exposure of identities and secret

data, we also consider rewriting other data fields to preventindirect exposure. In order to understand

which data should be anonymized, we need to analyze how an adversary might use additional data to infer

confidential information. Below we discuss four kinds of inference techniques and how they relate to our

FTP anonymization efforts.

Fingerprinting

“Fingerprinting” is the notion of an adversary recovering the identity of an object by comparing its attributes

to attributes of objects known by the adversary. In order to do so the adversary has to know the fingerprints

of the candidate objects. Thus, they cannot, for example, discover a previously unknown FTP server

through fingerprinting.

We present here a brief analysis of possible fingerprinting on our anonymized FTP traces, to convey the

flavor of problem:

1. Fingerprinting files: possible for public files, by looking for matches in file sizes, similar in spirit to

the techniques of Sun et al [114].

2. Fingerprinting servers: possible for public servers, bythe structure of their reply messages (espe-

cially the220 greeting banner), help replies, SITE commands, or through fingerprinting files on the

server. It is unclear to us whether it is possible to fingerprint servers by analyzing response timing.

3. Fingerprinting clients: there are at least two possible ways to fingerprint clients: (1) when the client

displays some peculiar behavior known to the adversary; (2)through “active” fingerprinting: the

adversary inserts a fingerprint for a certain client by sending packets to the trace collection site with

a forged source address of the client’s host address, and then looks for how these were transformed

in the anonymized trace.

While fingerprinting public files and servers can expose usage patterns, this does not appear to be a

serious issue becausewhomade the access is not exposed.

Fingerprinting clients, on the other hand, would in some circumstances pose a significant privacy threat.

But this is generally difficult for the adversary to accomplish. For the first type of fingerprinting, the client’s

59

sessions must possess peculiarities that survive the anonymization process, and the adversary must discover

these. For the second type of fingerprinting, the fingerprinthas to be inserted during trace collection. We

discuss a defense against active fingerprinting, “knowledge separation”, in Section 4.4.3.

A particular threat is that a class of clients displaying certain peculiar behaviors will stand out from

other clients. If we want to eliminate this threat, we shouldeliminate or blur the distinction among client

behaviors—which might significantly reduce the value of thetrace.

Structure Recognition

Similar to fingerprinting, the adversary may also exploit the structure among objects to infer their identities.

For example, traces of Internet traffic often include sequential address scans made by attackers probing for

vulnerable hosts. By assuming that an anonymized trace probably includes such scans, an adversary can

hunt for their likely presence, such as by noting that a series of unanswered SYN packets occur close

together in one part of the trace, or that (when usingsequential numbering) suddenly a group of new hosts

appears in the trace. They can then infer the original addresses of other hosts by the sequence they occupy in

the scan, given the assumption that the scan started at a particular base address and proceeded sequentially

up from it [104]. In addition, if the adversary has identifieda single host in the trace (say a well-known

server), they can then calibrate their inference by confirming that it shows up in the scan in the expected

sequence.

Shared-Text Matching

When attributes or identifiers of different objects share the same text, the unmasking of one can lead to

exposure of the other. For example, if there is both a user name “alice” and a file name “alice”, the user

name will be exposed if the adversary can identify the file. Toavoid this attack, we apply “type-separation”:

the user name “alice” should be anonymized as the string “user+alice”, and the file name as “file+alice”.

Generally it is good practice to avoid using the same text fordistinct objects (e.g., files with the same name

on different servers) unless there is some trace analysis value in doing so. The attack on prefix-preserving

IP anonymization also exploits shared-text matching for cascading effects, where the shared text is the

prefix.

60

Known-Text Matching

When both the original text and the anonymized text are knownto the adversary, they can identify all

appearances of the anonymized text in the trace. The knowledge required for a known-text attack is often

obtained through fingerprinting.

One example is a “known server log” attack: if the adversary obtains the log of a server present in

the trace, they may be able to identify the mapping between client addresses and anonymized addresses

through fingerprinting, and then unmask the clients’ activities on other servers. (Obtaining such logs is

sometimes not difficult—for example, occasionally a query to a search engine will find them, because the

logs are maintained in a publicly accessible manner.)

Another example is if the adversary can insert traffic with given strings, such as a particular user ID,

into the trace, similar to the “active fingerprinting” discussed above. They can then observe how the string

was mapped, and look for other occurrences of the resulting text in order to unmask instances of the same

original text.

A general method to counter known-text attacks is through “knowledge separation”. This is similar

to the type-separation defense against shared-text matching discussed above. For example, to counter a

“known server log” attack, we can anonymize a client IP differently depending on the server it accesses.

To counter the user ID insertion attack, we can anonymize user IDs differently depending on whether the

login is successful or not (an alternative is to anonymize user IDs depending on the client’s IP address).

Similarly, “active fingerprinting” with forged source IPs can defeated by anonymizing addresses differently

for connections that are never established, since the adversaries will fail to complete the TCP three-way

handshake unless they can conduct an initial-sequence-number guessing attack.

When we apply “knowledge separation”, a single object can have multiple identifiers in the anonymized

trace, which reduces the value of the trace for some types of analysis. This is a basic trade-off, and the

choice of the degree to incur it will be policy-dependent.

4.5 Case Study: FTP Anonymization

In light of these possible attacks and defenses, we now turn to the anonymization scheme we used for

LBNL’s FTP traces. Though the scheme is inevitably dependent on the specific policy approved by the

site, and thus may not be directly applicable to other sites,we believe the considerations and techniques,

61

for instance, the “filter-in” principle, will be also applicable to other site policies and other application

protocols. Accordingly, we discuss in detail relevant points of the resulting anonymization process. The

full scheme can be found at [79].

The FTP traces were collected at the Internet access point (Gigabit Ethernet) of LBNL, and contain

incoming anonymous FTP connections to port 21. The traces donot include any of the transferred FTP

items (files uploaded or downloaded, or directory contents corresponding to the FTP “LIST” command),

but only requests and replies.

As stated above, our objectives are: (1) ensure that the anonymization hides the identity of clients,

non-public FTP servers, and non-public files, as well as confidential authentication information;3, and (2)

the anonymization keeps the original request/reply sequence and other nonsensitive information intact.

In some ways, these goals and the resulting traces are quite modest. But we believe that the path to

site’s becoming open to releasing traces with packet contents is one that must be tread patiently, as sites

quite naturally must develop a solid sense that trust in the anonymization process is warranted.

Self-Explanatory. Besides the above objectives, we designed the anonymization scheme to beself-

explanatory: it should be easy for other people to examine and validate the scheme by merely looking

at the scheme description or the policy script, without being familiar with every detail of the FTP protocol.

We believe this is particularly important in order for the policy makers at a site to understand and accept

trace anonymization.

4.5.1 The Filter-In Principle

The key to obtaining a robust and coherent anonymization scheme is to apply the “filter-in” principle, which

is that the anonymization policy script explicitly specifies what data to leave in the clear, and everything else

is anonymized (or removed). Thus, “filtering-in” implies using “white lists” of what is permitted instead of

“black lists” of what is disallowed. The design choice in ourframework of “explicit rewriting” also reflects

the “filter-in” principle.

It is critical to employ “filter in” instead “filter out”. Anonymizing FTP traffic is complex enough that

if we try to “filter out” private information by enumerating all the sensitive data fields, it is very likely that

3Here, hiding a “non-public” server/file means that if an adversary does not know where to find the server/file beforehand, they
will not be able to find it after looking at the anonymized traces.

62

we will miss some of them. Also, a “filter-out” scheme would behard to verify, unless the verifier can

themselves enumerate all of the sensitive fields.

Following the “filter-in” principle, the difference between a crude anonymization script and a refined

one is that the refined script will preserve more nonsensitive information in the output trace; but the

two scripts should be equally privacy-safe (though we must keep in mind the maxim that complexity is

the enemy of robust security). Also, a “filter-in”-style anonymization scheme is to some degree self-

explanatory—verification of the scheme does not require enumerating every possibility.

4.5.2 Selected Details of FTP Anonymization

IP addresses(which appear in IP headers, PORT arguments, and some reply messages such as reply to

the PASV command) are sequentially numbered, since the siteviews preserving client privacy as vital.

(Recognizing IP addresses in reply messages is discuss in Section 4.5.4.)

User IDs (arguments of USER/ACCT commands) are anonymized except for “anonymous”, “guest”, and

“ftp”. However, the anonymizer leaves a user ID in the clear if the login attempt fails and the user ID is

one of the IDs defined as sensitive inbro ’s default security policy (for example, “backdoor ”, “ bomb”,

“ issadmin ”, “ netphrack ”, “ r00t ”, “ sync ”, “ y0uar3ownd ”, and many others). This allows us

to preserve one form of attack, namely attempted backdoor access, without exposing any actual account

information.

When we anonymize a user ID, we apply HMAC-MD5, annotating the user ID prior to hashing with

(1) the server IP to prevent “shared-text” matching, and (2)an indication of whether the login was success-

ful to prevent “known-text” matching.

Password. We replace the arguments of PASS commands with the string “<password> ”. (An alternative

would be to hash passwords for anonymous logins, with the email addresses annotated with the client IP

address to achieve “knowledge separation”.)

File/directory names are replaced by the string “<path> ” for non-anonymous logins. For anonymous

logins, file names are left in the clear if they appear on a white list of well-known sensitive file names (e.g.,

“ /etc/passwd ”), in order to preserve occurrences of attacks; and anonymized with hashing otherwise.

The hashing input is the absolute path annotated with the server IP to minimize shared-text matching across

63

directories or servers. The reason to anonymize file names even for anonymous FTP traffic is that we cannot

readily tell truly public files apart from private (hidden) ones that happen to be accessed using anonymous

FTP, but only by users who know the otherwise unpublicized location of the file.

Arguments of commands with pre-defined argument sets(TYPE, STRU, MODE, ALLO, REST, MACB)

are left intact if well-formed. For example, a TYPE argumentshould match the regular expression

/([AE]([NTC])?)|I|(L[0-9]+)/

according to RFC 959. However, the anonymizer does not assume clients follow the RFC—it checks

whether the argument matches the pattern, and leaves it in the clear only if that is the case, otherwise

anonymizing the argument as a string.

We apply similar techniques for the “HELP” and “SITE” commands, for which we only expose the

arguments if they match a manually determined “white list” of privacy-safe HELP/SITE arguments.

Unrecognized commandsare anonymized along with their arguments and recorded for optional manual

inspection.

Timestamps/datesare left in the clear. While timestamps could help an adversary match up known traffic

(such as traffic they injected) with its occurrence in the trace, there are enough other ways the adversary

can perform such matching (by making the injected traffic singular) that leaving them intact costs little. On

the other hand, timestamps are valuable for various research purposes.4

File sizesare considered to be safe. As argued when analyzing fingerprinting, exposing file sizes may allow

the adversary to identify public files. But this is not a concern for LBNL.

Server software version/configurationis also considered to be safe, as the information that can be inferred

from the trace can be readily obtained through other means (since the servers are public).

4.5.3 Refining with Manual Inspection

Whether data is to be left in the clear or anonymized, the anonymous script logs the decision and the

reason for later inspection.5 Identical entries are only logged once. Inspection of the log (with various text
4We chose to preserve timestamps in the clear when we devised this FTP anonymization scheme in 2003. However, two years later

researchers discovered that hosts can be fingerprinted withTCP timestamp options[57], if there are a sufficient number of timestamps
in the trace, as each physical device has its unique clock skew. While this particular attack poses little threat to old traces, such
development highlights the devilish nature of anonymization.

5Here we assume that the administrator of the trace anonymization can see the original trace—this helps in verifying results and
generating better traces.

64

processing tools) helps us to discover (1) privacy holes (orto demonstrate the absence of holes), and also

(2) overly conservative anonymization of nonsensitive information (important for working towards more

refined scripts). We discuss log inspection techniques in detail below.

A “filter-in”-style script always makes conservative judgments on unknown data. Sometimes it can be

too conservative, missing an opportunity to expose interesting, nonsensitive data, e.g., a mistyped command

like “UUSER” or a user id like “annonymous”. It is difficult tohardwire such commands and user names

into the general anonymization script, as they may appear inunpredictable forms. Nevertheless, these

special cases do not appear very often in traces, so we can afford tomanually inspecteach case by looking

at the log after anonymization and then customizing the script to expose the nonsensitive ones. Figure 4.4

shows three log entries we have seen: the first entry records acommon-case anonymization of a path name;

while the other two, recording anonymizations of the “UUSER” command and user name “annonymous”,

are the kinds of entries we look for during manual inspection.

Note that the customization for special cases should beoptional. The script should always first anony-

mize any unknown data, and should make no assumptions about whether the log will be manually inspected.

As most entries in the anonymization log record the anonymization of “common” cases, the trick to dig-

ging up special cases is to look for deviant entries throughtext classification. Here, we examine command

arguments as an example to illustrate how we discover special cases:

First, we classify entries by the type of data being anonymized. The type can be, for example, a non-

guest user name (e.g., the misspelled “annonymous”), or a non-public file name, or the argument of a

PORT command. Some types of anonymization, e.g., of path names and passwords, happen very often,

while others rarely appear in the log. These rare types of anonymization often present interesting cases.

For example, for a trace of an FTP server that only allows anonymous login, there can still be a few user

names being anonymized. We have seen: “anno ”, “ anonyo\010 ”, “ anonymouse ”, “ help ”, and

“anamouse ”, as well as a password mistyped for aUSERcommand. Except for the password, all of the

other user names actually do not reveal any private information. But it’s important to catch the password.

Note that none of these strange user names will appear in the output trace unless we modify the script to

explicitly allow them, so the password will not appear without specific action to keep it.

Furthermore, we look for “malformed” path names—those do not match a heuristic pattern for well-

formed path names. We find, for example: “#”, “ \xd0\xc2\xce\xc4\xbc\xfe\xbc\xd0 ”, “ /n/n

65

anonymize_arg: (path name) [CWD] "conferencing" to "U4211 7b96U" in [x.x.x.x/x > x.x.x.x/ftp]
anonymize_cmd: (unrecognized command) "UUSER" [anonymou s] to "U7b402a69U" in [x.x.x.x/x > x.x.x.x/ftp]
anonymize_arg: (user name) [USER] "annonymous" to "Ufb6db 9afU" in [x.x.x.x/x > x.x.x.x/ftp]

Figure 4.4: Anonymization Log Entries

This file was not retrieved by Teleport Pro, because it did no t meet the

project ”. 6

In addition, applying similar techniques lets us find misspelled commands, or commands containing

control characters: e.g., “USE”, “ UUSER”, “ RETR<BS><BS><BS><BS>”, all of which we have seen in

practice. These commands likely indicate users typing directly rather than using client software, therefore

it is valuable to preserve this information.

4.5.4 Reply Anonymization

An FTP reply consists of a reply code and a text message. We leave reply codes in the clear, as they

do not reveal any private information. Reply messages, on the other hand, do often contain sensitive

information and are hard to anonymize because there is no standard format for most reply messages—the

format depends on the server implementation and its configuration.

One possibility is to discard the original text (except for replies to PASV, which are well-defined) and

replace it with a dummy message. This has the virtue of being simple. On the other hand, reply messages

do sometimes carry useful information that cannot be inferred from the reply codes. For example, a reply of

code 530 (denial of login) usually explains why the login wasrejected–it can be “guest login not permitted”

or “Sorry, the maximum number of users from your host are already connected”. Such information can be

valuable in some cases. So we explored methods to anonymize FTP replies.

As messages may contain variables such as file names/sizes, dates, and domain names, there can be

countless distinct messages. However, we observe that there is only a limited set of messagetemplates,

as the number of templates is bounded by the number of different server software/configurations at the

site. And we can extract templates (along with human assistance) by comparing messages against each

other and distilling the common parts. Figure 4.5 shows a fewexample message templates. Once we

have extracted the message templates, we can parse messagesby matching them against the templates and

thereby understanding the semantics of the data elements inthe text.

6Teleport Pro is the name of an offline browser.

66

150 |opening| |ascii, binary| |mode| |data| |connection| | for| |˜ arg| |˜ ip| |˜ num| |˜ num| |bytes|
211 |connected| |to| |˜ domain, ˜ ip|
220 |welcome| |to| |˜ * | |ftp| |server|
550 |˜ arg| |not| |a| |directory|

Figure 4.5: FTP Reply Message Templates

message: "150 Opening BINARY mode data connection for /def.pdf (123. 45.67.89,50034) (156678 bytes)"

split → "150 |opening| |binary| |mode| |data| |connection| |for| | /def.pdf| |123.45.67.89| |50034| |156678| |bytes|"

abstract→ "150 |opening| |binary| |mode| |data| |connection| |for| | ˜ arg| |˜ ip| |˜ num| |˜ num| |bytes|"

merge→ "150 |opening| |ascii, binary| |mode| |data| |connection| |for| |˜ arg| |˜ ip| |˜ num| |˜ num| |bytes|"

Figure 4.6: Message Template Extraction

Message templates are first automatically extracted by a script then manually sanitized before being

used for template matching. The automated template extraction is done in three steps: splitting, abstraction,

and merging (as shown in Figure 4.6). We firstsplit a message into parts—each part contains a word or a

data element such as an IP address or a file name. Next, inabstraction, we try to guess whether each part

is a variable or a constant part of the message template. Throughabstractionwe are able to find most of

variable slots in message templates, andmerginghelps to reveal the rest of them. We merge two templates

when they are identical on all but one part, and this process is iterated till no templates can be further

merged.

The message extraction process is refined through the accumulation of experience. We found that the

key issue in abstraction is to recognize the corresponding command argument echoed in the reply message.

This is tricky because the echoed argument is sometimes different from the original argument, particularly

when it is a file name. For example, the echoed argument can be the absolute file path or only contain the

base file name with the directory parts. Therefore we need to recognize variants of the argument. The key

for good message splitting is to know wherenot to split. By default we split at spaces and punctuation;

however, we do not want to split an IP address or a file name, otherwise they cannot be recognized during

abstraction.

Extracted message templates need to be examined and sanitized before being used for message match-

ing. This can be a tedious process and we strived to minimize the required effort. Currently, when extracting

templates from a set of ten-day long FTP traces, which contain more than 1.4 M lines of replies in 22.6 K

connections to 318 distinct servers, we wound up with 461 message templates for 32 kinds of reply codes.

Among the 461 templates, 25 require sanitization to remove server identity information. Examining a few

hundred templates is feasible but still not easy—perhaps this is the price for processing free format text.

67

4.5.5 Verification

Verification is a fundamental step of the anonymization process. No matter how much thought we apply

to the anonymization policy, the safety of the anonymization also depends on the correctness of the policy

script and on the underlyingbro mechanisms. Therefore, besides inspecting the anonymization description

and script, it is also important to examine the output trace directly.

Ideally, the verification process would guarantee that the transformed trace complies with theintended

anonymization policy. This is a different notion that theexpressedanonymization policy, due to the pos-

siblity of errors occurring in coding up the expression. Ourstrategy therefore is to attempt to analyze the

general properties of the transformed trace without tying these too closely to the anonymization script that

was used to effect the transformation. As such, we cannot guarantee that there are no “holes” in the anony-

mized trace (and indeed doing so appears fundamentally intractable). Instead, we aim to provide another

level of precaution. In general, it is particularly important to have a strong “verification story” in order to

persuade sites that the anonymization process will meet their requirements.

For verification we do not usebro to parse the output trace’s packets—doing so would introduce a

common point of failure across anonymization and verification. Instead, we look at the packets directly,

using different tools. Automating the verification processremains an open problem—currently, it requires

human assistance, although some of the steps can be automated to reduce the burden.

For packet headers, we inspect the source and destination IPaddresses. As the anonymized addresses

are sequentially numbered, verification that these lie in the expected range can be performed automatically.

For FTP requests in packet payloads, we enumerate all distinct commands and arguments present in

the trace, except those which are already hashed (hash results follows a particular textual format and thus

can automatically excluded). When the text parts of reply messages are discarded, it is straightforward to

verify that FTP replies only contain reply codes and a placeholder of dummy text.

When we choose to anonymize reply messages, verification consists of two parts, checking vocabulary

and numbers, respectively. Vocabulary checking is similarto message template extraction, but simpler and

implemented separately. Messages are again split at blanksand punctuation, this time without worrying

about special cases as in splitting for message template extraction. Next we abstract the parts by two rules:

(1) if a part is a decimal number, substitute it with the string “<num>”; (2) if a part is a hashing output,

substitute it with the string “<hash> ”. This way we can reduce 1.4 M anonymized messages to about

68

600 patterns. We then manually inspect these, which can be expedited by first sorting them so that similar

patterns are clustered.

In checking numbers we are mainly concerned about numbers constituting IP addresses. Accordingly,

we look for any four consecutive number parts in split messages and record each instance that does not fall

within the range of anonymized addresses. Interestingly, such casesdo appear, though they are quite rare,

and safe—e.g., part of a software version string such as “wu-2.6.2(1)”.

Verification helped us find a potential hole in an earlier version of our anonymization script. We found

two suspicious command arguments: “GSSAPI” and “KERBEROS_V4”. Though the strings themselves

do not disclose any private information, their appearance is alarming because they are not defined anywhere

to be “safe” in the script.

Looking into the logs revealed that they were arguments for two rejected “AUTH” commands. Ac-

cording to RFC 2228, the argument for the “AUTH” command specifies the authentication mechanism.

Thus, a rejected mechanism seems safe to expose. However, doing so overlooks the possibility that a user

might mistakenly specify sensitive information, such as a password, instead of an authenticationmecha-

nism. A “fail-safe” solution is to white list “GSSAPI” and “KERBEROS_V4” and anonymize any unknown

argument for the “AUTH” command.

4.5.6 Discussion

Integrity of Output Trace . Besides the absence of private information, we also want tocheck whether the

packets, TCP flows, and FTP requests and replies in the anonymized trace are allwell-formed. To do so,

we runbro ’s FTP analyzer on the anonymized traces to see whetherbro can reassemble the TCP flows

and parse the FTP requests and replies. We compare the FTP logs from both traces.bro ’s FTP log records

start and finish of FTP sessions and all requests and replies in the session. For a day-long FTP trace of

80 MB, 8,871 connections, and 86,908 request-reply pairs, we find that the two logs have the same FTP

session starting timestamps,7 request command sequences (not including the arguments) and reply code

sequences, also at the same timestamps. For command arguments and reply messages, we cannot compare

them directly as of course many of them are anonymized. We randomly picked a few sessions and manually

checked the arguments and messages.

7In some cases,bro ’s connection termination is triggered by a timer, which results in slightly different session finish timestamps.

69

FTP analyzer 131 seconds
FTP analyzer + anonymizer 1009 seconds
FTP analyzer + dummy rewriter 192 seconds

Figure 4.7: Execution time of various FTP policy scripts

Anonymized Traces for Intrusion Detection. As mentioned earlier, packet traces are particularly valu-

able for research on network intrusion detection. So we verymuch want trace anonymization to preserve

intrusion-like activities. This applies both to preserving actual attacks, but, even more so, unusual-but-

benign traffic that stresses the false-positive/false-negative accuracy of intrusion detection algorithms. This

latter is particularly important because it is often a key element missing from assessments of network in-

trusion detection mechanisms—it is easy for researchers toattain traces of actual attacks, because they can

generate these using the plethora of available attack tools, but it is much more difficult today for researchers

to attain detailed traces of background traffic.

Generally whether an attack survives anonymization depends on both its characteristics and how it

is detected. Some FTP intrusions are recognized by signatures of files or user IDs the intruder tries to

access or login as. For example, directory name “tagged ” is often associated with FTP warez attacks;

failed “root ” or “ sysadm ” login attempts suggest server backdoor probing. Preserving these attacks

requires leaving relevant identifiers in the clear. Fortunately the identifiers are mostly well-known and

do not expose private identities, so they can kept through anonymization by establishing a white list for

“sensitive” file names and user IDs to leave in the clear. To doso, however, requires knowing the attack

signatures beforehand; thus, attacks with unknown signatures may still be lost in anonymization.

Other types of intrusions are recognized by activity patterns rather than identifier signatures. Most

of these attacks can survive anonymization. For instance, port scanning is marked by unanswered (or

responded by TCP-RST) TCP-SYN packets from the same source host to different destination hosts; suc-

cessive failed attempts at creating directories on multiple servers may imply an FTP warez attack.

Performance. Figure 4.7 shows the CPU time spent on a 1 GHz Pentium III processor running on the

day-long trace mentioned above. We see that the FTP anonymizer, which also requires the FTP analyzer,

is 7.7 times slower than the FTP analyzer. To understand where time is spent, we also testedbro with a

dummy FTP trace rewriter, which simply writes the original requests and replies to the output trace. We

find that the execution overhead of the anonymizer script itself heavily dominates, comprising 81% of the

total processing. The time is spent performing numerous hash table lookups, string operations, and regular

70

expression matches, and generating a 3.8 MB anonymization log. We find this performance adequate,

especially for off-line anonymization. It even suffices foron-line anonymization for FTP, though when

extended to a higher volume protocol such as HTTP may prove problematic.8

4.6 Related Work

TCPdpriv [66] anonymizestcpdump traces by stripping packet contents and rewriting packet header

fields. One of its features is a form of “prefix-preserving” anonymization of IP addresses (the “-A50” op-

tion). [135] analyzes the security implications of this anonymization, proposing an approach that might

be used to crack the “-A50” encoding by first identifying hosts with well-known traffic patterns (e.g.,

DNS servers). Xu et al proposed a cryptography-based schemefor prefix-preserving address anonymiza-

tion [132]. The scheme can maintain a consistent anonymization mapping across multiple anonymizers

using a shared cryptographic key. Peuhkuri presented an analysis of the private information contained in

TCP/IP header fields and proposed a scheme to anonymize packet traces and store the results in a com-

pressed format [91]. Peuhkuri’s scheme for network addresses anonymization cannot be directly applied to

our work because the scheme generates 96 bits instead of 32 bits for each address, and we are constrained

by needing to generate output intcpdump format. Finally in recent work with colleagues [78] I explored

the devilish issues in anonymizing traces collected insidean enterprise network. All of these works address

only the anonymization of TCP/IP headers, with no mechanisms for retaining packet payloads.

NetDuDe (NETwork DUmp data Displayer and Editor) [58] is a GUI-based tool for interactive editing

of packets intcpdump trace files. NetDuDe itself does not parse application-level protocols, but allows

user to write plug-in’s for packet processing, e.g., a checksum fixer plug-in can recompute checksums and

update the checksum fields in TCP and IP headers.

There has also been considerable work on extracting application-level data from online traffic, though

without significant applications to content-preserving anonymization. Gribble et al built an HTTP parser

to extract HTTP information from a network sniffer [41]. Feldmann in [31] describes BLT, a tool to

extract complete HTTP headers from high-volume traffic, anddiscusses various challenges in extracting

accurate HTTP fields. Pandora [84] is a component-based framework for monitoring network events,

which contains, among others, components to reconstruct HTTP data from packets. It is similar in spirit

8Note that the HTTP rewriter used to reduce HTTP packet tracesas discussed in Section 4.3.4 runs on-line, processing nearly
100 times the daily data volume, though in a simpler fashion.

71

to Windmill [64]. Ethereal is able to reconstruct TCP session streams, and parses the stream to extract

application protocol level data fields [29]. The fields can beused to filter the view of the trace. Ethereal

has a GUI-based interface to display trace data. There are also numerous commercial network monitoring

systems that can extract application-level information, e.g., EtherPeek[128].

There are also efforts on setting up honeypots [45] and break-in challenges [18] to collect traces of

network intrusions. Such pure intrusion traces have the virtue of containing little private information, as

the target hosts are not used for other purposes. For the samereason, however, the traces do not contain

background traffic with various unusual-but-benign activities, and thus are very different from traffic at an

operational site.

Finally, Mogul argues “Trace Anonymization Misses the Point” [67], proposing an alternative strategy

to trace anonymization—instead of sharing anonymized traces, researchers send reduction agents to the

site that has the source trace data. We believe our tool is in fact complementary to this sort of approach.

Mogul raises the question: what kind of code should be sent tothe source sites? Our answer is: “abro

script for trace transformation.”

4.7 Summary

In this work we have designed and implemented a new tool for packet trace anonymization and general

purpose transformation. The tool offers a great degree of freedom and convenience for trace transfor-

mation by providing a high-level programming environment in which transformation scripts operate on

application-level data elements.

Using this framework, we developed an anonymization scriptfor FTP traces and applied it to anonymiz-

ing traces from LBNL for public release. Unlike previous packet trace anonymization efforts, packet pay-

load contents are included in the result. We discussed the key anonymization principle of “filter-in” as

opposed to “filter-out”, and the crucial problem ofverifying the correctness of the anonymization proce-

dure. We also analyzed a class of inference attacks and how wemight defend against them.

We believe this tool offers a significant step forward towards ending the current state of there being

no publicly available packet traces with application contents. As such, we hope to help open up new

opportunities in Internet measurement and network intrusion detection research.

72

Chapter 5

Characteristics of Internet Background

Radiation

Monitoring any portion of the Internet address space reveals incessant activity. This holds even when

monitoring traffic sent to unused addresses—thus we term thetraffic “background radiation.” Background

radiation reflects fundamentally nonproductive traffic, either malicious (flooding backscatter, scans for vul-

nerabilities, worms) or benign (misconfigurations). Whilethe general presence of background radiation is

well known to the network operator community, its nature hadnot been previously characterized. This the-

sis develops a broad characterization based on data collected from unused networks in the Internet. Three

key elements of the methodology are (1) the use of filtering toreduce load on the measurement system, (2)

the use of active responders to elicit further activity fromscanners in order to differentiate different types

of background radiation, and (3) the use of application level traffic semantic analysis to uncover activity

details at application protocol level. This study breaks down the components of background radiation by

protocol, application, and often specific exploit; analyzes temporal patterns and correlated activity; and

assesses variations across different networks and over time. While a menagerie of activity is found in

background radiation, probes from worms and autorooters heavily dominate the traffic.

This chapter proceeds as follows. Section 5.1 defines “Internet background radiation” and the goals of

this study. Section 5.2 discusses related work. Section 5.3describes the sources of data used in this study

and the methodology related to capturing and analyzing thisdata. Section 5.4 analyzes what we can learn

73

from our monitoring when we use it purely passively, and Section 5.5 then extends this to what we can

learn if we also respond to traffic we receive. In Section 5.6 we evaluate aspects of traffic source behavior.

We conclude with a summary of our study in Section 5.7.

5.1 Problem Statement

In recent years a basic characteristic of Internet traffic has changed. Older traffic studies make no mention

of the presence of appreciable, on-going attack traffic [24,87, 116, 6], but those monitoring and operating

today’s networks are immediately familiar with the incessant presence of traffic that is “up to no good.”

We can broadly characterize this traffic asnonproductive: it is either destined for addresses that do not

exist, servers that are not running, or servers that do not want to receive the traffic. It can be a hostile

reconnaissance scan, “backscatter” from a flooding attack victimizing someone else, spam, or an exploit

attempt.

The volume of this traffic is not minor. For example, traffic logs from the Lawrence Berkeley National

Laboratory (LBL) for an arbitrarily-chosen day in 2004 showthat 138 different remote hosts each scanned

25,000 or more LBL addresses, for a total of about 8 million connection attempts. This is more than double

the site’s entire quantity of successfully-established incoming connections, originated by 47,000 distinct

remote hosts. A more fine-grained study of remote scanning activity found (for a different day) 13,000

different scanners probing LBL addresses [51].

What is all this nonproductive traffic trying to do? How can weclassify various types of activity in

order to detectnewtypes of malicious activity?

Because this new phenomenon of incessant nonproductive traffic has not yet seen detailed characteri-

zation in the literature, we have lacked the means to answer these questions. This study aims to provide an

initial characterization of this traffic. Given the traffic’s pervasive nature (as we will demonstrate), we term

it Internet “background radiation”.

A basic issue when attempting to measure background radiation is how, in the large, to determine which

observed traffic is indeed unwanted. If we simply include allunsuccessful connection attempts, then we

will conflate truly unwanted traffic with traffic representing benign, transient failures, such as accesses to

Web servers that are usually running but happen to be off-line during the measurement period.

74

By instead only measuring traffic sent to hosts thatdon’t exist—i.e., Internet addresses that are either

unallocated or at least unused—we can eliminate most forms of benign failures and focus on traffic highly

likely to reflect unwanted activity. In addition, analyzingunused addresses yields a second,major mea-

surement benefit: we can safelyrespondto the traffic we receive. This gives us the means to not only

passively measure unwanted traffic (for example, what portsget probed), but to then engage the remote

sources in order to elicit from them their particular intentions (for example, what specific actions they will

take if duped into thinking they have found a running server).

Given the newness of this type of Internet measurement, one of the contributions of our study is the

set of methodologies we develop for our analysis. These include considerations for how to usefiltering

to reduce the load on the measurement system, how to construct active respondersto differentiate dif-

ferent types of background radiation, and ways for interpreting which facets of the collected data merit

investigation and which do not.

5.2 Related Work

Several studies have characterized specific types of malicious traffic. Mooreet al.investigate the prevalence

of denial-of-service attacks in the Internet using “backscatter analysis” [73],i.e., observing not the attack

traffic itself but the replies to it sent by the flooding victim, which are routed throughout the Internet

due to the attacker’s use of spoofed source addresses. Measurement studies of the Code Red I/II worm

outbreaks [71], the Sapphire/Slammer worm outbreak [70, 69], and the Witty worm [60] provide detail on

the method, speed and effects of each worm’s propagation through the Internet. Additional studies assess

the speed at which counter-measures would have to be deployed to inhibit the spread of similar worms [72].

The empirical components of these studies were based largely on data collected at “network telescopes”

(see below) similar to those used in our study, though without an active-response component. A related

paper by Stanifordet al. mathematically models the spread of Code Red I and considersthreats posed

by potential future worms [112]. A small scale study of Internet attack processes using a fixed honeypot

setup is provided in [23]. Yegneswaranet al. explore the statistical characteristics of Internet attack and

intrusion activity from a global perspective [134]. That work was based on the aggregation and analysis of

firewall and intrusion detection logs collected byDshield.org over a period of months. The coarse-grained

nature of that data precluded an assessment of attacks beyond attribution to specific ports. Finally, Yeg-

75

neswaranet al.provide a limited case study in [133] that demonstrates the potential of network telescopes

to provide a broad perspective on Internet attack activity.We extend that work by developing a much more

comprehensive analysis of attack activity.

Unused IP address space has become an important source of information on intrusion and attack ac-

tivity. Measurement systems deployed on unused IP address ranges have been referred to as “Internet

Sink-holes” [40], and “Network Telescopes” [68]. Active projects focused on unused address space mon-

itoring include Honeynet [44], Collapsar [50], Potemkin [118], Honeyd [97, 96], and GQ [21]. Honeynet,

Collapsar, and Potemkin focus on the use of live virtual-machine-based systems to monitor unused ad-

dresses. Honeyd uses a set of stateful virtual responders tooperate as an interactive honeypot. GQ attempts

to use a combination of a RolePlayer-based [22] simulator and a virtual machine system to achieve both

scalability and high interactivity.

Finally, network intrusion detection systems, including Snort [100, 101], Bro [89], and a variety of

commercial tools, are commonly used to detect scans for specific malicious payloads. An emerging area

of research is in the automated generation of attack signatures. For example, Honeycomb [59] is an ex-

tension of Honeyd that uses alongest common substring(LCS) algorithm on packet-level data recorded

by Honeyd to automatically generate signatures. Other recent work pursues a similar approach, includ-

ing Earlybird [109] and Autograph [54]. Our study can informfuture developments of such systems with

respect to both the type and volume of ambient background attack activity.

5.3 Measurement Methodology

This section describes the methods and tools we use to measure and analyze background radiation traffic,

addressing three key issues:

1. Creating deep conversations: We find thatTCP/SYNpackets dominate background radiation traffic

in our passive measurements, which means we need to accept connections from the sources and ex-

tend the dialog as long as possible to distinguish among the types of activities. The key problem here

is building responders for various application protocols,such as HTTP, NetBIOS, and CIFS/SMB,

among others.

2. Taming large traffic volume: We listen and respond to background traffic on thousands to mil-

lions of IP addresses. The sheer volume of traffic presents a major hurdle. We handle this with

76

two approaches: 1) devising a sound and effective filtering scheme, so that we can significantly re-

duce the traffic volume while maintaining the variety of traffic; and 2) building a scalable responder

framework, so we can respond to traffic at a high rate.

3. Analyzing traffic semantics: We capture network traffic between radiation sources and our respon-

ders and analyze application level semantics of various interaction.

5.3.1 Application-Level Responders

Our approach to building responders was “data driven”: we determined which responders to build based

on observed traffic volumes. Our general strategy was to pickthe most common form of traffic, build

a responder for it detailed enough to differentiate the traffic into specific types of activity, and once the

“Unknown” category for that type of activity was sufficiently small, repeat the process with the next largest

type of traffic.

Using this process, we built an array of responders for the following protocols (Figure 5.1): HTTP (port

80), NetBIOS (port 137/139), CIFS/SMB [19] (port 139/445),DCE/RPC [25] (port 135/1025 and CIFS

named pipes), and Dameware (port 6129). We also built responders to emulate the backdoors installed by

MyDoom (port 3127) and Beagle (port 2745) [13], [74].

Honeyd/Active Sink
OS Responder

Honey Interface

HTTP Responder
(Welchia,Agobot,CodeRed,Tickerbar)

ports
80,1080,3128,8888

NBNS Responder
(NetBIOS name requests)

port 137

SMB Responder
(Welchia, Sasser, Xibo, Agobot,Randex)

port 445 NB Responder

port 139

DCERPC Responder
(Welchia, Blaster, Agobot)

ports 135,1025

Dameware Responder
(Agobot)

port 6129

Echo Responder
(Beagle,MyDoom,Agobot)

ports 2745,3127

RPC?

SMB?

Figure 5.1: Top level Umbrella of Application Responders

77

Application-level responders need to not only adhere to thestructure of the underlying protocol, but

also to knowwhat to say. Most sources are probing for a particular implementation of a given protocol,

and we need to emulate behavior of the target software in order to keep the conversation going.

The following example of HTTP/WebDAV demonstrates what this entails. We see frequent"GET /"

requests on port 80. Only by responding to them and mimickinga Microsoft IIS with WebDAV enabled

will we elicit further traffic from the sources. The full sequence—in which the “411 Length Required”

response indicates that WebDAV is enabled, which then attracts the attack—plays as:

GET /

⇒ |200 OK ... Server: Microsoft-IIS/5.0|

SEARCH /

⇒ |411 Length Required|

SEARCH /AAA... (URI length > 30KB)

⇒ (buffer overflow exploit received)

Some types of activity require quite intricate responders.Many Microsoft Windows services run on top

of CIFS (port 139/445), which lead us to develop the detailedset of responses shown in Figure 5.2. Requests

on named pipes are further tunneled to various DCE/RPC responders. One of the most complicated activi-

ties is the exploit on the SAMR (“Security Account Manager Remote”) and later on the SRVSVC (“Server

Service”) pipe, which involves more than ten rounds exchanging messages before the source will reveal

its specific intent by attempting to create an executable fileon the destination host. Figure 5.3 shows an

example where we cannot classify the source until the “NT Create AndX” request formsmsgri32.exe .

(The NetrRemoteTOD command is used to schedule the worm process to be invoked one minute after

TimeOfDay [11].) We found this attack sequence is shared across several viruses, including the Lioten

worm [11] and Agobot variants [2].

Building responders like this one can prove difficult due to the lack of detailed documentation on

services such as CIFS and DCE/RPC. Thus, we sometimes must resort to probing an actual Windows

system running in a virtual machine environment in order to analyze the responses it makes en route to

becoming infected. We modified existing trace replay tools like flowreplay for this purpose [36].

More generally, as new types of activity emerge over time, our responders also need to evolve. While

we find the current pace of maintaining the responders tractable, an important question is to what degree

we can automate the development process.

78

srvsvc

samr

10,161

Xi.exe

13,273

epmapper

(MS03-011)
RPC Buffer Overflow)

locator

Welchia (MS03-001)
Locator Buffer Overflow

svcctl

6282

msmsgri32.exe

10,150

winlord32.exe

1543

wmmiexe.exe

626

Lovgate.exe

644

microsoft.exe

100

lsarpc

52

Negotiate_Protocol

Session_Setup

460,630

24,996 112 422,378843

4,393

478

Port445

472,180 / 506,892

Figure 5.2: Example summary of port 445 activity on Class A. 506,892 sessions in total. Arcs indicate
number of sessions.

79

-> SMB Negotiate Protocol Request
<- SMB Negotiate Protocol Response
-> SMB Session Setup AndX Request
<- SMB Session Setup AndX Response
-> SMB Tree Connect AndX Request,

Path: \\XX.128.18.16\IPC$
<- SMB Tree Connect AndX Response
-> SMB NT Create AndX Request, Path: \samr
<- SMB NT Create AndX Response
-> DCERPC Bind: call_id: 1 UUID: SAMR
<- DCERPC Bind_ack:
-> SAMR Connect4 request
<- SAMR Connect4 reply
-> SAMR EnumDomains request
<- SAMR EnumDomains reply
-> SAMR LookupDomain request
<- SAMR LookupDomain reply
-> SAMR OpenDomain request
<- SAMR OpenDomain reply
-> SAMR EnumDomainUsers request

Now start another session, connect to the
SRVSVC pipe and issue NetRemoteTOD
(get remote Time of Day) request

-> SMB Negotiate Protocol Request
<- SMB Negotiate Protocol Response
-> SMB Session Setup AndX Request
<- SMB Session Setup AndX Response
-> SMB Tree Connect AndX Request,

Path: \ \XX.128.18.16\IPC$
<- SMB Tree Connect AndX Response
-> SMB NT Create AndX Request, Path: \srvsvc
<- SMB NT Create AndX Response
-> DCERPC Bind: call_id: 1 UUID: SRVSVC
<- DCERPC Bind_ack: call_id: 1
-> SRVSVC NetrRemoteTOD request
<- SRVSVC NetrRemoteTOD reply
-> SMB Close request
<- SMB Close Response

Now connect to the ADMIN share and write the file

-> SMB Tree Connect AndX Request, Path: \\XX.128.18.16\ADM IN$
<- SMB Tree Connect AndX Response
-> SMB NT Create AndX Request,

Path:\system32\msmsgri32.exe <<<===

<- SMB NT Create AndX Response, FID: 0x74ca
-> SMB Transaction2 Request SET_FILE_INFORMATION
<- SMB Transaction2 Response SET_FILE_INFORMATION
-> SMB Transaction2 Request QUERY_FS_INFORMATION
<- SMB Transaction2 Response QUERY_FS_INFORMATION
-> SMB Write Request
....

Figure 5.3: Active response sequence for Samr-exe viruses

80

5.3.2 Taming the Traffic Volume

Responding to the entirety of background radiation traffic received by thousands to millions of IP addresses

would entail processing an enormous volume of traffic. For example, we see nearly 30,000 packets per

second of background radiation on the Class A network we monitor. Taming the traffic volume requires

effective filtering and a scalable approach to building responders. We discuss each in turn.

Filtering

When devising a filtering scheme, we try to balance trade-offs between traffic reduction and the amount of

information lost in filtering.1 We considered the following strategies:

Source-Connection Filtering: This strategy keeps the firstN connections initiated by each source and

discards the remainder. A disadvantage of this strategy is that it provides an inconsistent view of

the network to the source: that is, live IP addresses become unreachable. Another problem is that

an effective value ofN can be service- or attack-dependent. For certain attacks (e.g.,“Code Red”),

N = 1 suffices, but multi-stage activities like Welchia, or multi-vector activities like Agobot, require

larger values ofN . Moreover, if a source tries to contact more thanN destination addresses at the

same time, our view will be limited to at most one connection per source-destination pair.

Source-Port Filtering: This strategy is similar except we keepN connections for each source/destination

port pair. This alleviates the problem of estimatingN for multi-vector activities like Agobot, but

multi-stage activities on a single destination port like Welchia remain a problem. This strategy also

exposes an inconsistent view of the network.

Source-Payload Filtering: This strategy keeps one instance of each type of activity persource. From

a data richness perspective, this seems quite attractive. However, it is very hard to implement in

practice as we do not often know whether two activities are similar until we respond to several

packets (especially true for multi-stage activities and chatty protocols like NetBIOS). This strategy

also requires significant state.

Source-Destination Filtering: This is the strategy we chose for our experiments, based on the assumption

that background radiation sources possess the same degree of affinity to all monitored IP addresses.

1Filtering is mostly the work of my collaborators, Vinod Yegneswaran and Vern Paxson, and is included in this dissertation to
preserve completeness of the study.

81

More specifically, if a source contacts a destination IP address displaying certain activity, we assume

that we will see the same kind of activity on all other IP addresses that the source tries to contact.

We find this assumption generally holds, except for the case of certain multi-vector worms that pick

one exploit per IP address, for which we will identify only one of the attack vectors.

Figure 5.4 illustrates the effectiveness of this filtering on different networks and services when run for

a two-hour interval. The first plot shows that the filter reduces the inbound traffic by almost two orders

of magnitude in both networks. The LBL network obtains more significant gains than the larger Campus

networks because the Campus network intentionally does notrespond to the last stage of exploits from

certain frequently-seen Welchia variants that in their last step send a large attack payload (> 30KB buffer

overflow). The second plot illustrates the effectiveness ofthe filter for the various services. Since Blaster

(port 135) and MyDoom (port 3127) scanners tend to horizontally sweep IP subnets, they lead to significant

gains from filtering, while less energetic HTTP and NetBIOS scanners need to be nipped in the bud (low

N) to have much benefit.

With source-destination filtering, a Honeyd responder running on a single computer can easily respond

to background radiation on 10 /24 subnets (2560 IP addresses). Responding on telescopes that are mag-

nitudes larger, e.g. on a /16 network (65536 addresses), however, requires a more scalable responder

platform.

Active Sink: an Event-driven Stateless Responder Platform

Part of our active response framework explores astatelessapproach to generating responses, with a goal

of devising a highly scalable architecture.2 Active Sink is the active response component of iSink, a

measurement system developed by Yegneswaran et al. [133] toscalably monitor background radiation

observed in large IP address blocks. Active Sink simulates virtual machines at the network level, much

like Honeyd [96], but to maximize scalability it is implemented in a stateless fashion as a Click kernel

module [133] [55]. It achieves statelessness by using the form of incoming application traffic to determine

an appropriate response (including appropriate sequence numbers), without maintaining any transport or

application level state. A key question for this approach iswhether all necessary responders can be con-

structed in such a stateless fashion. While exploring this issue is beyond the scope of the present work, we

2Active Sink is mostly the work of my collaborators, Vinod Yegneswaran and Paul Barford, and is included in this dissertation to
preserve completeness of the study.

82

5 10 15 20

Filter Size (Number of Live Destination IPs per Source)

90

92

94

96

98

E
ffe

ct
iv

en
es

s
of

 F
ilt

er
 (

%
 r

ed
uc

tio
n

in
 p

kt
s

or
 b

yt
es

)

Campus (pkts)
Campus(bytes)
LBL (pkts)
LBL(bytes)

5 10 15 20

Filter Size (Number of Live Destination IPs per Source)

0

20

40

60

80

100

E
ffe

ct
iv

en
es

s
of

 F
ilt

er
 (

%
 r

ed
uc

tio
n

in
 p

kt
s)

Port 80 (HTTP)
Port 135 (DCERPC)
Port 139,445 (NetBIOS/SMB)
Port 3127 (Mydoom)
Others

Figure 5.4: Effectiveness of Filtering, Networks (top) andServices (bottom)

83

note that for all of the responders we discuss, we were able toimplement a stateless form for Active Sink,

as well as a stateful form based on Honeyd. (To facilitate thedual development, we developed interface

modules so that each could use the same underlying code for the responders.)

5.3.3 Traffic Analysis

Once we can engage in conversations with background radiation sources, we then need to undertake the

task of understanding the traffic.

Here our approach has two components: first, we separate traffic analysis from the responders them-

selves; second, we try to analyze the traffic in terms of its application-level semantics.

It might appear that the job of traffic analysis can be done by the responders, since the responders need

to understand the traffic anyway. However we believe that there are significant benefits to performing traffic

analysis independently—by capturing and storingtcpdump packet traces for later off-line analysis. Inde-

pendent analysis allows us to preserve the complete information about the traffic and evolve our analysis

algorithms over time. The flip side is that doing so poses a challenge for the analysis tool, since it needs

to do TCP stream reassembly and application-protocol parsing. To address this issue, we built our tool on

top of the Bro intrusion detection system [89], which provides a powerful platform for application-level

protocol analysis.

Our analysis has an important limitation: we do not attempt to understand the binary code contained in

buffer-overrun exploits. This means we cannot tell for surewhich worm or autorooter sent us a particular

exploit (also due to lack of a publicly available database ofworm/virus/autorooter packet traces). If a new

variant of an existing worm arises that exploits the same vulnerability, we may not be able to discern the

difference. However, the analysis will identify a new worm if it exploits a different vulnerability, as in the

case of the Sasser worm [103].

5.3.4 Experimental Setup

We conducted our experiments at two different sites. These ran two different systems,iSinkandLBL Sink,

which conducted the same forms of application response but used different underlying mechanisms.

iSink: Our iSink instance monitored background traffic observed ina Class A network (/8,224 addresses),

and two/19 subnets (16K addresses) on two adjacent UW campus class B networks, respectively.

84

NAT Filter
Campus

NAT Filter
Class A

 Translation

1. Trace collection

3. Src−Dest Filtering

2. Network Address

Active Sink

filtered
request/response

filtered
request/response

unfiltered request
filtered response

Intra−Campus
Router

(active trace collection)

External Border
Router

Internal Border
Router

Tunnel Filter

1. Passive Trace collection

3. Src−Dest Filtering
2. UDP/IP Encapsulation Honeyd Responder

filtered
responsesfiltered

requests

LBL SetupiSink Setup

Figure 5.5: The Honeynet architecture at iSink and LBL

Filtered packets are routed via Network Address Translation to the Active Sink, per Figure 5.5. We

used two separate filters: one for the Class A network and another for the two campus /19 subnets.

We collected two sets oftcpdump traces for the networks: prefiltered traces with of packet headers,

which we use in passive measurements (of periods during which the active responders were turned

off), and filtered traces with complete payloads, which we use for active traffic analysis. The pre-

filtered traces for the Class A network are sampled at 1/10 packets to mitigate storage requirements.

LBL Sink: The LBL Sink monitors two sets of 10 contiguous /24 subnets. The first is for passive analysis;

we merely listen but do not respond, and we donotfilter the traffic. The second is for active analysis.

We further divide it into two halves, 5 /24 subnets each, and apply filtering on these separately. After

filtering, our system tunnels the traffic to the active responders, as shown in Figure 5.5. This tunnel is

one-way—the responses are routed directly via the internalrouter. We use the same set of application

protocol responders at LBL as in iSink, but they are invoked by Honeyd instead of iSink, because

Honeyd is sufficient for the scale of traffic at LBL after filtering. We trace active response traffic at

the Honeyd host, and unless stated otherwise this comes fromone of the halves (i.e.,5 /24 subnets).

Note that the LBL and UW campus have the same /8 prefix, which gives them much more locality than

either has with the class A network.

Table 5.1 summarizes the datasets used in our study. At each network we collected passivetcpdump

traces and filtered, active-response traces. On the two UW networks and the LBL network, we collected

85

Site Networks (/size) Datasets Duration

iSink UW-I (/19) Active Mar16–May14, 2004

Passive Mar11–May14, 2004

UW-II (/19) Active Mar16–May14, 2004

Passive Mar11–May14, 2004

Class A (/8) Active Mar12–Mar30, 2004

Passive Mar16–Mar30, 2004

LBL Sink LBL-A (2 x 5 x /24) Active Mar12–May14, 2004

LBL-P (10 x /24) Passive Apr 28–May 5, 2004

Table 5.1: Summary of Data Collection

two months’ worth of data. Our provisional access to the class A enabled us to collect about two weeks of

data.

The sites use two different mechanisms to forward packets tothe active responder: tunneling, and

Network Address Translation (NAT). The LBL site uses tunneling (encapsulation of IP datagrams inside

UDP datagrams), which has the advantages that: (1) it is verystraightforward to implement and (2) it

does not require extensive state management at the forwarder. However, tunneling requires the receive end

to (1) decapsulate traces before analysis, (2) handle fragmentation of full-MTU packets, and (3) allocate a

dedicated tunnel port. NAT, on the other hand, does not have these three issues, but necessitates maintaining

per-flow state at the forwarder, which can be significant in large networks. The stateless responder deployed

at the UW site allows such state to beephemeral, which makes the approach feasible. That is we only need

to maintain a consistent flow ID for each outstanding incoming packet, so the corresponding flow record at

the filter can be evicted as soon as it sees a response. Hence, the lifetime of flow records is on the order of

milliseconds (RTT between the forwarder and active-sink) instead of seconds.

5.4 Passive Measurement of Background Radiation

This section presents a baseline of background radiation traffic on unused IP addresseswithout actively

responding to any packet. It starts with a traffic breakdown by protocols and ports, and then takes a close

look at one particular facet of the traffic: backscatter.

86

5.4.1 Traffic Composition

A likely first question about background radiation characteristics is “What is the type and volume of ob-

served traffic?”. We start to answer this question by lookingat two snapshots of background radiation

traffic shown in Table 5.2 which includes an 80 hour trace collected at UW Campus on a /19 network from

May 1 to May 4, a one week trace at LBL collected on 10 contiguous /24 networks from April 28 to May

5, and finally a one-week trace at Class A with 1/10 sampling from March 11 to 18.

Protocol UW-1 LBL-P Class A
Rate % Rate % Rate %

TCP 928 95.0% 664 56.5% 130 88.5%
ICMP 4.00 4.2% 488 39.6% 0.376 0.3%
UDP 0.156 0.8% 45.2 3.8% 16.5 11.3%

Table 5.2: Protocol breakdown by packet rate. The rate is computed as number of packets per destination
IP address per day,i.e.,with network size and sampling rate normalized

Protocol UW LBL
#SrcIP Percentage #SrcIP Percentage

TCP 759,324 87.9% 586,025 90.0%
ICMP 109,135 12.6% 64,120 9.8%
UDP 4,273 0.5% 4,360 0.7%

Table 5.3: Protocol breakdown by number of sources.

Clearly, TCP dominates more or less in all three networks. The relatively lower TCP rate at Class A

is partly due to the artifact that the Class A trace was collected in March instead in May, when we see a

few large worm/malware outbreaks (include the Sasser worm). Not shown in the table, about 99% of the

observed TCP packets areTCP/SYN.

The large number of ICMP packets (of which more than 99.9% areICMP/echo-req) we see at LBL

form daily high volume spikes (Figure 5.6), which are the result of a small number of sources scanning

every address in the observed networks. On the other hand we see a lot fewer ICMP packets at the Class

A monitor which is probably because the Welchia worm, which probes withICMP/echo-req , avoids the

Class A network.

Finally, the surprising low rate of UDP packets observed at UW is largely due to the artifact that UW

filters UDP port 1434 (the Slammer worm).

87

0 20 40 60 80 100 120 140 160
0

2

4

6

8
x 10

5

Time (hour)

N
um

be
r

of
 P

ac
ke

ts
 p

er
 H

ou
r ICMP

TCP
UDP

Figure 5.6: Number of background radiation packets per hourseen at LBL

In Figure 5.6, we can also see thatTCP/SYN packets seen at LBL arrive at a relatively steady rate,

(and this is the case for the other two networks as well) in contrast to daily ICMP spikes. A closer look

at the breakdown ofTCP/SYN packets by destination port numbers at LBL (Table 5.4) reveals that a small

number of ports are the targets of a majority ofTCP/SYNpackets (the eight ports listed in the table account

for more than 83% of the packets).

Table 5.3 shows the same traces from the perspective of the source of the traffic. Note that the rows

are not mutually exclusive as one host may send both TCP and UDP packets. It is clear that TCP packets

dominate in the population of source hosts we see. The distribution across ports of LBL traffic is shown in

Table 5.4; as before, a small number of ports are dominant.

TCP Port # Source IP (%) # Packets (%)
445 43.4% 19.7%
80 28.7% 7.3%

135 19.1% 30.4%
1025 4.3% 5.8%
2745 3.2% 3.6%
139 3.2% 11.1%

3127 2.7% 3.2%
6129 2.2% 2.4%

Table 5.4: The Most Popular TCP Ports. Ports that are visitedby the most number of source IPs, as in a one
week passive trace at LBL. In total there are 12,037,064 packets from 651,126 distinct source IP addresses.

As TCP/SYN packets constitute a significant portion of the background radiation traffic observed on a

passive network, the next obvious question is,“What are the intentions of these connection requests?”. We

explore this question in Section 5.5 and 5.6.

88

5.4.2 Analysis of Backscatter Activity

The term Backscatter is commonly used to refer to unsolicited traffic that is the result of responses to attacks

spoofed with a network’s IP address. We assume that packets observed at network telescopes with certain

types of TCP flags, such as SYN-ACK and RST, or ICMP message types, such as ICMP Unreachable

and TTL-exceeded, are backscatter traffic, because these packets are usually generated in response to other

packets, but themselves do not solicit responses—so there is no incentive to send these packets intentionally

to random addresses.

Figure 5.7 provides a time-series graph of the backscatter activity seen on the four networks. Not sur-

prisingly,TCP/RSTs andSYN-ACKs account for the majority of the scans seen in all four networks. These

would be the most common responses to a spoofed SYN-flood (Denial of Service) attack. The figures

for the two UW and the Class A networks span the same two weeks.The backscatter in the two UW

networks looks highly similar both in terms of volume and variability. This can be observed both in the

TCP RSTs/SYN-ACKs and the two surges in ICMP TTL-Exceeded shown in Figures 5.7(a) and (b), and

makes sense if the spoofed traffic which is eliciting the backscatter is uniformly distributed across the UW

addresses. The only difference between the networks is thatUW I tends to receive more “Communication

administratively prohibited” ICMP messages than UW II. We do yet have an explanation why. While we

see some common spikes in theSYN-ACKSat the Class A and UW networks, there seem to be signifi-

cant differences in theRSTs. Another notable difference is that the Class A network attracts much more

backscatter in other categories, as shown in Figure 5.8.

The LBL graph shown in Figure 5.7(c) belongs to a different week and displays a quite different pattern

than that of UW. We note that the backscatter in the UW networks for the same week (not shown here)

shows a very similar pattern as at LBL for the dominant traffictypes (TCPRSTs/SYN-ACKs and ICMP

TTL-Exceeded). This is not surprising, because the two UW networks and theLBL network belong to

the same /8 network. On the other hand, the LBL network seems to receive far fewer scans in the other

categories.

A significant portion of ICMPhost-unreach messages we see at Class A are responses to UDP

packets with spoofed source addresses from port 53 to port 1026. We first thought we were seeing backscat-

ters of DNS poisoning attempts, but then we found that we are also seeing the UDP packets in other

networks as well. Examining these packets reveals that theyare not DNS packets, but rather Windows

Messenger Pop-Up spams, as discussed in the next section.

89

Wed Thu Fri Sat Sun Mon Tue Wed

Day of the week

0

0.1

0.2

N
um

be
r

of
 P

ac
ke

ts
 P

er
 IP

 (
pe

r
ho

ur
)

RST
Syn-Ack
Comm Adm Proh (Host)
TTL Exceeded

(a) UW I

Wed Thu Fri Sat Sun Mon Tue Wed

Day of the week

0

0.1

0.2

N
um

be
r

of
 P

ac
ke

ts
 p

er
 IP

 (
pe

r
ho

ur
)

RST
Syn-Ack
Comm Adm Proh (Host)
TTL Exceeded

(b) UW II

Wed Thu Fri Sat Sun Mon Tue Wed

Day of the Week

0

0.1

0.2

N
um

be
r

of
 P

ac
ke

ts
 p

er
 IP

 (
pe

r
ho

ur
)

RST
Syn-Ack
TTL Exceeded

(c) LBL

Fri Sat Sun Mon Tue Wed Thu

Day of the week

0

0.1

0.2
N

um
be

r
of

 P
ac

ke
ts

 p
er

 IP
 (

pe
r

ho
ur

)

RST
Syn-Ack
Other backscatter

(d) Class A (see Figure 5.8 for further breakdown of
“other”)

Figure 5.7: Time series of weekly backscatter in the four networks.

Fri Sat Sun Mon Tue Wed Thu

Day of the week

0

5×10
-3

1×10
-2

2×10
-2

N
um

be
r

of
 P

ac
ke

ts
 p

er
 IP

 (
pe

r
ho

ur
)

TTL Excd in Transit
Comm Adm Prohibited
Comm Adm Prohibited (Host)

Port Unreachable
Host Unreachable

Figure 5.8: The components of backscatter at the class A network besides the dominantRST, SYN-ACKs.

90

5.5 Activities in Background Radiation

In this section we first divide the traffic by ports and presenta tour of dominant activities on the popular

ports. Then we add the temporal element to our analysis to seehow the volume of activities vary over time.

5.5.1 Details per Port

We rank activities’ popularity mostly by number of source IPs, rather than by packet or byte volume,

for the following reasons. First, our filtering algorithm isbiased against sources that try to reach many

destinations, thus affects packet/byte volumes unevenly for different activities. The number of source IPs,

however, should largely remain unaffected by filtering, assuming a symmetry among destinations, i.e. when

a source contacts a number of destinations, the response (orlack of one) from one host will not affect the

semantics of traffic to other hosts, though the rate of trafficcan be affected. Also, number of source IPs

reflects popularity of the activity across the Internet—an activity with a huge number of sources is likely to

be prominent on the whole Internet. Finally, while a single-source activities might be merely a result of an

eccentric host, a multi-source activity is more likely to beintentional.

When a source host contacts a port, it is common that it sends one or more probes before revealing

its real intention, sometimes in its second or third connection to the destination host. A probe can be an

empty connection,i.e. the source opens and closes the connection without sending abyte, or some short

request,e.g., an HTTP"GET /" . Since we are more interested in the intention of sources, wechoose

to look at the activities at a per-session (source-destination pair) granularity rather than a per-connection

granularity. Otherwise one might reach the conclusion thatthe probes are the dominant elements. We

consider all connections between a source-destination pair on the given destination port collectively and

suppress repetitions. This approach usually gives us a clear picture of activity on each port.

Below we examine the activities on popular destination ports, and for each port we present the dominant

activities. For convenience of presentation, we introduceabbreviations for activity descriptions, as shown

in Table 5.5. We pick an arbitrary day, March 29, 2004, to compare the distribution of activities seen at

different networks, LBL, UW (I,II), and the Class A network.We consider the two UW networks as a

single network to eliminate possible bias that might occur due to a single filter.

91

Port/Abbrev. Activity

80/Get "GET /"
80/GetSrch "GET /"

"SEARCH /"
80/SrchAAA "GET /"

"SEARCH /"
"SEARCH /AAA..."

80/Srch64K "SEARCH /\x90\x02\xb1\x02\xb1..." (65536 byte URI)

135/Bind1 RPC bind: 000001a0-0000-0000-c000-000000000046
135/RPC170 Unknown RPC request (170 bytes)
135/Bla RPC exploit: Blaster
135/Wel RPC exploit: Welchia
135/RPC-X1 RPC exploit: (1624 bytes)
135/EP24-X2 (Empty connection on port 135/tcp)

RPC request (24 bytes)
RPC exploit: (2904 bytes)

445/Nego (CIFS session negotiation only)
445/Locator "\\<ip>\IPC$ \locator" => RPC exploit: 1896 bytes
445/Samr-exe "\\<dst-IP>\IPC$ \samr"

"\\<dst-IP>\IPC$ \srvsvc => CREATE FILE: "[...].exe"
445/Samr "\\<dst-IP>\IPC$ \samr"
445/Srvsvc "\\<dst-IP>\IPC$ \srvsvc"
445/Epmapper "\\<dst-IP>\IPC$ \epmapper"

Table 5.5: Abbreviations for Popular Activities. Each linereflects a separate connection.

The background radiation traffic is highly concentrated on asmall number of popular ports. For exam-

ple, on March 29 we saw 32,072 distinct source IPs at LBL,3 and only 0.5% of the source hosts contacted

a port not among the “popular” ports discussed below. Thus bylooking at the most popular ports, we cover

much of the background radiation activity.

Note that looking at the ports alone does not allow us to distinguish the background radiation traffic,

because many of the popular ports,e.g.,80/tcp (HTTP), 135/tcp (DCE/RPC) and 445/tcp (SMB), are also

heavily used by the normal traffic. On the other hand, once we look at the background radiation traffic

at application semantic level, it has a very distinctive modal distribution. For example, the activities on

port 135 are predominantly targeted on two particular DCE/RPC interfaces, and almost all buffer-overrun

exploits are focused on one interface. It is worth noting that the activity composition may change dramati-

cally over time, especially when new vulnerabilities/worms appear,e.g.,the dominant activity on port 445

is no longer “Locator” after the rise of the Sasser worm. However, we believe the modal pattern will last as

long as the background radiation traffic remains highly automated.

3Here we ignore the effect of source IP spoofing, since our responder was able to establish TCP connections with most of the
source hosts.

92

Activity LBL UW Class A
Get 5.1% 2.9% 4.6%
GetSrch 5.2% 93.2% 93.4%
SrchAAA 84.2% 0.0% 0.0%
Srch64K 0.9% 1.1% 0.0%
CodeRed 0.6% 0.4% 0.5%
Nimda 0.2% 0.1% 0.2%
Other 3.8% 2.3% 1.3%

Table 5.6: Port 80 Activities (March 29, 2004) Note that to reduce trace size the active responders at UW
and Class A do not respond to"SEARCH /" to avoid getting the largeSrchAAA requests.

TCP Port 80 (HTTP) and HTTP Proxy Ports: Most activities we see on port 80 (Table 5.6) are targeted

against the Microsoft IIS server. In most cases, imitating the response of a typical IIS server enables us to

attract follow-up connections from the source.

The dominant activity on port 80 is a WebDAV buffer-overrun exploit [126] (denoted as SrchAAA).

The exploit always makes two probes:"GET /" and "SEARCH /" , each in its own connection, be-

fore sending a"SEARCH" request with a long URI (in many cases 33,208 bytes, but the length can vary)

starting with"/AAAA..." to overrun the buffer. Unlike exploits we see on many other ports, this ex-

ploit shows a lot of payload diversity—the URIs can be different from each other by hundreds of bytes.

More interestingly, the URIs are composed solely of lower-case letters except for a few dozens of Unicode

characters near the beginning. The Unicode section turns out to be a short decoder which translates the

remaining characters in the URI to executable x86 code. Besides this exploit, we also see other WebDAV

exploits,e.g., one popular exploit (Srch64K) from Agobot carries a fixed 65,536 byte URI.

Old IIS worms, Nimda and CodeRed II, remain visible in the datasets. The CodeRed II worm is almost

the same as the original CodeRed II, except shift of a space and the change of expiration date to year

0x8888. We also often see a"OPTIONS /" followed by a"PROPFIND" request. As both requests are

short, they look like probes. We have not been able to elicit further requests from the sources and do not

yet fully comprehend the intention behind such probes. We suspect that they might be scanners trying to

obtain a listing of list of scriptable files by sending “translate: f” in the header of the HTTP request [105].

An interesting component of background radiation observedacross all networks on the HTTP proxy

ports: 81/1080/3128/8000/8080/8888,4 as well as on port 80, is source hosts using open-proxies to send

probes totickerbar.net . A typical request is shown in Figure 5.9. These requests arefrom sources

4Though some of these ports are not officially assigned to HTTP, the traffic we received almost contained only HTTP requests.

93

abusing a “get rich quick” money scheme from greenhorse.com–a web site pays users money for running

tickerbar while they surf the net. By using open-proxies, these sources can potentially appear to be running

hundreds of nodes. The Greenhorse website seems to have since been inactivated.

GET http://dc.tickerbar.net/tld/pxy.m?nc=262213531 HT TP/1.0
Host: dc.tickerbar.net
Connection: Close

Figure 5.9: Typical HTTP request of a tickerbar host

TCP Port 135/1025 (DCE/RPC): Port 135 is the Endpoint Mapper port on Windows systems [25]and

one of the entry points to exploit the infamous Microsoft Windows DCOM RPC service buffer overrun

vulnerability [124]. This vulnerability is exploited by the Blaster worm and the Welchia worm among

others.

Figure 5.10 shows the dominant activities on the port. The Blaster worm was seen on all three networks,

but strangely we only saw the Welchia worm at LBL. There were also a number of empty connections

without follow-ups and a few types of probes (e.g.,135/RPC170) we do not understand well. Comparing

the activity distribution across three networks, the difference is striking and unlike what we see on other

ports. This may be due to 1) lack of a single dominant activityand 2) that certain scanning and exploits

might be targeted or localized.

On port 1025, which is open on a normal Windows XP host, we see asimilar set of exploits. Further,

DCE/RPC exploits are also seen on CIFS named pipes on port 139and 445. We present a closer look at

RPC exploit in Section 5.5.2.

TCP Port 139/445 (CIFS): Port 139 is the NetBIOS Session Service port and is usually used on Windows

systems for CIFS (Common Internet File System) [19] over NetBIOS. Port 445 is for CIFS over TCP and

is also known as Microsoft-DS. When used for CIFS sessions, the two ports are almost identical except that

NetBIOS requires an extra step of session setup. Sources simultaneously connecting to both ports prefer

port 445 and abandon the port 139 connection. Thus we frequently see empty port 139 connections.

As many Windows services run on top of CIFS there are a great variety of exploits we see on these

two ports. Figure 5.2 shows a snapshot of exploits we see on port 445 at the Class A network. There are

basically two kinds of activities: 1) buffer-overrun RPC exploits through named pipes,e.g.the Locator pipe

[125] or the Epmapper pipe (connected to the endpoint mapperservice); and 2) access control bypassing

followed by attempts to upload executable files to the targethost,e.g.as in exploit 445/Samr-exe.

94

LBL UW Class A

Data Set(Volume)

0.0

20.0

40.0

60.0

80.0

100.0

P
er

ce
nt

ag
e

of
 S

ou
rc

e
IP

s
(%

)

(334) (960) (6220)

Other
135/EP24-X2
135/RPC-X1
135/Wel
135/Bla
135/RPC170
135/Bind1
135/empty

Figure 5.10: Port 135 activities on March 29

Activity LBL UW Class A
445/empty 2.4% 1.3% 0.9%
445/Nego 3.3% 2.4% 3.7%
445/Locator 72.7% 89.4% 89.3%
445/Samr-exe 11.6% 1.8% 1.1%
445/Samr 2.7% 0.8% 0.6%
445/Srvsvc 1.1% 0.4% 0.8%
445/Epmapper 0.8% 0.3% 0.0%
Other 5.4% 3.7% 3.5%

Table 5.7: Port 445 activities

As shown in Table 5.7, the Locator pipe exploit dominates port 445 activities at all four networks.

Besides that, some sources did not go beyond the session negotiation step—the first step in a CIFS ses-

sion. We also see exploits that first connect to the SAMR (Session Account Manager) pipe, then connect

to the SRVSVC pipe and attempt to create an executable file with names such asmsmsgri.exe (W32

Randex.D) [99] andMicrosoft.exe [2]. Finally, by connecting to the Epmapper pipe the sourcesare

exploiting the same vulnerability as on port 135/1025—notethat this activity is not seen in the Class A

network.

On port 139, 75% to 89% of source hosts either merely initiateempty connections or do not go beyond

the NetBIOS session setup stage, and then migrate to port 445; The dominant activity that we accurately

identify are attempts to create files on startup folders after connecting to the SRVSVC pipeXi.exe (W32-

Xibo) [131].Unlike port 445, we see few hosts attempting to exploit the buffer overflows on the Locator or

Epmapper pipe. We also see Agobot variants that connect to the SAMR pipe and drop executables.

95

TCP Port 6129 (Dameware): Dameware Remote Control, an administration tool for Windows systems,

listens on port 6129. Dameware has a buffer overrun vulnerability in its early versions [123]. The Dame-

ware exploits we see are similar to those of published exploit programs but do not have exactly the same

payload. To launch an exploit, the source host will first senda 40 byte message to probe operating system

version and then ship the exploit payload, which is almost always 5,096 bytes long.

On March 29, 2004, 62% of the source hosts that connect to port6129 at LBL5 close the connections

without sending a byte; another 26% abandoned the connections after sending the probe message; and

we see exploit messages from the remaining 12% (the number isover 30% on Apr 29). It would be

reasonable to question if the large number of abandoned connections suggest that the sources did not like

our responders. However, we also find source hosts that wouldfirst connect with an empty connection and

later came back to send an exploit. Port 6129 is associated with the Agobot that connects to a variety of

ports (see Section 5.6.1), and possibilities are that the bots may connect to a number of ports simultaneously

and decide to exploit the port that they receive a response from first.

TCP Port 3127/2745/4751 (Virus Backdoors): Port 3127 and 2745/4751 are known to be the backdoor

ports of the MyDoom and Beagle viruses, respectively. On most port 3127 connections, we see a fixed 5-

byte header followed by one or more Windows executable files uploads. The files are marked by"MZ" as

the first two bytes and contain the string"This program cannot be run in DOS mode" near

the head of the file. Running several captured executable files in a closed environment reveals that the

programs scan TCP ports 3127, 135, and 445.

On port 2745, the dominant payload we see at LBL and UW is the following FTP URL, which comes

after exchanging of one or two short binary messages.

"ftp://bla:bla@<src-IP>:<port>/bot.exe \0"

On the Class A network, however, we do not see a lot of port 2745activities. Interestingly, we see

several source hosts that attempt to upload Windows executables. We also see many hosts that close the

connection after exchange of an initial message.

On port 4751, in some cases we see binary upload after echoinga header, similar to what happens on

port 3721, but in most cases we receive a cryptic 24-byte message, and are unable to elicit further response

by echoing.

5Due to an iSink responder problem we do not have data for the UWand Class A network.

96

20:27:43.866952 172.147.151.249.domain > 128.3.x.x.dom ain: [udp sum ok]
258 [b2&3=0x7] [16323a] [53638q] [9748n] [259au]
Type26904 (Class 13568)? [|domain] (ttl 115, id 12429, len 5 8)

0x0000 (...)
0x0010 xxxx xxxx 0035 0035 0026 xxxx 0102 0007
0x0020 d186 3fc3 2614 0103 d862 6918 3500 d54c ..?.&....bi.5 ..L
0x0030 8862 3500 cb1f ee02 3500 .b5.....5.

Figure 5.11: Unknown packets on UDP port 53 (DNS port)

TCP Port 1981/4444/9996: (Exploit Follow-Ups): While worms such as CodeRed and Slammer are

contained completely within the buffer-overrun payload, several of the other worms such as Blaster and

Sasser infect victim hosts in two steps. First, the buffer-overrun payload carries only a piece of “shell

code” that will listen on a particular port to accept furthercommands. Second, the source then instructs

the shell code to download and execute a program from a remotehost. For example, on port 4444, the

follow-up port for the Blaster worm, we often see:

tftp -i <src-IP> GET msblast.exe

start msblast.exe

msblast.exe

Similarly, on port 1981 (Agobots) and 9996 (Sasser) we see sequences of shell commands to download

and execute abot.exe . In contrast, there is a different kind of shell code called “reverse shell” which

does not listen on any particular port, but instead connectsback to the source host (“phone home”). The

port on the source host can be randomly chosen and is embeddedin the shell code sent to the victim. The

Welchia worm uses a reverse shell (though its random port selection is flawed). This makes it much harder

to capture the contents of follow-up connections, because 1) we will have to understand the shell code to

find out the “phone-home” port; and 2) initiating connections from our honeypots violates the policy of the

hosting networks.

UDP Port 53: We expected to see a lot of DNS requests, but instead, find sources sending non-DNS (or

malformed) packets as shown in Figure 5.11.

We do not know what these packets are. These requests dominate UDP packets observed in the LBL

and UW (I,II) networks.

Table 5.8 provides a summary of the DNS activity observed in the Class A network during a 24 hour

trace showing a more diverse activity. Much like the UW and LBL networks, sources sending malformed

DNS requests dominate. However, in terms of packet counts other queries are substantial. We suspect

97

Type Num packets Num sources
Malformed packets 5755 3616
Standard (A) queries 10139 150
Standard query (SOA) 4059 95
Standard query (PTR) 1281 27
DNS Standard query SRV packets 785 20
DNS Standard query AAAA packets 55 16
DNS Standard unused packets 739 3
DNS Standard unknown packets 1485 3

Table 5.8: Summary of DNS activity seen in the Class A (24 hours)

these are possibly due to misconfigured DNS server IP addresses on hosts. These queries are sent to

various destination IP addresses and originate from various networks. Hence it seems unlikely that these

are a result of stale DNS entries.

The biggest contributor in terms of volume are standard A queries that resolve IP address for domain

names. The SOA packets are “Start of Authority” packets usedto register domain authorities. We observed

45 sources (out of total 95) registering different domain authorities in BGC.net. Other queries include PTR

queries (used for reverse DNS lookups), SRV records (used tospecify locations of services) and AAAA

queries (IPv6 name resolution).

UDP Port 137: The activities are dominated by NetBIOS standard name queries (probes).

UDP Port 1026, 1027 (Windows Messenger Pop-Up Spam): These appear as UDP packets with source

port 53 and destination port 1026 (or 1027). While this port combination typically connotes a DNS reply,

examination of packet contents reveals that they are in factDCE/RPC requests that exploit a weakness in

the Windows Messenger API to deliver spam messages to unpatched Windows desktops [129]. Figure 5.12

shows a trace of a typical packet. The source IP addresses of these packets are often spoofed, as suggested

by the observedICMP host-unreach backscatter of these attacks in the Class A. The choice of source

port 53 is most likely to evade firewalls.

UDP Port 1434: The Slammer worm is still alive and is the only background radiation we see on port

1434.

TCP Port 1433: We have not yet built a detailed responder for MS-SQL. It appears that most source hosts

are trying to log in with blank passwords.

98

05:23:16.964060 13.183.182.178.domain > xxx.xxx.xxx.xx x.1026: 1024 op5
[4097q] 68/68/68 (Class 0) Type0[|domain] (DF)

...
0x0010 0400 a880
0x0020 1001 000a 000a 000a 0000 0000 0000 0000
0x0030 0000 0000 f891 7b5a 00ff d011 a9b2 00c0{Z..... ...
0x0040 4fb6 e6fc 4ba6 e851 f713 8030 a761 c319 O...K..Q...0. a..
0x0050 13f0 e28c 0000 0000 0100 0000 0000 0000
0x0060 0000 ffff ffff 6400 0000 0000 0c00 0000d...... ...
0x0070 0000 0000 0c00 0000 5265 616c 2057 6f6dReal. Wom
0x0080 656e 0000 0400 0000 0000 0000 0400 0000 en........... ...
0x0090 596f 7500 3000 0000 0000 0000 3000 0000 You.0.......0 ...
0x00a0 5741 4e54 2053 4558 3f0d 0a0d 0a46 494e WANT.SEX?.... FIN
0x00b0 4420 5553 2041 543a 0d0a 0d0a 0977 7777 D.US.AT:..... www
0x00c0 2exx xxxx xxxx xxxx xx2e 4249 5a0d 0a00 . ******** .BIZ...

Figure 5.12: Observed Windows Messenger Pop-Up Spam packets.

TCP Port 5000: We do not know enough about this port. The port is reserved for Universal Plug-and-Play

on Windows Systems, but almost none of requests we see are valid HTTP requests. However, most requests

contain a number of consecutive 0x90’s (NOP) and thus look like buffer-overrun exploits.

All the ports we examine above exhibit a modal distribution at the application semantic level,i.e., they

all contain one or a few dominant elements. The only exception is the DCE/RPC ports, on which we see

some diversity, but in some sense, the various exploits on DCE/RPC ports have a single dominant element

on a higher level—they target the same vulnerability. As thedominant elements are quite different from

what we see in the normal traffic, this suggests that we will beable to capture the majority of background

radiation traffic with a sound classification scheme at the application semantic level.

5.5.2 Temporal Distribution of Activities

We examine two cases of temporal activity. First, we look at the exploits with the largest source population

and consider the population variation over time. Second, welook at the exploits targeted at a particular

vulnerability and consider how these exploits evolve and diversify over time. We focus on the LBL network

for this analysis.

The Dominant Exploits

Figure 5.13 shows how the numbers of source hosts vary over the course of 18 days for the four exploits

with largest source population.

The source volumes for the SrchAAA and Locator exploits are relatively stable and close to each other

over time. This is not surprising because these exploits arelikely coming from the same worm, as we see

in Section 5.6.2.

99

0 2 4 6 8 10 12 14 16
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time (day)

N
um

be
r

of
 S

ou
rc

e
H

os
ts

445/Locator
80/SrchAAA
135/RPC exploit (1464 bytes)
445/Sasser ("lsarpc")

Figure 5.13: The Big Exploits (Apr 20 to May 7, 2004), as observed on 5 /C networks at LBL. The source
hosts are counted every three hours.

The other two exploits, Exploit1464 and Sasser, show much a wider range of source volume dynamics.

This is especially true for Exploit1464, which temporarilyretreated to a much smaller scale around April

30th.

All four exploits demonstrate a strong diurnal pattern, with obvious peaks at local time noon. We do

not have good explanations for this pattern. For SrchAAA, Locator, and the Sasser exploits, the peak might

be due to hosts being turned on at daytime and doing local-biased search. However, for Exploit1464, the

steep narrow peaks lead us to believe they could be caused by the scanning mechanism itself.

Overall, we can see that there are two common types of temporal patterns in background radiation at

the granularity of every few hours: the source population ofsome radiation activities (such as SrchAAA)

remains largely constant, likely a result of continual and independent random scanning by the source hosts;

some other radiation activities (such as Exploit1464) exhibit large variations, suggesting synchronized or

centrally controlled scanning.

We also observe variation of source population at larger time granularity—in terms of days or weeks.

Such variation can be a result of a new vulnerability and therefore new types of exploits, as shown by the

Sasser exploit, which starts to appear around the April 30, likely coming from the Sasser worm. On the

other hand, the source population of existing radiation activities may decrease as new types of malware

emerge and take over some of the hosts, as the SrchAAA and Locator population does upon the Sasser

worm outbreak.

100

DCE/RPC Exploits

DCE/RPC exploits that target the Microsoft DCOM RPC vulnerability [124] present an interesting case

of a single well-known vulnerability being used and reused by various worms and/or autorooters. This

vulnerability is particularly attractive because it exists on every unpatched Windows 2000/XP system, in

contrast to,e.g.vulnerabilities that exist only on IIS or SQL servers.

We have seen quite a few different exploit payloads in this data. There are at least 11 different payload

lengths. This does not appear to be result of intentional polymorphism, for two reasons: 1) from almost

every single source IP we see only one payload length; and 2) it would be easy to vary the length of payload

by simply insertingNOP’s if the adversary wanted to incorporate some polymorphism. Thus we believe

that the diversity of payloads is not due to deliberate polymorphism but due to different code bases. While

the payloads themselves might not be very interesting, since the diversity is likely due to the various “shell

code” they carry, the diversity offers us an opportunity to look at the rising and ebbing of different exploit

programs.

Without a robust way to cluster payloads by contents (payloads of same length sometimes differ on

tens to hundreds of bytes and the differences are not merely shifting of contents and paddings), we choose

to cluster the exploits by lengths and the ports on which theyappear, including port 135/1025 and the

Epmapper pipes on port 445/139. Under this scheme, we see more than 30 different exploit types. We

select nine of the popular exploits and consider how the number of source IP addresses for each exploit

varies over time during April 2004. The exploits have four different payload lengths: 1448, 1464, 2972,

and 2904, and are seen on port 135, 1025, and 445.

We observe strong temporal correlation among exploits of the same length for lengths 2792 and 2904,

while this is not the case for lengths 1448 and 1464. The four exploits also show some correlation in terms

of activity to port 135 and to port 445, which is due to the samesource probing both ports. We also find that

even for multiple sources, activity for particular port/length pairs tends to come in bursty spikes, suggesting

that certain malware performs synchronized scanning amongthe sources.

The temporal correlation among some types of DCE/RPC exploits allows us to guess which exploits

are coming from the same malware. It shows that some malwaresprobably send different exploits to attack

the same vulnerability, but it is not clear why they do so (thevariation is too little for evading signatures).

101

Mar-26 Mar-27 Mar-28 Mar-29 Mar-30

Date (Month-Day)

0

2000

4000

6000

8000

10000

N
um

be
r

of
 S

ou
rc

es
 (

pe
r

ho
ur

)
1025

6129

2745

135

3127

(a) Agobot Sources: UW I

Mar-26 Mar-27 Mar-28 Mar-29 Mar-30

Date (Month-Day)

0

2000

4000

6000

8000

10000

N
um

be
r

of
 S

ou
rc

es
 (

pe
r

ho
ur

)

1025

6129

2745

135

3127

(b) Agobot Sources: UW II

Figure 5.14: Time series of activity on Agobot ports in the two UW /19 networks (on adjacent Class B
networks)

5.6 Characteristics of Sources

This section examines the background radiation activitiesin terms of source hosts. We associate various

activities coming from the same source IP to construct an “activity vector” for each source IP, which we

then examine in three dimensions: 1) across ports, 2) acrossdestination networks, and 3) over time.

One caveat here is the possibility of IP spoofing. Yet we find that we are able to establish two-way

conversation with the majority of source hosts in background radiation, suggesting that most sources are

not spoofing their IP addresses.

There is another caveat about identifying hosts with IP addresses: due to DHCP, hosts might be assigned

different addresses over time. A study [71] concluded that “IP addresses are not an accurate measure of the

spread of a worm on timescales longer than 24 hours”. However, without a better notion to identify hosts,

we still use IP addresses to identify hosts, while keeping this caveat in mind.

5.6.1 Across Ports

Associating activities across ports sometimes gives us a significantly better picture of a source’s goals.

This especially helps with analyzing puzzling activities,because it puts behavior on individual ports in the

context of collective activity. For example, simply looking at an RPC exploit may not readily reveal the

worm or autorooter that sends it, but once we see a follow-up to port 4444 with"tftp msblast.exe" ,

we know that the earlier exploit comes from Blaster.

Table 5.9 provides a summary of the top multi-port scanning episodes seen in the four networks. The

most common is sources that scan both 139 and 445. Many viruses that exploit NetBIOS/SMB (CIFS)

exhibit this behavior since for propagation the ports can beused interchangeably. This next most common

102

Name Ports Description Number of Sources (Rank)

LBL UW I UW II Class A

NB-1 139,445 Xi.exe (W32-Xibo), 4,310 (1) 4,300 (1) 4,313 (1) 7,408 (1)

msmsgri32.exe (Randex.D),

Antivirus32.exe (SDBot.JW)

NB-EP1 135,139,445 EP-2704, 1,187 (2) 1,028 (2) 1,046 (2) 537 (4)

mdms.exe(Agobot)

NB-EP2 135,139, EP-2792, EP-2904 780 (3) 678 (3) 721 (3) 15

445,5000

Agobot-1 1025,1981, Agobot variant-I 16 452 (4) 68 (10) 0

2745,6129

Agobot-2 1025,2745,6129 Agobot variant-II 1 437 (5) 3 0

Agobot-3 80,139,1025, Agobot variant-III 0 415 (6) 0 0

2745,6129

Table 5.9: 24 hours of multi-port source activity at the foursites

multiport source behavior exploits the Microsoft DCE/RPC vulnerability [124] both via port 135 and

by connecting to the Epmapper pipe through port 139 and port 445 during the same episode. These are

likely variants of Welchia. Most port 5000 connections are empty and the rest small portion of them look

like buffer overrun exploits. We also find Agobot variants that occasionally target these services. They

connect to the SAMR pipe through CIFS to obtain registry information, following the sequence described

in Figure 5.3 and drop the filemdms.exe into one of the startup folders. The least common profiles are

used exclusively by Agobot variants (I, II and III).

We can examine the spatial variance of multi-port profiles bycomparing the data collected at each

network during the same 24 hour period. We order the profiles based on the ranks of all multi-port profiles

collected at the UW I network, which showed the greatest affinity to Agobot. The table reveals several

notable observations. First, the top two exploits are extensively observed across all four networks and their

rankings are consistent in the Class B networks—aspatial invariant. Second, although the LBL network

is much smaller, it observes the same number of sources as theother two UW networks for the top three

exploits. This is probably due to the fact that the networks belong to the same /8, and suggests that these

multi-port sources often sweep the address space. Third, UWI receives many more Agobot scans than the

other networks, though we don’t know why.

We explore Agobot scans in greater detail in Figure 5.14. Thefigures show the volume of unique

sources per hour on several of the Agobot ports during a five-day period in March at the two adjacent

UW networks. The graph at UW I shows four visible spikes, indicating an Agobot attack. While UW II

103

Activity LBL UW Class A LBL ∩ UW LBL ∩ Class A
All 31K 276K 582K 15K 6.5K
Srch+Loc 76% 85% 57% 75% 91%
Samr-exe 1,601 2,111 2,012 1,634 116
Witty 72 241 162 61 18

Table 5.10: Traffic from sources seen across networks: intersections vs. individual networks

background radiation seems to otherwise closely follow UW I, these Agobot spikes are peculiarly absent.

These graphs also provide a temporal perspective on the growth of Agobot, with a striking daily spike-

followed-by-decay pattern, presumably as new machines arecleaned up over the course of the day.

We see little Agobot on the Class A network. This likely reflects Agobot’s “maturity” as malware. It

has gone through iterative enhancements and likely has (essentially) “evolved” to have been programmed

to avoid unused class A networks; or perhaps it has become equipped with list of target networks, or the

scanning is being consciously focused by a human operator via IRC control channels.

5.6.2 Sources Seen Across Networks

We now consider sets of source hosts seen on multiple networks at approximately the same time. We

analyze source IPs seen across networks on an arbitrarily chosen day (March 29 GMT), characterizing

them in terms of: 1) How many such source hosts are there? 2) Dothey send the same traffic to different

networks? 3) What does the activity distribution look like?and 4) how does it compare to the distribution

on individual networks?

As shown in Table 5.10, source IPs seen at LBL and UW have a surprisingly large intersection set—

almost half the source IPs seen at LBL are also seen at UW. In contrast, the intersection of LBL and the

Class A is much smaller, even though we are seeing many more source IPs at the Class A than at UW.6

This contrast may be due to some sources avoiding the Class A networks, and also the proximity of LBL

and UW in the IP address space.

The next evaluation is to confirm that a given source indeed sends the same traffic to the different net-

works. We extract an activity vector for each source IP on theLBL and UW networks and compare, finding

that indeed this is the case, with one peculiarity: while several thousand SrchAAA and Locator sources are

common, we also find nearly two thousand Locator-only sources at one network that are SrchAAA-only

6Since we only see ICMP Unreachable backscatter only on the Class A network, and these constitute a significant number of
source IPs, here we exclude them from the comparison to avoidskewing the activity distribution.

104

Mar 29 Mar 30 Apr 29 1-Day∩ 1-Month∩
All 31K 30K 62K 1,513 680
Srch+Loc 76% 83% 42% 68% 85%
Witty 72 64 0 15 0
Blaster 30 31 24 8 7

Table 5.11: Traffic from sources seen over time: intersections vs. individual periods

sources at the other. This turns out to be due to the interaction between source-destination filtering and

the scanning mechanism of the SrchAAA/Locator sources. These sources choose, apparently randomly, to

send either SrchAAA or Locator to a given destination, but not both.

Finally, what does the activity profile of a given source tellus about how likely we are to see it else-

where? As shown in Table 5.10, sources exhibiting the dominant activity profile—SrchAAA and Locator—

are often seen at multiple locations in the network. On the other hand, Samr-exe and Witty present an

interesting case. The Samr-exe sources we see in the intersection of LBL and UW are more than what we

find at LBL alone! (1,634 vs 1,601) This seeming inconsistency is caused by a number of source hosts

not completing the exploit when contacting LBL, and thus notbeing identified there, but doing so at UW.

In addition, the Samr-exe population seen at UW is merely 2,061 (0.7%), so we see a surprisingly large

overlap for it between LBL and UW. On the other hand, LBL and the Class A have only 116 Samr-exe

sources in common, out of more than 2,000 seen on the Class A, suggesting that Samr-exe sources scan

with a local bias.

5.6.3 Sources Seen Over Time

To characterize sources seen at the same network over time, we analyze activity seen at LBL on three days:

March 29, March 30, and April 29. This gives us comparisons for adjacent days and one month apart,

respectively. Table 5.11 characterizes the variation. We see that the intersection of source hosts—even in

the case of only one day apart—is much smaller than the intersection across networks. While this is partly

because the UW network is larger than LBL, looking at the set of sources seen on another LBL network of

the same size on March 29 we find more than 5,000 hosts in common. This confirms that we tend to see

a larger intersection of source IPs across networks than over time. One effect we have not controlled for

here, however, is DHCP artifacts: a host might be assigned different addresses on different days. We also

note that the intersection size does not decrease very much further over one month’s time, suggesting that

105

if a host does not have the DHCP artifact, then it tends to stayin the intersection. The initial steep decaying

of source IP sets also suggests that it will be easier to tracka (malicious) host across space than across time.

The number of source hosts seen over time also varies by activity. For example, Witty did not persist

over a month (nor could it, as it was a rare instance of a worm that deliberately damages its host); Blaster’s

grip on hosts is quite tenacious; and the SrchAAA/Locator sources fall in between.

5.7 Summary

Previous studies of Internet traffic have identified a numberof now well-established properties: diurnal

cycles in volume; variability in mix across sites and over time; bursty arrivals; the ubiquity of heavy-tailed

distributions. Over the past several years, however, an important new dimension of Internet traffic has

emerged, and it has done so without any systematic observation or characterization. The gross features of

this new breed of traffic are that it is complex in structure, highly automated, frequently malicious, and

mutates constantly. Each of these characteristics motivates the need for a deeper understanding of this

“unwanted” traffic.

We have presented an initial study of the broad characteristics of Internetbackground radiation. Our

evaluation is based on traffic measurements from four large,unused subnets within the IPv4 address space.

We developed filtering techniques and active responders to use in our monitoring, analyzing both the char-

acteristics of completely unsolicited traffic (passive analysis) and the details of traffic elicited by our active

responses (activities analysis).

Passive analysis demonstrates both the prevalence and variability of background radiation. Evaluation

of destination ports reveals that the vast majority of traffic targets services with frequently-exploited vul-

nerabilities. Analysis of backscatter traffic shows the overall dominance of TCP SYN-ACK/RST packets,

but otherwise we do not find a great deal of consistency acrossthe monitored subnets.

Our activities analysis focused on the most popular services targeted by background radiation, finding

a rich variegation. Activities across all of the monitored services include new worms released during our

study, vestiges of old worms such as Code Red and Nimda, the frequent presence of “autorooter” scans

(similar to worms, but without self-propagation), and a noticeable number of connections that are simply

empty even when given an opportunity to send data. As with thepassive analysis, we find significant

diversity across the subnets we monitored, and also over time.

106

We also examined background radiation from the perspectiveof source host behavior. Considering

source activities across ports reveals consistent behavior in each of the measurement sites for the most

prevalent multi-port scan type (scans to both ports 139 and 445). Furthermore, there was an appreciable

intersection of sources across measurement sites. This canbe explained by the random scanning behavior

of worms like Welchia. However, there was a much smaller set of sources common to all measurement

sites when they are considered over time.

Perhaps the most striking result of our analysis is the extreme dynamism in many aspects of background

radiation. Unlike benign traffic, which only shows major shifts in constituency when new applications

become popular (which happens on fairly lengthy time scales), the mix of background radiation sometimes

changes on a nearly-daily basis. This dynamism results in a potpourri of connection-level behavior, packet

payloads, and activity sessions seen in different regions of the address space.

Our efforts have implications for both the research and operational communities. The ubiquity of back-

ground radiation presents significant difficulties for those who monitor Internet traffic: it can clog stateful

analyzers with uninteresting activity, and due to its variety it can significantly complicate the detection of

new types of activity (for example, a new worm using the same port as existing worms). It is clear from

the highly diverse and dynamic activity we have found that further work is needed to both assess the evo-

lution of background radiation over time and to develop moredetailed characterizations. We believe that

our framework—prefiltering the traffic, using lightweight responders to engage sources in enough detail to

categorize them, analyzing the resulting traffic along the axes we have explored—is an important first step

towards comprehensively studying this new phenomenon.

107

Chapter 6

A First Look at Modern Enterprise

Traffic

While wide-area Internet traffic has been heavily studied for many years, the characteristics of trafficinside

Internet enterprises remain almost wholly unexplored. Nearly all of the studies of enterprise traffic available

in the literature are well over a decade old and focus on individual LANs rather than whole sites. In this

paper we present a broad overview of internal enterprise traffic recorded at a medium-sized site. The

packet traces span more than 100 hours, over which activity from a total of several thousand internal hosts

appears. This wealth of data—which we have publicly released in anonymized form—spans a wide range

of dimensions. While we cannot form general conclusions using data from a single site, and clearly this sort

of data merits additional in-depth study in a number of ways,in this chapter we endeavor to characterize

a number of the most salient aspects of the traffic. Our goal isto provide a first sense of ways in which

modern enterprise traffic is similar to wide-area Internet traffic, and ways in which it is quite different.

The general structure of the chapter is as follows. Section 6.1 presents the background and motivation

of this study. Section 6.2 gives an overview of the packet traces we gathered for our study. Next, Section 6.3

presents a broad breakdown of the main components of the traffic, while Section 6.4 looks at the locality

of traffic sources and destinations. Section 6.5 examines characteristics of the applications that dominate

the traffic. Section 6.6 provides an assessment of the load carried by the monitored networks. Section 6.7

108

offers final thoughts. We note that given the breadth of the topics covered, we have spread discussions of

related work throughout the chapter, rather than concentrating these in their own section.

6.1 Problem Statement

When Cáceres captured the first published measurements of asite’s wide-area Internet traffic in July,

1989 [16, 17], the entire Internet consisted of about 130,000 hosts [62]. Today, the largest enterprises

can have more than that many hosts just by themselves.

It is striking, therefore, to realize that more than 15 yearsafter studies of wide-area Internet traffic

began to flourish, the nature of trafficinsideInternet enterprises remains almost wholly unexplored. The

characterizations of enterprise traffic available in the literature are either vintage LAN-oriented studies [42,

38], or, more recently, focused on specific questions such asinferring the roles played by different enterprise

hosts [115] or communities of interest within a site [4]. Theonly broadly flavored look at traffic within

modern enterprises of which we are aware is the study of OSPF routing behavior in [107]. Our aim is to

complement that study with a look at the make-up of traffic as seen at the packet level within a contemporary

enterprise network.

One likely reason why enterprise traffic has gone unstudied for so long is that it is technically difficult

to measure. Unlike a site’s Internet traffic, which we can generally record by monitoring a single access

link, an enterprise of significant size lacks a single choke-point for its internal traffic. For the traffic we

study, we primarily recorded it by monitoring (one at a time)the enterprise’s two central routers; but our

measurement apparatus could only capture two of the 20+ router ports at any one time, so we could not

attain any sort of comprehensive snapshot of the enterprise’s activity. Rather, we piece together a partial

view of the activity by recording a succession of the enterprise’s subnets in turn. This piecemeal tracing

methodology affects some of our assessments. For instance,if we happen to trace a portion of the network

that includes a large mail server, the fraction of mail traffic will be measured as larger than if we monitored

a subnet without a mail server, or if we had an ideally comprehensive view of the enterprise’s traffic.

Throughout the chapter we endeavor to identify such biases as they are observed. While our methodology

is definitely imperfect, to collect traces from a site like ours in a comprehensive fashion would require a

large infusion of additional tracing resources.

109

Our study is limited in another fundamental way, namely thatall of our data comes from a single site,

and across only a few months in time. It has long been established that the wide-area Internet traffic seen

at different sites varies a great deal from one site to another [24, 87] and also over time [87, 88], such

that studying a single sitecannotbe representative. Put another way, for wide-area Internettraffic, the

very notion of “typical” traffic is not well-defined. We wouldexpect the same to hold for enterprise traffic

(though this basic fact actually remains to be demonstrated), and therefore our single-site study can at best

provide anexampleof what modern enterprise traffic looks like, rather than a general representation. For

instance, while other studies have shown peer-to-peer file sharing applications to be in widespread use

[106], we observe nearly none of it in our traces (which is likely a result of organizational policy).

Even given these significant limitations, however, there ismuch to explore in our packet traces, which

span more than 100 hours and in total include activity from 8,000 internal addresses at the Lawrence

Berkeley National Laboratory and 47,000 external addresses. Indeed, we found the very wide range of

dimensions in which we might examine the data difficult to grapple with. Do we characterize individual

applications? Transport protocol dynamics? Evidence for self-similarity? Connection locality? Variations

over time? Pathological behavior? Application efficiency?Changes since previous studies? Internal versus

external traffic? Etc.

Given the many questions to explore, we decided in this first look project to pursue a broad overview

of the characteristics of the traffic, rather than a specific question, with an aim towards informing future,

more tightly scoped efforts. To this end, we settled upon thefollowing high-level goals:

1. To understand the makeup (working up the protocol stack from the network layer to the application

layer) of traffic on a modern enterprise network.

2. To gain a sense of the patterns of locality of enterprise traffic.

3. To characterize application traffic in terms of how intranet traffic characteristics can differ from

Internet traffic characteristics.

4. To characterize applications that might be heavily used in an enterprise network but only rarely used

outside the enterprise, and thus have been largely ignored by modeling studies to date.

5. To gain an understanding of the load being imposed on modern enterprise networks.

110

D0 D1 D2 D3 D4

Date 10/4/04 12/15/04 12/16/04 1/6/05 1/7/05
Duration 10 min 1 hr 1 hr 1 hr 1 hr
Per Tap 1 2 1 1 1-2

Subnets 22 22 22 18 18
Packets 17.8M 64.7M 28.1M 21.6M 27.7M
Snaplen 1500 68 68 1500 1500

Mon. Hosts 2,531 2,102 2,088 1,561 1,558
LBNL Hosts 4,767 5,761 5,210 5,234 5,698
Remote Hosts 4,342 10,478 7,138 16,404 23,267

Table 6.1: Dataset characteristics.

Our general strategy in pursuing these goals is “understandthe big things first.” That is, for each of

the dimensions listed above, we pick the most salient contributors to that dimension and delve into them

enough to understand their next degree of structure, and then repeat the process, perhaps delving further if

the given contributor remains dominant even when broken down into components, or perhaps turning to a

different high-level contributor at this point.

6.2 Datasets

We obtained multiple packet traces from two internal network locations at the Lawrence Berkeley National

Laboratory (LBNL) in the USA. The tracing machine, a 2.2 GHz PC running FreeBSD 4.10, had four NICs.

Each captured a unidirectional traffic stream extracted, via network-controllable Shomiti taps, from one of

the LBNL network’s central routers. While the kernel did notreport any packet-capture drops, our analysis

found occasional instances where a TCP receiver acknowledged data not present in the trace, suggesting

the reports are incomplete. It is difficult to quantify the significance of these anomalies.

We merged these streams based on timestamps synchronized across the NICs using a custom modifi-

cation to the NIC driver. Therefore, with the four availableNICs we could capture traffic for two LBNL

subnets. A further limitation is that our vantage point enabled the monitoring of traffic to and from the

subnet, but not traffic that remained within the subnet. We used anexpectscript to periodically change the

monitored subnets, working through the 18–22 different subnets attached to each of the two routers.

Table 6.1 provides an overview of the collected packet traces. The “per tap” field indicates the number

of traces taken on each monitored router port, andSnaplengives the maximum number of bytes captured

for each packet. For example,D0 consists of full-packet traces from each of the 22 subnets monitored once

111

D0 D1 D2 D3 D4

IP 99% 97% 96% 98% 96%
non-IP 1% 3% 4% 2% 4%

ARP 10% 6% 5% 27% 16%
IPX 80% 77% 65% 57% 32%

Other 10% 17% 29% 16% 52%

Table 6.2: Fraction of packets observed using the given network layer protocol.

for ten minutes at a time, whileD1 consists of one-hour header-only (68 bytes) traces from the22 subnets,

each monitored twice (i.e., two one-hour traces per subnet).

6.3 Broad Traffic Breakdown

We first take a broad look at the protocols present in our traces, examining the network, transport and

application layers.

Table 6.2 shows the distribution of “network layer” protocols, i.e., those above the Ethernet link layer.

IP dominates, constituting more than 95% of the packets in each dataset, with the two largest non-IP

protocols being IPX and ARP; the distribution of non-IP traffic varies considerably across the datasets,

reflecting their different subnet (and perhaps time-of-day) makeup.1

Before proceeding further, we need to deal with a somewhat complicated issue. The enterprise traces

includescanning trafficfrom a number of sources. The most significant of these sources are legitimate,

reflecting proactive vulnerability scanning conducted by the site. Including traffic from scanners in our

analysis would skew the proportion of connections due to different protocols. And, in fact, scanners can

engage services that otherwise remain idle, skewing not only the magnitude of the traffic ascribed to some

protocol but also the number of protocols encountered.

In addition to the known internal scanners, we identify additional scanning traffic using the following

heuristic. We first identify sources contacting more than 50distinct hosts. We then determine whether

at least 45 of the distinct addresses probed were in ascending or descending order. The scanners we find

with this heuristic are primarily external sources using ICMP probes, because most other external scans

get blocked by scan filtering at the LBNL border. Prior to our subsequent analysis, we remove traffic from

1Hour-long traces we made of≈ 100 individual hosts (not otherwise analyzed here) have a makeup of 35–67%non-IPv4 packets,
dominated bybroadcastIPX and ARP. This traffic is mainly confined to the host’s subnet and hence not seen in our inter-subnet
traces. However, the traces are too low in volume for meaningful generalization.

112

Connections
D0/all D1/all D2/all D3/all D4/all

Total 198133 1391718 563629 881200 1232789
Scan1 11% 0.9% 2% 2% 2%
Scan2 1% 15% 1% 9% 1%
WAN Scanner 5% 0.6% 1% 3% 3%
Non-Scan 82% 84% 96% 86% 93%

Table 6.3: Fractions of scan connections (removed from further analysis)

D0 D1 D2 D3 D4

Bytes (GB) 13.12 31.88 13.20 8.98 11.75

TCP 66% 95% 90% 77% 82%
UDP 34% 5% 10% 23% 18%
ICMP 0% 0% 0% 0% 0%

Conns (M) 0.16 1.17 0.54 0.75 1.15

TCP 26% 19% 23% 10% 8%
UDP 68% 74% 70% 85% 87%
ICMP 6% 6% 8% 5% 5%

Table 6.4: Fraction of connections and bytes utilizing various transport protocols.

sources identified as scanners along with the two internal scanners. Table 6.3 shows that the fraction of

connections removed from the traces ranges from 4–18% across the datasets. A more in-depth study of

characteristics that the scanning traffic exposes is a fruitful area for future work.

We now turn to Table 6.4, which breaks down the traffic by transport protocol (i.e., above the IP layer)

in terms of payload bytes and packets for the three most popular transports found in our traces. The “Bytes”

and “Conns” rows give the total number of payload bytes and connections for each dataset in Gbytes and

millions, respectively. The ICMP traffic remains fairly consistent across all datasets, in terms of fraction of

both bytes and connections. The mix of TCP and UDP traffic varies a bit more. We note that the bulk of

the bytes are sent using TCP, and the bulk of the connections use UDP, for reasons explored below. Finally,

we observe a number of additional transport protocols in ourdatasets, each of which make up only a slim

portion of the traffic, including IGMP, IPSEC/ESP, PIM, GRE,and IP protocol 224 (unidentified).

Next we break down the traffic by application category. We group TCP and UDP application proto-

cols as shown in Table 6.5. The table groups the applicationstogether based on their high-level purpose.

We show only those distinguished by the amount of traffic theytransmit, in terms of packets, bytes or

connections (we omitmanyminor additional categories and protocols). In Section 6.5we examine the

characteristics of a number of these application protocols.

113

Category Protocols

backup Dantz, Veritas, “connected-backup”
bulk FTP, HPSS
email SMTP, IMAP4, IMAP/S, POP3, POP/S, LDAP

interactive SSH, telnet, rlogin, X11
name DNS, Netbios-NS, SrvLoc

net-file NFS, NCP
net-mgnt DHCP, ident, NTP, SNMP, NAV-ping, SAP, NetInfo-local
streaming RTSP, IPVideo, RealStream

web HTTP, HTTPS
windows CIFS/SMB, DCE/RPC, Netbios-SSN, Netbios-DGM

misc Steltor, MetaSys, LPD, IPP, Oracle-SQL, MS-SQL

Table 6.5: Application categories and their constituent protocols.

 0

 10

 20

 30

 40

 50

 60

%

p
a
y
l
o
a
d

w
e
b

e
m
a
i
l

n
e
t
-
f
i
l
e

b
a
c
k
u
p

b
u
l
k

n
a
m
e

i
n
t
e
r
a
c
t
i
v
e

w
i
n
d
o
w
s

s
t
r
e
a
m
i
n
g

n
e
t
-
m
g
n
t

m
i
s
c

o
t
h
e
r
-
t
c
p

o
t
h
e
r
-
u
d
p

wan
enterprise

Figure 6.1: Fraction of traffic payload bytes of various application layer protocols.

114

 0

 10

 20

 30

 40

 50

%

p
a
c
k
e
t

c
o
u
n
t

w
e
b

e
m
a
i
l

n
e
t
-
f
i
l
e

b
a
c
k
u
p

b
u
l
k

n
a
m
e

i
n
t
e
r
a
c
t
i
v
e

w
i
n
d
o
w
s

s
t
r
e
a
m
i
n
g

n
e
t
-
m
g
n
t

m
i
s
c

o
t
h
e
r
-
t
c
p

o
t
h
e
r
-
u
d
p

wan
enterprise

Figure 6.2: Fraction of packets of various application layer protocols.

 0

 10

 20

 30

 40

 50

 60

 70

%

c
o
n
n
e
c
t
i
o
n

c
o
u
n
t

w
e
b

e
m
a
i
l

n
e
t
-
f
i
l
e

b
a
c
k
u
p

b
u
l
k

n
a
m
e

i
n
t
e
r
a
c
t
i
v
e

w
i
n
d
o
w
s

s
t
r
e
a
m
i
n
g

n
e
t
-
m
g
n
t

m
i
s
c

o
t
h
e
r
-
t
c
p

o
t
h
e
r
-
u
d
p

wan
enterprise

Figure 6.3: Fraction of connections of various applicationlayer protocols.

115

Figure 6.1, 6.2, and 6.3 show the fraction of unicast payloadbytes, packets, and connections from each

application category, respectively (multicast traffic is discussed below). The five bars for each category

correspond to our five datasets. The total height of the bar represents the percentage of traffic due to the

given category. For each dataset, the height of bars adds up to 100%. The solid part of the bar represents

the fraction of the total in which one of the endpoints of the connection resides outside of LBNL, while

the hollow portion of the bar represents the fraction of the total that remains within LBNL’s network. (We

delve into traffic origin and locality in more depth in Section 6.4.)

First, the plots show awider range of application usagewithin the enterprise than over the WAN.

In particular, we observed 3–4 times as many application categories on the internal network as we did

traversing the border to the WAN. The wider range likely reflects the impact of administrative boundaries

such as trust domains and firewall rules, and if so should prove to hold for enterprises in general. The figure

also shows that the majority of traffic observed is local to the enterprise. This follows the familiar pattern

of locality in computer and network systems which, for example, plays a part in memory, disk block, and

web page caching.

In addition, Figure 6.3 and 6.1 show the reason for the findingabove that most of the connections in

the traces use UDP, while most of the bytes are sent across TCPconnections. Many connections are for

“name” traffic across all the datasets (45–65% of the connections). However, the byte count for “name”

traffic constitutes no more than 1% of the aggregate traffic. The “net-mgnt”, “misc” and “other-udp”

categories show similar patterns. While most of the connections are short transaction-style transfers, most

of the bytes that traverse the network are from relatively few connections.

Figure 6.1 shows that the “bulk”, “network-file” and “backup” categories constitute a majority of the

bytes observed across datasets. In some of the datasets, “windows”, “streaming” and “interactive” traffic

each contribute 5–10% of the bytes observed, as well. The first two make sense because they include

bulk-transfer as a component of their traffic; and in fact interactive traffic does too, in the form of SSH,

which can be used not only as an interactive login facility but also for copying files and tunneling other

applications.

The breakdown in term of packets (Figure 6.2) is similar to the breakdown in terms of bytes (Figure 6.1),

except that when measuring in terms of packets the percentage of interactive traffic is roughly a factor of

two more than when assessing the traffic in terms of bytes, indicating that interactive traffic consists, not

surprisingly, of small packets [24].

116

Most of the application categories shown in the breakdown figures areunbalancedin that the traffic

is dominated by either the connection count or the byte count. The “web” and “email” traffic categories

are the exception; they show non-negligible contributionsto both the byte and connection counts. We will

characterize these applications in detail in Section 6.5, but here we note that this indicates that most of the

traffic in these categories consists of connections with modest—not tiny or huge—lengths.

In addition, the plot highlights the differences in traffic profile across time and area of the network

monitored. For instance, the number of bytes transmitted for “backup” activities varies by a factor of

roughly five fromD0 to D4. This could be due to differences in the monitored locations, or different tracing

times. Given our data collection techniques, we cannot distill trends from the data; however this is clearly

a fruitful area for future work. We note that most of the application categories that significantly contribute

to the traffic mix show a range of usage across the datasets. However, the percentage of connections in the

“net-mgnt” and “misc” categories are fairly consistent across the datasets. This may be because a majority

of the connections come from periodic probes and announcements, and thus have a quite stable volume.

Finally, we note that multicast traffic constitutes a significant fraction of traffic in the “streaming”,

“name”, and “net-mgnt” categories. We observe that 5–10% ofall TCP/UDP payload bytes transmitted are

in multicast streaming—i.e., more than the amount of trafficfound in unicast streaming. Likewise, multi-

cast traffic in “name” (SrvLoc) and “net-mgnt” (SAP) each constitutes 5–10% of all TCP/UDP connections.

However, multicast traffic in the remaining application categories was found to be negligible.

6.4 Origins and Locality

We next analyze the data to assess both the origins of traffic and the breadth of communications among

the monitored hosts. First, we examine the origin of the flowsin each dataset, finding that the traffic

is clearly dominated by unicast flows whose source and destination are both within the enterprise (71–

79% of flows across the five datasets). Another 2–3% of unicastflows originate within the enterprise but

communicate with peers across the wide-area network, and 6–11% originate from hosts outside of the

enterprise contacting peers within the enterprise. Finally, 5–10% of the flows use multicast sourced from

within the enterprise and 4–7% use multicast sourced externally.

We next assess the number of hosts with which each monitored host communicates. For each monitored

hostH we compute two metrics: (i) fan-in is the number of hosts that originate conversations withH , while

117

(ii) fan-outis the number of hosts to whichH initiates conversations. We calculate these metrics in terms

of both local traffic and wide-area traffic.

Figure 6.4 shows the distribution of fan-in and fan-out forD2 andD3. We observe that for both fan-

in and fan-out, the hosts in our datasets generally have morepeers within the enterprise than across the

WAN, though with considerable variability. In particular,one-third to one-half of the hosts have only

internal fan-in, and more than half with only internal fan-out—much more than the fraction of hosts with

only external peers. This difference matches our intuitionthat local hosts will contact local servers (e.g.,

SMTP, IMAP, DNS, distributed file systems) more frequently than requesting services across the wide-area

network, and is also consistent with our observation that a wider variety of applications are used only within

the enterprise.

While most hosts have a modest fan-in and fan-out—over 90% ofthe hosts communicate with at most

a couple dozen other hosts—some hosts communicate with scores to hundreds of hosts, primarily busy

servers that communicate with large numbers of on- and off-site hosts (e.g., mail servers). Finally, the tail

of the internal fan-out, starting around 100 peers/source,is largely due to the peer-to-peer communication

pattern of SrvLoc (Service Locator Protocol [117]) traffic.

In keeping with the spirit of this study, the data presented in this section provides a first look at origins

and locality in the aggregate. Future work on assessing particular applications and examining locality

within the enterprise is needed.

6.5 Application Characteristics

In this section we examine transport-layer and application-layer characteristics of individual application

protocols. Table 6.6 provides a number of examples of the findings we make in this section.

We base our analysis on connection summaries generated by Bro [89]. As noted in Section 6.2,D1

andD2 consist of traces that contain only the first 68 bytes of each packet. Therefore, we omit these two

datasets from analysis that require in-depth examination of packet payloads to extract application-layer

protocol messages.

Before turning to specific application protocols, however,we need to first discuss how we compute

failure rates. At first blush, counting the number of failed connections/requests seems to tell the story.

However, this method can be misleading if the client is automated and endlessly retries after being rejected

118

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

C
D

F

Fan-In

D2 - enterprise
D3 - enterprise

D2 - WAN
D3 - WAN

(a) Fan-in

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

C
D

F

Fan-Out

D2 - enterprise
D3 - enterprise

D2 - WAN
D3: WAN

(b) Fan-out

Figure 6.4: Locality in host communication.

119

§ 6.5.1 Automated HTTP client activities constitute a significant fraction of internal
HTTP traffic.

§ 6.5.1 IMAP traffic inside the enterprise has characteristics similar to wide-area email,
except connections are longer-lived.

§ 6.5.1 Netbios/NS queries fail nearly 50% of the time, apparently due to popular names
becoming stale.

§ 6.5.2 Windows traffic is intermingled over various ports, with Netbios/SSN (139/tcp)
and SMB (445/tcp) used interchangeably for carrying CIFS traffic. DCE/RPC
over “named pipes”, rather than Windows File Sharing, emerges as the most ac-
tive component in CIFS traffic. Among DCE/RPC services, printing and user
authentication are the two most heavily used.

§ 6.5.2 Most NFS and NCP requests are reading, writing, or obtainingfile attributes.
§ 6.5.2 Veritas and Dantz dominate our enterprise’s backup applications. Veritas exhibits

only client→ server data transfers, but Dantz connections can be large ineither
direction.

Table 6.6: Example application traffic characteristics.

by a peer, as happens in the case of NCP, for example. Therefore, we instead determine the number of

distinct operationsbetweendistinct host-pairswhen quantifying success and failure. Such operations can

span both the transport layer (e.g., a TCP connection request) and the application layer (e.g., a specific name

lookup in the case of DNS). Given the short duration of our traces, we generally find a specific operation

between a given pair of hosts either nearly always succeeds,or nearly always fails.

6.5.1 Internal/External Applications

We first investigate applications categories with traffic inboth the enterprise network and in the wide-area

network: web, email and name service.

Web

HTTP is one of the few protocols where we find more wide-area traffic than internal traffic in our datasets.

Characterizing wide-area Web traffic has received much attention in the literature over the years, e.g.,

[63, 12]. In our first look at modern enterprise traffic, we findinternal HTTP traffic to be distinct from

WAN HTTP traffic in several ways: (i) we observe that automated clients—scanners, bots, and applications

running on top of HTTP—have a large impact on overall HTTP traffic characteristics; (ii) we find a lower

fan-out per client in enterprise web traffic than in WAN web traffic; (iii) we find a higher connection failure

rate within the enterprise; and (iv) we find heavier use of HTTP’sconditionalGETin the internal network

than in the WAN. Below we examine these findings along with several additional traffic characteristics.

120

Request Data
D0/ent D3/ent D4/ent D0/ent D3/ent D4/ent

Total 7098 16423 15712 602MB 393MB 442MB
scan1 20% 45% 19% 0.1% 0.9% 1%
google1 23% 0.0% 1% 45% 0.0% 0.1%
google2 14% 8% 4% 51% 69% 48%
ifolder 1% 0.2% 10% 0.0% 0.0% 9%
All 58% 54% 34% 96% 70% 59%

Table 6.7: Fraction of internal HTTP traffic from automated clients.

Automated Clients: In internal Web transactions we find three activities not originating from traditional

user-browsing:scanners, Google bots, and programs running on top of HTTP (e.g., NovelliFolder and

ViacomNet-Meeting). As Table 6.7 shows, these activities are highly significant, accounting for 34–58% of

internal HTTP requests and 59–96% of the internal data bytescarried over HTTP. Including these activities

skews various HTTP characteristics. For instance, both Google bots and the scanner have a very high “fan-

out”; the scanner provokes many more “404 File Not Found” HTTP replies than standard web browsing;

iFolder clients usePOSTmore frequently than regular clients; andiFolder replies often have a uniform

size of 32,780 bytes. Therefore, while the presence of theseactivities is the biggest difference between

internal and wide-area HTTP traffic, we exclude these from the remainder of the analysis in an attempt to

understand additional differences.

Fan-out: Figure 6.5 shows the distribution of fan-out from monitored clients to enterprise and WAN HTTP

servers. Overall, monitored clients visit roughly an orderof magnitude more external servers than internal

servers. This seems to differ from the finding in Section 6.4 that over all traffic clients tend to access more

local peers than remote peers. However, we believe that the pattern shown by HTTP transactions is more

likely to be the prevalent application-level pattern and that the results in Section 6.4 are dominated by the

fact that clients access a wider variety of applications. This serves to highlight the need for future work to

drill down on the first, high-level analysis we present in this study.

Connection Success Rate: Internal HTTP traffic shows success rates of 72–92% (by number of host-

pairs), while the success rate of WAN HTTP traffic is 95–99%. The root cause of this difference remains a

mystery. We note that the majority of unsuccessful internalconnections are terminated with TCP RSTs by

the servers, rather than going unanswered.

121

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

C
um

ul
at

iv
e

F
ra

ct
io

n

Number of Peers per Source

ent:D0:N=127
ent:D1:N=302
ent:D2:N=285
ent:D3:N=174
ent:D4:N=197

wan:D0:N=358
wan:D1:N=684
wan:D2:N=526
wan:D3:N=378
wan:D4:N=437

Figure 6.5: HTTP fan-out. TheN in the key is the number of samples throughout the chapter—inthis case,
the number of clients.

Conditional Requests: Across datasets and localities, HTTPGETcommands account for 95–99% of both

the number of requests and the number of data bytes. ThePOSTcommand claims most of the rest. One

notable difference between internal and wide area HTTP traffic is the heavier use internally of conditional

GETcommands (i.e., aGETrequest that includes one of theIf-Modified-Since headers, per [33]).

Internally we find conditionalGETcommands representing 29–53% of web requests, while externally

conditionalGETcommands account for 12–21% of the requests. The conditional requests often yield

savings in terms of the number of data bytes downloaded in that conditional requests only account for 1–9%

of the HTTP data bytes transfered internally and 1–7% of the data bytes transfered from external servers.

We find this use of the conditionalGETpuzzling in that we would expect that attempting to save wide-area

network resources (by caching and only updating content when needed) would be more important than

saving local network resources. Finally, we find that over 90% of web requests are successful (meaning

either the object requested is returned or that an HTTP 304 (“not modified”) reply is returned in response

to a conditionalGET).

We next turn to several characteristics for which we do not find anyconsistentdifferences between

internal and wide-area HTTP traffic.

122

Request Data
enterprise wan enterprise wan

text 18% – 30% 14% – 26% 7% – 28% 13% – 27%
image 67% – 76% 44% – 68% 10% – 34% 16% – 27%
application 3% – 7% 9% – 42% 57% – 73% 33% – 60%
Other 0.0% – 2% 0.3% – 1% 0.0% – 9% 11% – 13%

Table 6.8: HTTP reply by content type. “Other” mainly includesaudio, video, andmultipart.

Content Type: Table 6.8 provides an overview of object types for HTTPGETtransactions that received

a 200 or 206 HTTP response code (i.e., success). Thetext, image, andapplicationcontent types are the

three most popular, withimageandapplicationgenerally accounting for most of the requests and bytes,

respectively. Within theapplicationtype, the popular subtypes includejavascript, octet stream, zip, and

PDF. Theothercontent types are mainlyaudio, video, or multipart objects. We do not observe significant

differences between internal and WAN traffic in terms of application types.

HTTP Responses: Figure 6.6 shows the distribution of HTTP response body sizes, excluding replies

without a body. We see no significant difference between internal and WAN servers. The short vertical

lines of theD0/WAN curve reflect repeated downloading of javascripts froma particular website. We also

find that about half the web sessions (i.e., downloading an entire web page) consist of one object (e.g., just

an HTML page). On the other hand 10–20% of the web sessions in our dataset include 10 or more objects.

We find no significant difference across datasets or server location (local or remote).

HTTP/SSL: Our data shows no significant difference in HTTPS traffic between internal and WAN servers.

However, we note that in both cases there are numerous small connections between given host-pairs. For

example, inD4 we observe 795 short connections between a single pair of hosts during an hour of tracing.

Examining a few at random shows that the hosts complete the SSL handshake successfully and exchange a

pair of application messages, after which the client tears down the connection almost immediately. As the

contents are encrypted, we cannot determine whether this reflects application level fail-and-retry or some

other phenomenon.

Email

Email is the second traffic category we find prevalent in both internally and over the wide-area network.

As shown in Table 6.9, SMTP and IMAP dominate email traffic, constituting over 94% of the volume in

123

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

C
um

ul
at

iv
e

F
ra

ct
io

n

Size (Bytes)

ent:D0:N=1411
ent:D3:N=5363
ent:D4:N=5440

wan:D0:N=39961
wan:D3:N=69636
wan:D4:N=63215

Figure 6.6: Size of HTTP reply, when present.

Bytes
D0/all D1/all D2/all D3/all D4/all

SMTP 152MB 1658MB 393MB 20MB 59MB
SIMAP 185MB 1855MB 612MB 236MB 258MB
IMAP4 216MB 2MB 0.7MB 0.2MB 0.8MB
Other 9MB 68MB 21MB 12MB 21MB

Table 6.9: Email Traffic Size

124

bytes. The remainder comes from LDAP, POP3 and POP/SSL. The table shows a transition from IMAP to

IMAP/S (IMAP over SSL) betweenD0 andD1, which reflects a policy change at LBNL restricting usage

of unsecured IMAP.

DatasetsD0−2 include the subnets containing the main enterprise-wide SMTP and IMAP(/S) servers.

This causes a difference in traffic volume between datasetsD0−2 andD3−4, and also other differences

discussed below. Also, note that we conduct our analysis at the transport layer, since often the application

payload is encrypted.

We note that the literature includes several studies of email traffic (e.g., [87, 39]), but none (that we are

aware of) focusing on enterprise networks.

We first discuss areas where we find significant difference between enterprise and wide-area email

traffic.

Connection Duration: As shown in Figure 6.7(a), the duration of internal and WAN SMTP connections

generally differs by about an order of magnitude, with median durations around 0.2–0.4 sec and 1.5–6 sec,

respectively. These results reflect the large difference inround-trip times (RTTs) experienced across the two

types of network. SMTP sessions consist of both an exchange of control information and a unidirectional

bulk transfer for the messages (and attachments) themselves. Both of these take time proportional to the

RTT [76], explaining the longer SMTP durations.

In contrast, Figure 6.7(b) shows the distribution of IMAP/Sconnection durations across a number of

our datasets. We leave offD0 to focus on IMAP/S traffic, andD3−4 WAN traffic because these datasets

do not include subnets with busy IMAP/S servers and hence have little wide-area IMAP/S traffic. The

plot shows internal connections often last 1–2 orders of magnitude longer than wide-area connections.

We do not yet have an explanation for the difference. The maximum connection duration is generally

50 minutes. While our traces are roughly one hour in length wefind that IMAP/S clients generally poll

every ten minutes, generally providing only five observations within each trace. Determining the true length

of IMAP/S sessions requires longer observations and is a subject for future work.

We next focus on characteristics of email traffic that are similar across network type.

Connection Success Rate: Across our datasets we find that internal SMTP connections have success rates

of 95–98%. SMTP connections traversing the wide-area network have success rates of 71–93% inD0−2

and 99-100% inD3−4. Recall thatD0−2 include heavily used SMTP servers andD3−4 do not, which

125

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

C
um

ul
at

iv
e

F
ra

ct
io

n

Duration (Seconds)

ent:D0:N=967
ent:D1:N=6671
ent:D2:N=1942
ent:D3:N=447
ent:D4:N=460

wan:D0:N=1030
wan:D1:N=10189
wan:D2:N=3589
wan:D3:N=262
wan:D4:N=222

(a) SMTP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

C
um

ul
at

iv
e

F
ra

ct
io

n

Duration (Seconds)

ent:D1:N=8392
ent:D2:N=3266
ent:D3:N=776
ent:D4:N=742

wan:D1:N=1849
wan:D2:N=1010

(b) IMAP/S

Figure 6.7: SMTP and IMAP/S connection durations.

126

likely explains the discrepancy. The success rate for IMAP/S connections is 99–100% across both locality

and datasets.

Flow Size: Internal and wide-area email traffic does not show significant differences in terms of connection

sizes, as shown in Figure 6.8. As we would expect, the traffic volume of SMTP and IMAP/S is largely

unidirectional (to SMTP servers and to IMAP/S clients), with traffic in the other direction largely being

short control messages. Over 95% of the connections to SMTP servers and to IMAP/S clients remain

below 1 MB, but both cases have significant upper tails.

Name Services

The last application category prevalent in both the internal and the wide-area traffic is domain name

lookups. We observe a number of protocols providing name/directory services, including DNS, Net-

bios Name Service (Netbios/NS), Service Location Protocol(SrvLoc) [117], SUN/RPC Portmapper, and

DCE/RPC endpoint mapper. We also note that wide-area DNS hasbeen studied by a number of researchers

previously (e.g., [53]), however, our study of name lookupsincludes both enterprise traffic and non-DNS

name services.

In this section we focus on DNS and Netbios/NS traffic, due to their predominant use (Netbios/NS is

mainly used for identifying hosts, workgroups, and domainsin Windows networking for sharing files, print-

ers, and other services). DNS appears in both wide-area and internal traffic. We find no large differences

between the two types of DNS traffic except in response latency.

For both services a handful of servers account for most of thetraffic, therefore the vantage point of the

monitor can significantly affect the traffic we find in a trace.In particular,D0−2 do not contain subnets with

a main DNS server, and thus relatively few WAN DNS connections. Therefore, in the following discussion

we only useD3−4 for WAN DNS traffic. Similarly, more than 95% of Netbios/NS requests go to one of

the two main servers.D0−2 captures all traffic to/from one of these andD3−4 captures all traffic to both.

Finally, we do not considerD1−2 in our analysis due to the lack of application payloads in those datasets

(which renders our payload analysis inoperable).

Given those considerations, we now explore several characteristics of name service traffic.

Latency: We observe median latencies are roughly 0.4 msec and 20 msecfor internal and external DNS

queries, respectively. This expected result is directly attributable to the round-trip delay to on- and off-site

127

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1000 1e+06 1e+09

C
um

ul
at

iv
e

F
ra

ct
io

n

Size (Bytes)

ent:D0:N=967
ent:D1:N=6671
ent:D2:N=1942
ent:D3:N=447
ent:D4:N=460

wan:D0:N=1030
wan:D1:N=10189
wan:D2:N=3589
wan:D3:N=262
wan:D4:N=222

(a) SMTP from client

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1000 1e+06 1e+09

C
um

ul
at

iv
e

F
ra

ct
io

n

Size (Bytes)

ent:D1:N=8392
ent:D2:N=3266
ent:D3:N=776
ent:D4:N=742

wan:D1:N=1849
wan:D2:N=1010

(b) IMAP/S from server

Figure 6.8: SMTP and IMAP/S: flow size distribution

128

DNS servers. Netbios/NS, on the other hand, is primarily used within the enterprise, with inbound requests

blocked by the enterprise at the border.

Clients: A majority of DNS requests come from a few clients, led by twomain SMTP servers that perform

lookups in response to incoming and outgoing mail. In contrast, we find Netbios/NS requests more evenly

distributed among clients, with the top ten clients generating less than 40% of all requests across datasets.

Request Type: DNS request types are quite similar both across datasets and location of the peer (internal

or remote). A majority of the requests (50–66%) are forA records, while 17–25% are forAAAA(IPv6)

records, which seems surprisingly high, though we have confirmed a similar ratio in the wide-area traffic

at another site. Digging deeper reveals that a number of hosts are configured to request bothA andAAAA

in parallel. In addition, we find 10–18% of the requests are for PTRrecords and 4–7% are forMXrecords.

Netbios/NS traffic is also quite similar across the datasets. 81–85% of requests consist of name queries,

with the other prevalent action being to “refresh” a registered name (12–15% of the requests). We observe

a number of additional transaction types in small numbers, including commands to register names, release

names, and check status.

Netbios/NS Name Type: Netbios/NS includes a “type” indication in queries. We findthat across our

datasets 63–71% of the queries are for workstations and servers, while 22–32% of the requests are for

domain/browser information.

Return Code: We find DNS has similar success (NOERROR) rates (77–86%) and failure (NXDOMAIN) rates

(11–21%) across datasets and across internal and wide-areatraffic. We observe failures with Netbios/NS

2–3 times more often: 36–50% of distinct Netbios/NS queriesyield anNXDOMAINreply. These failures

are broadly distributed—they are not due to any single client, server, or query string. We speculate that

the difference between the two protocols may be attributable to DNS representing an administratively

controlled name space, while Netbios/NS uses a more distributed and loosely controlled mechanism for

registering names, resulting in Netbios/NS names going “out-of-date” due to timeouts or revocations.

129

6.5.2 Enterprise-Only Applications

The previous subsection deals with application categoriesfound in both internal and wide-area communi-

cation. In this section, we turn to analyzing the high-leveland salient features of applications used only

within the enterprise.

Windows Services

We first consider those services used by Windows hosts for a wide range of tasks, such as Windows file shar-

ing, authentication, printing, and messaging. In particular, we examine Netbios Session Services (SSN),

the Common Internet File System (SMB/CIFS), and DCE/RPC. Wedo not tackle the Netbios Datagram

Service since it appears to be largely usedwithin subnets (e.g., for “Network Neighborhoods”), and does

not appear much in our datasets; and we cover Netbios/NS in Section 6.5.1.

As demonstrated in Figure 6.9, one of the main challenges in analyzing Windows traffic is that each

communication scheme can be used in a variety of ways. For instance, TCP port numbers reveal little about

the actual application: services can be accessed via multiple channels, and a single port can be shared by

a variety of services. Hosts appear to interchangeably use CIFS via its well-known TCP port of 445 and

via layering on top of Netbios/SSN (TCP port 139). Similarly, we note that DCE/RPC clients have two

ways to find services: (i) using “named pipes” on top of CIFS (which may or may not be layered on top

of Netbios/SSN) and (ii) on top of standard TCP and UDP connections without using CIFS, in which case

clients consult the Endpoint Mapper to discover the port of aparticular DCE/RPC service. Thus, in order

to understand the Windows traffic we had to develop rich Bro protocol analyzers, and also merge activities

from different transport layer channels. With this in place, we could then analyze various facets of the

activities according to application functionality, as follows.

Connection Success Rate: As shown in Table 6.10, we observe a variety of connection success rates for

different kinds of traffic: 82–92% for Netbios/SSN connections, 99–100% for Endpoint Mapper traffic,

and a strikingly low 46–68% for CIFS traffic. For both Netbios/SSN and CIFS traffic we find the failures

are not caused by a few erratic hosts, but rather are spread across hundreds of clients and dozens of servers.

Further investigation reveals most of CIFS connection failures are caused by a number of clients connecting

to servers on both the Netbios/SSN (139/tcp) and CIFS (445/tcp) portin parallel—since the two ports can

be used interchangeably. The apparent intention is to use whichever port works while not incurring the cost

130

Figure 6.9: Windows (CIFS and DCE/RPC) Traffic Structure

Host Pairs
Netbios/SSN CIFS Endpoint Mapper

Total 595 – 1464 373 – 732 119 – 497
Successful 82% – 92% 46% – 68% 99% – 100%
Rejected 0.2% – 0.8% 26% – 37% 0.0% – 0.0%
Unanswered 8% – 19% 5% – 19% 0.2% – 0.8%

Table 6.10: Windows traffic connection success rate (by number of host-pairs, for internal traffic only)

of trying each in turn. We also find a number of the servers are configured to listen only on the Netbios/SSN

port, so they reject connections to the CIFS port.

Netbios/SSN Success Rate: After a connection is established, a Netbios/SSN session goes through a

handshake before carrying traffic. The success rate of the handshake (counting the number of distinct host-

pairs) is 89–99% across our datasets. Again, the failures are not due to any single client or server, but are

spread across a number of hosts. The reason for these failures merits future investigation.

CIFS Commands: Table 6.11 shows the prevalence of various types of commands used in CIFS channels

across our datasets, in terms of both the number of commands and volume of data transferred. The first

category, “SMB Basic”, includes common commands used for session initialization and termination, and

accounts for 24–52% of the messages across the datasets, butonly 3–15% of the data bytes. The remaining

categories indicate the tasks CIFS connections are used to perform. Interestingly, we find DCE/RPC pipes,

rather than Windows File Sharing, make up the largest portion of messages (33–48%) and data bytes (32–

77%) across datasets. Windows File Sharing constitutes 11–27% of messages and 8% to 43% of bytes.

131

Request Data
D0/ent D3/ent D4/ent D0/ent D3/ent D4/ent

Total 49120 45954 123607 18MB 32MB 198MB
SMB Basic 36% 52% 24% 15% 12% 3%
RPC Pipes 48% 33% 46% 32% 64% 77%
Windows File Sharing 13% 11% 27% 43% 8% 17%
LANMAN 1% 3% 1% 10% 15% 3%
Other 2% 0.6% 1.0% 0.2% 0.3% 0.8%

Table 6.11: CIFS command breakdown. “SMB basic” includes the common commands shared by all kinds
of higher level applications: protocol negotiation, session setup/tear-down, tree connect/disconnect, and
file/pipe open.

Finally, “LANMAN”, a non-RPC named pipe for management tasks in “network neighborhood” systems,

accounts for just 1–3% of the requests, but 3–15% of the bytes.

DCE/RPC Functions: Since DCE/RPC constitutes an important part of Windows traffic, we further an-

alyze these calls over both CIFS pipes and stand-alone TCP/UDP connections. While we include all

DCE/RPC activities traversing CIFS pipes, our analysis forDCE/RPC over stand-alone TCP/UDP con-

nections may be incomplete for two reasons. First, we identify DCE/RPC activities on ephemeral ports by

analyzing Endpoint Mapper traffic. Therefore, we will miss traffic if the mapping takes place before our

trace collection begins, or if there is an alternate method to discover the server’s ports (though we are not

aware of any other such method). Second, our analysis tool currently cannot parse DCE/RPC messages

sent over UDP. While this may cause our analysis to miss services that only use UDP, DCE/RPC traffic

using UDP accounts for only a small fraction of all DCE/RPC traffic.

Table 6.12 shows the breakdown of DCE/RPC functions. Acrossall datasets, theSpoolssprinting

functions—andWritePrinter in particular—dominate the overall traffic inD3−4, with 63–91% of the

requests and 94–99% of the data bytes. InD0, Spoolsstraffic remains significant, but not as dominant as

user authentication functions (NetLogonandLsaRPC), which account for 68% of the requests and 52% of

the bytes. These figures illustrate the variations present within the enterprise, as well as highlighting the

need for multiple vantage points when monitoring. (For instance, inD0 we monitor a major authentication

server, whileD3−4 includes a major print server.)

132

Request Data
D0/ent D3/ent D4/ent D0/ent D3/ent D4/ent

Total 14191 13620 56912 4MB 19MB 146MB
NetLogon 42% 5% 0.5% 45% 0.9% 0.1%
LsaRPC 26% 5% 0.6% 7% 0.3% 0.0%
Spoolss/WritePrinter 0.0% 29% 81% 0.0% 80% 96%
Spoolss/other 24% 34% 10% 42% 14% 3%
Other 8% 27% 8% 6% 4% 0.6%

Table 6.12: DCE/RPC function breakdown.

Connections Bytes
D0/all D1/all D2/all D3/all D4/all D0/all D1/all D2/all D3/all D4/all

NFS 1067 5260 4144 3038 3347 6318MB 4094MB 3586MB 1030MB 1151MB
NCP 2590 4436 2892 628 802 777MB 2574MB 2353MB 352MB 233MB

Table 6.13: NFS/NCP Size

Network File Services

NFS and NCP2 comprise the two main network file system protocols seen within the enterprise and this

traffic is nearly always confined to the enterprise.3 We note that several trace-based studies of network file

system characteristics have appeared in the file system literature (e.g., see [28] and enclosed references).

We now investigate several aspects of network file system traffic.

Aggregate Sizes: Table 6.13 shows the number of NFS and NCP connections and the amount of data

transferred for each dataset. In terms of connections, we find NFS more prevalent than NCP, except inD0.

In all datasets, we find NFS transfers more data bytes per connection than NCP. As in previous sections,

we see the impact of the measurement location in that the relative amount of NCP traffic is much higher

in D0−2 than inD3−4. Finally, we find “heavy hitters” in NFS/NCP traffic: the three most active NFS

host-pairs account for 89–94% of the data transfered, and for the top three NCP host-pairs, 35–62%.

Keep-Alives: We find that NCP appears to use TCP keep-alives to maintain long-lived connections and

detect runaway clients. Particularly striking is that 40–80% of the NCP connections across our datasets

consistonlyof periodic retransmissions of one data byte and therefore do not include any real activity.

UDP vs. TCPWe had expected that NFS-over-TCP would heavily dominate modern use of NFS, but find

this is not the case. Across the datasets, UDP comprises 66%/16%/31%/94%/7% of the payload bytes, an

2NCP is theNetware Control Protocol, a veritable kitchen-sink protocol supporting hundreds ofmessage types, but primarily used
within the enterprise for file-sharing and print service.

3We found three NCP connections with remote hosts across all our datasets!

133

Request Data
D0/ent D3/ent D4/ent D0/ent D3/ent D4/ent

Total 697512 303386 607108 5843MB 676MB 1064MB
Read 70% 25% 1% 64% 92% 6%
Write 15% 1% 19% 35% 2% 83%
GetAttr 9% 53% 50% 0.2% 4% 5%
LookUp 4% 16% 23% 0.1% 2% 4%
Access 0.5% 4% 5% 0.0% 0.4% 0.6%
Other 2% 0.9% 2% 0.1% 0.2% 1%

Table 6.14: NFS requests breakdown.

enormous range. Overall, 90% of the NFS host-pairs use UDP, while only 21% use TCP (some use both).

One possible explanation is that the enterprise internal network has a low packet drop rate, so there is little

incentive to use TCP over UDP.

Request Success Rate: If an NCP connection attempt succeeds (88–98% of the time),about 95% of the

subsequent requests also succeed, with the failures dominated by “File/Dir Info” requests. NFS requests

succeed 84% to 95% of the time, with most of the unsuccessful requests being “lookup” requests for non-

existing files or directories.

Requests per Host-Pair: Since NFS and NCP both use a message size of about 8 KB, multiple requests

are needed for large data transfers. Figure 6.10 shows the number of requests per client-server pair. We

see a large range, from a handful of requests to hundreds of thousands of requests between a host-pair. A

related observation is that the interval between requests issued by a client is generally 10 msec or less.

Breakdown by Request Type: Table 6.14 and 6.15 show that in both NFS and NCP, file read/write requests

account for the vast majority of the data bytes transmitted,88–99% and 92–98% respectively. In terms of

the number of requests, obtaining file attributes joins readand write as a dominant function. NCP file

searching also accounts for 7–16% of the requests (but only 1–4% of the bytes). Note that NCP provides

services in addition to remote file access, e.g., directory service (NDS), but, as shown in the table, in our

datasets NCP is predominantly used for file sharing.

Request/Reply Data Size Distribution: As shown in Figure 6.11, NFS requests and replies have clear

dual-mode distributions, with one mode around 100 bytes andthe other 8 KB. The latter corresponds to

write requests and read replies, and the former to everything else. On the other hand, as Figure 6.12 shows,

NCP requests exhibit a mode at 14 bytes, corresponding to read requests, and each vertical rise in the NCP

134

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

C
um

ul
at

iv
e

F
ra

ct
io

n

Number of Requests per Host Pair

ent:D0:N=104
ent:D3:N=48
ent:D4:N=57

(a) NFS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

C
um

ul
at

iv
e

F
ra

ct
io

n

Number of Requests per Host Pair

ent:D0:N=441
ent:D3:N=168
ent:D4:N=188

(b) NCP

Figure 6.10: NFS/NCP: number of requests per client-serverpair, for those with at least one request seen.

135

Request Data
D0/ent D3/ent D4/ent D0/ent D3/ent D4/ent

Total 869765 219819 267942 712MB 345MB 222MB
Read 42% 44% 41% 82% 70% 82%
Write 1% 21% 2% 10% 28% 11%
FileDirInfo 27% 16% 26% 5% 0.9% 3%
File Open/Close 9% 2% 7% 0.9% 0.1% 0.5%
File Size 9% 7% 5% 0.2% 0.1% 0.1%
File Search 9% 7% 16% 1% 0.6% 4%
Directory Service 2% 0.7% 1% 0.7% 0.1% 0.4%
Other 3% 3% 2% 0.2% 0.1% 0.1%

Table 6.15: NCP requests breakdown.

Connections Bytes
VERITAS-BACKUP-CTRL 1271 0.1MB
VERITAS-BACKUP-DATA 352 6781MB
DANTZ 1013 10967MB
CONNECTED-BACKUP 105 214MB

Table 6.16: Backup Applications

reply size figure corresponds to particular types of commands: 2-byte replies for completion codes only

(e.g. replying to “WriteFile” or reporting error), 10 bytesfor “GetFileCurrentSize”, and 260 bytes for (a

fraction of) “ReadFile” requests.

Backup

Backup sessions are a rarity in our traces, with just a small number of hosts and connections responsible

for a huge data volume. Clearly, this is an area where we need longer traces. That said, we offer brief

characterizations here to convey a sense of its nature.

We find three types of backup traffic, per Table 6.16: two internal traffic giants, Dantz and Veritas, and

a much smaller, “Connected” service that backs up data to an external site. Veritas backup uses separate

control and data connections, with the data connections in the traces all reflecting one-way, client-to-server

traffic. Dantz, on the other hand, appears to transmit control data within the same connection, and its

connections display a degree of bi-directionality. Furthermore, the server-to-client flow sizes can exceed

100 MB. This bi-directionality does not appear to reflect backup vs. restore, because it exists not only

betweenconnections, but alsowithin individual connections—sometimes with tens of MB in both direc-

tions. Perhaps this reflects an exchange of fingerprints usedfor compression or incremental backups or an

136

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

F
ra

ct
io

n

Size (Bytes)

ent:D0:N=697512
ent:D3:N=303386
ent:D4:N=607108

(a) NFS request

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

F
ra

ct
io

n

Size (Bytes)

ent:D0:N=601320
ent:D3:N=143105
ent:D4:N=177478

(b) NFS reply

Figure 6.11: NFS: request/reply data size distribution (message headers are not included)

137

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

F
ra

ct
io

n

Size (Bytes)

ent:D0:N=869765
ent:D3:N=219819
ent:D4:N=267942

(a) NCP request

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

F
ra

ct
io

n

Size (Bytes)

ent:D0:N=868910
ent:D3:N=219767
ent:D4:N=267867

(b) NCP reply

Figure 6.12: NCP: request/reply data size distribution (message headers are not included)

138

exchange of validation information after the backup is finished. Alternatively, this may indicate that the

protocol itself may have a peer-to-peer structure rather than a strict server/client delineation. Clearly this

requires further investigation with longer trace files.

6.6 Network Load

A final aspect of enterprise traffic in our preliminary investigation is to assess the load observed within the

enterprise. One might naturally assume that campus networks are underutilized, and some researchers aim

to develop mechanisms that leverage this assumption [37]. We assess this assumption using our data.

We discuss onlyD4, since the other datasets provide essentially the same insights about utilization.

Figure 6.13(a) shows the distribution of thepeakbandwidth usage over three different timescales for each

trace in theD4 dataset. As expected, the plot shows the networks to be less than fully utilized at each

timescale. The one-second interval does show network saturation (100 Mbps) in some cases. However, as

the measurement time interval increases the peak utilization drops, indicating that saturation is short-lived.

Figure 6.13(b) shows the distributions of several metrics calculated over one-second intervals. The

“maximum” line on this plot is the same as the “one-second” line on the previous plot. The second plot

concretely shows that typical (over time) network usage is 1–2 orders of magnitude less than the peak

utilization and 2–3 orders less than the capacity of the network (100 Mbps).

We can think of packet loss as a second dimension for assessing network load. We can form estimates of

packet loss rates using TCP retransmission rates. These twomight not fully agree, due to (i) TCP possibly

retransmitting unnecessarily, and (ii) TCP adapting its rate in the presence of loss, while non-TCPtraffic

will not. But the former should be rare in LAN environments (little opportunity for retransmission timers

to go off early), and the latter arguably at most limits our analysis to applying to the TCP traffic, which

dominates the load (cf. Table 6.4).

We found a number of spurious one-byte retransmissions due to TCP keep-alives by NCP and SSH

connections. We exclude these from further analysis because they do not indicate load imposed on network

elements. Figure 6.14 shows the remaining retransmission rate for each trace in all our datasets, for both

internal and remote traffic. In the vast majority of the traces, the retransmission rate remains less than 1%

for both. In addition, the retransmission rate for internaltraffic is less than that of traffic involving a remote

peer, which matches our expectations since wide-area traffic traverses more shared, diverse, and constrained

139

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10 100

C
D

F

Peak Utilization (Mbps)

1 second
10 seconds
60 seconds

(a) Peak Utilization

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.0001 0.001 0.01 0.1 1 10 100

C
D

F

Utilization (Mbps)

Minimum
Maximum

Average
25th perc.

Median
75th perc.

(b) Utilization

Figure 6.13: Utilization distributions forD4.

140

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 20 40 60 80 100 120

F
ra

ct
io

n
of

 R
et

ra
ns

m
itt

ed
 P

ac
ke

ts

Traces

ENT
WAN

Figure 6.14: TCP retransmission rate across traces (for traces with at least 1000 packets in the category)

networks than does internal traffic. (While not shown in the Figure, we did not find any correlation between

internal and wide-area retransmission rates at per-subnetgranularity.)

We do, however, find that the internal retransmission rate sometimes eclipses 2%—peaking at roughly

5% in one of the traces. Our further investigation of this last trace found the retransmissions dominated by

a single Veritas backup connection, which transmitted 1.5 Mpackets and 2 GB of data from a client to a

server over one hour. The retransmissions happen almost evenly over time, and over one-second intervals

the rate peaks at 5 Mbps with a 95th percentile around 1 Mbps. Thus, the losses appear due to either

significant congestion in the enterprise network downstream from our measurement point, or a network

element with flaky NIC (reported in [113] as not a rare event).

We can summarize these findings as: packet loss within an enterprise appears to occur significantly less

than across the wide-area network, as expected; but exceeds1% a non-negligible proportion of the time.

141

6.7 Summary

Enterprise networks have been all but ignored in the modern measurement literature. Our major contribu-

tion in this study is to provide a broad, high-level view of numerous aspects of enterprise network traffic.

Our investigation runs the gamut from re-examining topics previously studied for wide-area traffic (e.g.,

web traffic), to investigating new types of traffic not assessed in the literature to our knowledge (e.g.,

Windows protocols), to testing assumptions about enterprise traffic dynamics (e.g., that such networks are

mostly underutilized).

Clearly, our investigation is only an initial step in this space. An additional hope for our work is

to inspire the community to undertake more in-depth studiesof the raft of topics concerning enterprise

traffic that we could only examine briefly (or not at all) in this study. Towards this end, we have released

anonymized versions of our traces to the community [82].

142

Chapter 7

Conclusions

This chapter summarizes dissertation contributions and outlines the future directions.

7.1 Contributions

7.1.1 ThebinpacLanguage

The first contribution of this dissertation is the design andimplementation ofbinpac , a declarative lan-

guage for generating protocol parsers from high-level specifications. Prior to this work network proto-

col parsers have been mostly hand-written, requiring considerable and often tedious efforts. We envision

binpac to serve in a role analogous to that ofyacc ’s for generating parsers for programming languages.

We note, however, that network protocols are different fromprogramming languages in a number of ways,

in particular, network traffic consists of many continuous and bi-directional flows. Consequently the design

of binpac has a few key features that distinguish it from systems, suchasyacc , for generating pro-

gramming language parsers.binpac introducesparameterized types—a limited form of context-sensitive

grammar—to allow concise description of data dependency across network messages and flows. This sim-

ple feature allowsbinpac to describe a wide range of protocols. The language also includes the concepts

of connection and flow as state container in parsing network traffic. Thebinpac compiler automates

saving states for later continuation in parsers to enable switching between flows within a single processor

thread, thus supporting efficient processing of a large number of concurrent flows without requiring large

number of threads. Finally, the design ofbinpac supports separate specification of the intrinsic syntax

143

and semantics of the protocol from specification of custom processing (for example, Bro event generation),

therefore allowing the basic protocol specification part tobe reusedacross multiple systems. Our evalua-

tion shows that parser specifications inbinpac are half to two-third shorter than the corresponding parsers

handwritten in C++. On the other hand, thebinpac compiler generates efficient protocol parsers in C++,

whose performance is comparable to handcrafted parsers.

7.1.2 Semantic-Aware Traffic Anonymization

The second contribution of this dissertation lies in our efforts of application level traffic anonymization.

Anonymization of network traces is critical for creating public repositories of network traffic. Prior to our

attempt, there had been no publicly available packet traceswith application level payloads—to the best of

our knowledge, largely because of the difficulty of anonymization. Lack of such traces significantly hinders

research that relies on semantic traffic analysis, in particular, network intrusion detection.

We note that there are two main problems in traffic anonymization: (1) difficulty in rewriting packet

traces due to lack of application-level abstraction for traffic modification, (2) lack of understanding on how

to anonymize application level data, which has much richer semantics than TCP/IP fields have. This dis-

sertation addresses both problems. For the first problem, itpresents a trace rewriting framework—on top

of thebro network intrusion detection system [89, 86]—that greatly simplifies application level data ma-

nipulation. Within the framework, a rewriting script can focus on application level semantics, for example,

how to transform a FTP user name, while the underlying mechanisms make the corresponding changes

in both application protocol and TCP/IP (such as TCP sequence number and TCP and IP checksums) to

reflect the change. Therefore this framework provides a foundation for application level trace anonymiza-

tion efforts. For the second problem, this dissertation explores issues in anonymizing FTP traces collected

at LBNL and releasing them to the public. It proposes the “filter-in” principle in trace anonymization to

safeguard incomplete coverage. It also investigates common forms of inference attacks on trace privacy

and how to defend against them. Our treatment of various types of semantic elements, especially identity

data, provides a foundation for future efforts in application level traffic anonymization.

144

7.1.3 Internet Background Radiation

The third contribution of this dissertation is our study ofInternet background radiation—a special kind

of traffic that universally reaches any Internet address, including unused ones. Ours is the first broad

characterization of Internet background radiation.

We develop methods to observe and analyze Internet background radiation through largenetwork

telescopes—blocks of unused, but globally reachable IP addresses. We build application protocol respon-

ders to keep conversation with sources going as far as possible, till their intention is revealed. We apply

destination-per-source filtering to reduce the traffic volume. Finally, we usebro for automated traffic

semantic analysis. We find that the majority of Internet background radiation is generated by malicious

programs, including Internet worms, that attempt to propagate by randomly searching for vulnerable vic-

tims. Our classification of their behavior at application level reveals the rich collection of different kinds

of malicious exploits. The study also characterizes the difference of background radiation observed across

telescopes at different locations and over time.

7.1.4 Enterprise Network Traffic

The fourth and final contribution of this dissertation is ourcharacterization of modern enterprise network

traffic. Unlike wide-area Internet traffic, enterprise internal network traffic has been almost unstudied in

the past decade. Based on traces collected at LBNL’s internal network, our study presents a first look at

the enterprise traffic to provide a sense of ways in which modern enterprise traffic is similar to wide-area

Internet traffic, and ways in which it is quite different. Thestudy reveals that the enterprise internal traffic

comes from a much richer collection of network applicationsthan wide-area traffic coming into or going

out of the enterprise network does; the internal traffic volume is dominated by network file systems and

back-up traffic. Furthermore, zooming into individual applications, the study re-examines applications

well-studied for wide-area traffic (for example, Web and DNStraffic), and investigates new types of traffic

not assessed in literature (for instance, Windows traffic).

7.2 Future Directions

Semantic traffic analysis is a new research area with a lot of questions to be explored. An important

part of future exploration in this area will lie inusingsemantic traffic analysis to understand application

145

level characteristics of specific kinds of network traffic, similar to the two traffic studies presented in this

dissertation. On the other hand, there is also a lot of room for improvement in the art of semantic traffic

analysis and anonymization—which we discuss in further details in this section.

7.2.1 Traffic Analysis

Traffic analyzers in custom hardware. One important future direction in semantic traffic analysisis

to explore fundamentally new ways to program and structure network traffic analysis systems so that we

can leverage massive parallelism available on future computing hardware. As discussed in further de-

tails in our HotSec’06 paper [85], today’s network securitysystems are facing fiercely growing perfor-

mance pressure from a number of trends. First, as intrusionsbecome increasingly profit-driven and their

techniques ever more stealthy and sophisticated, network security systems need to conduct increasingly

complex analysis—processing traffic at higher semantic levels and incorporating context correlated across

multiple connections, hosts, sensors, and over time. Further, the security systems also need torewrite traf-

fic on the fly (1) to eliminate broad classes of evasion threats(“normalization”) and (2) topreventattacks

rather than passively “detecting” them. Thus the systems need to analyze traffic in real-time and alter it

inline without introducing excessive latency. Finally, the growth of network traffic volume has been out-

pacing that of single-processor performance, and this is exacerbated by the collapse of Moore’s law for

processor clock rate. While the main alternatives—ASICs and FPGAs—support vastly more processing

power through parallelism, they require highly deliberate, customized programming, which is directly at

odds with the pressing need to perform diverse and rich formsof analysis. Given these growing pressures—

more sophisticated forms of analysis, conducted inline, athigher rates, on non-uniprocessor hardware—it

is time to fundamentally rethink the ways of using hardware to support network security analysis. The key,

we think, is to devise an abstraction of parallel processingthat allows us to expose parallelism latent in

semantically rich, stateful analysis algorithms and that we can further compile to hardware platforms with

different capabilities.

Parallelization is a known hard problem. But in the particular case of network security analysis, there

is vast amount of potential parallelism that can be exploited if we structure and express the tasks properly.

Figure 7.1 shows the spectrum of parallelism present in a high-level traffic analysis pipeline. On a link

of 1–10 Gbps, we might have, say,10
4 concurrent connections, and thus we can then parallelize and/or

146

1-10 Gbps

S
tr

ea
m

 D
em

u
x

T
C

P
 S

tr
ea

m
 R

ea
ss

em
b
ly

~104

Instances

P
ro

to
co

l
A

n
al

y
ze

rs

~105

Instances

P
er

 C
o
n
n
ec

ti
o
n
 P

o
li

ci
es

~104

Instances

A
g
g
re

g
at

e
P

o
li

ci
es

~103

Instances

G
lo

b
al

 P
o
li

ci
es

~10-100

Instances

Packet

Streams

Assembled

Packet

Streams

Event

Streams

Filtered

Event

Streams

Aggregated

Event

Streams

Figure 7.1: The spectrum of parallelism present in a high-level network security analysis pipeline.

pipeline the process of TCP stream reassembly and normalization amongst these10
4 independent streams.

At the protocol analysis stage, the amount of parallelism isfurther amplified because one needs to run

different possible application parsers in parallel to dynamically determine which parser finds the flow syn-

tactically and semantically consistent. “Events”—the outcome of protocol analysis—reflect a distillation

of application-layer activities and can be analyzed first ona per-connection basis, thus this stage main-

tains the earlier parallelism at transport layer. Finally the system aggregates selected information across

connections, sessions, and hosts, where the number of potential parallelizable tasks range from 10 to 1,000.

While there is more than sufficient amount of potential parallelism to explore in traffic analysis, the ma-

jor challenges of exposing parallelism and mapping the pipeline to hardware remain. We envision pursuing

these using three fundamental elements: (1) a high-level language for expressing rich forms of network

analysis; (2) a powerful abstraction of parallel executionto which we target compilation of the elements

of the language; and (3) a final step of compilation from that abstraction to concrete hardware implemen-

tations. Thebinpac language presented in this dissertation offers an important first step towards (1), as

protocol parsing is one of the most cycle-demanding tasks inthe pipeline. A high-level specification of the

parsers inbinpac provides a complete picture of data dependency inside and between connections—the

key information the compiler needs for parallelization.

Learning protocol syntax from examples. Currently we build protocol parsers according to the syntax

specification in protocol standards. However, there are many situations in which it is very useful to in-

fer protocol syntax from traffic examples. First, it would allow us to analyze protocols without publicly

available specification. A number of important network applications, for example, Microsoft SQL database

server and Kazaa file sharing system, useproprietary, instead of open, protocols. Similarly, it also helps

147

when the protocol specification is incomplete or outdated. Second, protocol learning can also expedite

the process of specifying a complex protocol, such as the complete set of DCE/RPC services on Windows

systems, by generating the protocol parsers (e.g., in thebinpac language). As an intermediate goal, we

envision semi-automated protocol learning where human andlearning algorithms interactively discover

protocol syntax and generate protocol parsers.

A first step towards protocol learning is represented by the RolePlayer traffic replay system, by Cui

et al. [22]. RolePlayer tries to infer the protocol syntax bylooking for some common elements (length

field, cookie, IP addresses, and ports) based on contextual information—observing which elements vary

with the environment and which do not—and by aligning and contrasting multiple samples of similar

protocol conversation. The initial results are encouraging—RolePlayer is able to learn and replay complex

conversation in protocols such as CIFS and FTP. Yet much moreremains for exploration, in terms of being

able to leverage more traffic samples, handling more protocols, and recognizing more complex syntax

structures.

7.2.2 Traffic Anonymization

The anonymizations techniques proposed in this dissertation are an early push towards making richer packet

traces available to the research community. There is still much to be done in this area. From our experience,

we believe the main challenges include: (1) to formalize security risks and the process of developing an

anonymization scheme; (2) to automate the process of anonymization and verification; (3) to keep more

packet dynamics in the transformed traces. Below we briefly discuss each of these.

Formalizing anonymization. In Section 4.4 we describe our methodology for trace anonymization and

analyzed four types of inference techniques, but our analysis is not formal or complete. While accumulation

of experience will help us have a better understanding of therelationship among various data elements,

developing a formal model for anonymization would be a big step forward beyond the intuitive methods.

A formal model would mean that users can have a complete view of the threats and rigorously deduce a

detailed anonymization scheme from the objectives. However, a fundamental difficulty in pursuing such a

model is the very rich semantics network traces encompass—such semantics are difficult to capture with

concise high-level abstractions and often involve corner cases that can inadvertently leak information.

148

Automating the anonymization process. Although the anonymization process has been much simplified

by operating at the application-protocol level, currentlywe still need human assistance in tailoring scripts

for traces (4.5.3), processing free-format texts (4.5.4),and result verification (4.5.5). The first two, though

being optional, often largely improve the quality of the output trace. The last one—verification—is an

essential step which we currently cannot perform without human interaction. On the other hand, fully

automating anonymization will bring substantial benefits:(1) it will minimize human effort in releasing

traces, making it easier for sites to make traces available;(2) it is essential for environments where the

trace providers themselves are not allowed to see the original traffic (e.g., for traces collected at some ISPs);

(3) automated verification will foster a model of “script↔data” exchange, where users send anonymization

scripts to data owners who use them to easily generate tracesreturned to the users [67].

The key for automating result verification is to make the anonymization scheme “understandable” to the

verifier program. One way is to design a declarative (insteadof procedural) language for the anonymization

scripts. Being declarative, the anonymization scheme specification is also amenable to verification, which

is necessary to ensure that the scheme is correctly specified.

Keeping traffic dynamics. One fundamental difficulty of keeping the original traffic dynamics is that

lengths of data may be changed during transformation, and the new lengths must be reflected in TCP/IP

headers to keep packets “well-formed”. Therefore there is not a single best way to keep the original

dynamics. One possibility is to create an out-of-band channel to convey information such as original

packet lengths, fragmentation, retransmission, etc.

Also, because traffic parsing is stateful, it is difficult to process two parallel versions of the data—for

instance, when there are inconsistent TCP retransmissions. So we have to remove at least one version from

the anonymized stream, even though in some contexts (e.g., analyzing possible intrusion detection evasions

seen in practice [89]) it would be very useful to have both copies of inconsistent retransmissions retained.

7.3 Summary

This dissertation exploressemantic traffic analysis—examining application-level data of network traffic to

understand the behavior of network applications. The dissertation first describesbinpac —a declarative

language for building protocol analyzers, and tools and techniques for creating shared traffic data through

anonymization of packet traces. We then present characterizations of two types of previously unstudied

149

traffic—Internet background radiation and enterprise internal network traffic—with a focus on application

semantics, as examples of what one can learn about network applications through semantic traffic analysis.

150

Appendix: A Sample HTTP Trace

Transformation

The original trace was collected bytcpdump recording a retrieval of the www.google.com homepage. The

tcpdump output (with wrapped packet summary lines and TCP payloads)of the original trace is shown

on the next page.

We use our tool to transform the trace with a script that:

1. Replaces the data entity with its MD5 hash value (in this case,

“867119294265e3f445708c3fcfb2144f ”);

2. Rewrites theContent-length field to reflect the length of the MD5 hash value;

3. Adds the header: “X-Actual-Data-Length: 2709; gap=0, content-length= 2709” to record the original

Content-length field and how many bytes are actually transferred.

Thetcpdump output of the transformed trace is also on the next page.

Note that “Write-Deferring” is applied here: the new headers are written at the position of the original

Content-length header, even though the actual data size is not determined until all of the data is seen.

The script defers writing the headers until the end of the message and then writes back to the reserved

position.

Furthermore, by changing only one line of the script, from:

msg$abstract = md5_hash(data);

to:

151

msg$abstract =

subst_string(data, "Google", "Goooogle");

the script then replaces every occurrence of “Google” in thedata entity with “Goooogle”, instead of replac-

ing the whole data entity with its MD5 hash value. Next page shows part of the transformed trace. (There

are four occurrences of “Google” in the original message, thus the Content-length increases from 2709 to

2717.) Note that sequence and acknowledgment numbers between the traces differ due to packet reframing

and the addition of X-Actual-Data-Length headers.

152

Original trace:
1044328495.549695 192.150.187.28.1472 > 216.239.51.101 .80:

S 1352447574:1352447574(0) win 57344
<mss 1460,nop,wscale 0,nop,nop,timestamp 92919815 0> (DF)

1044328495.632608 216.239.51.101.80 > 192.150.187.28.1 472:
S 3009119707:3009119707(0) ack 1352447575 win 1460
<mss 1460,nop,nop,timestamp 752104543 92919815,nop,wsc ale 0> (DF)

1044328495.632647 192.150.187.28.1472 > 216.239.51.101 .80:
. ack 1 win 57920
<nop,nop,timestamp 92919823 752104543> (DF)

1044328495.632966 192.150.187.28.1472 > 216.239.51.101 .80:
P 1:81(80) ack 1 win 57920
<nop,nop,timestamp 92919823 752104543> (DF)

0x0030 2cd4 345f 4745 5420 2f20 4854 5450 2f31 ,.4_GET./.HTT P/1
0x0040 2e30 0d0a 5573 6572 2d41 6765 6e74 3a20 .0..User-Agen t:.
0x0050 5767 6574 2f31 2e35 2e33 0d0a 486f 7374 Wget/1.5.3..H ost
0x0060 3a20 7777 772e 676f 6f67 6c65 2e63 6f6d :.www.google. com
0x0070 3a38 300d 0a41 6363 6570 743a 202a 2f2a :80..Accept:. * / *
0x0080 0d0a 0d0a
1044328495.716691 216.239.51.101.80 > 192.150.187.28.1 472:

. ack 81 win 30660
<nop,nop,timestamp 752104551 92919823> (DF)

1044328495.737787 216.239.51.101.80 > 192.150.187.28.1 472:
P 1:1449(1448) ack 81 win 31856
<nop,nop,timestamp 752104553 92919823> (DF)

0x0030 0589 d80f 4854 5450 2f31 2e30 2032 3030HTTP/1.0. 200
0x0040 204f 4b0d 0a43 6f6e 7465 6e74 2d4c 656e .OK..Content- Len
0x0050 6774 683a 2032 3730 390d 0a43 6f6e 6e65 gth:.2709..Co nne
0x0060 6374 696f 6e3a 2043 6c6f 7365 0d0a 5365 ction:.Close. .Se
0x0070 7276 6572 3a20 4757 532f 322e 300d 0a44 rver:.GWS/2.0 ..D
0x0080 6174 653a 2054 7565 2c20 3034 2046 6562 ate:.Tue,.04. Feb
0x0090 2032 3030 3320 3033 3a31 343a 3535 2047 .2003.03:14:5 5.G
0x00a0 4d54 0d0a 436f 6e74 656e 742d 5479 7065 MT..Content-T ype
0x00b0 3a20 7465 7874 2f68 746d 6c0d 0a43 6163 :.text/html.. Cac
0x00c0 6865 2d63 6f6e 7472 6f6c 3a20 7072 6976 he-control:.p riv
0x00d0 6174 650d 0a53 6574 2d43 6f6f 6b69 653a ate..Set-Cook ie:
0x00e0 2050 5245 463d 4944 3d31 6538 6337 3538 .PREF=ID=1e8c 758
0x00f0 6231 6632 3965 3836 643a 544d 3d31 3034 b1f29e86d:TM= 104
0x0100 3433 3238 3439 353a 4c4d 3d31 3034 3433 4328495:LM=10 443
0x0110 3238 3439 353a 533d 6638 344d 6753 7948 28495:S=f84Mg SyH
0x0120 3347 452d 3439 5070 3b20 6578 7069 7265 3GE-49Pp;.exp ire
0x0130 733d 5375 6e2c 2031 372d 4a61 6e2d 3230 s=Sun,.17-Jan -20
0x0140 3338 2031 393a 3134 3a30 3720 474d 543b 38.19:14:07.G MT;
0x0150 2070 6174 683d 2f3b 2064 6f6d 6169 6e3d .path=/;.doma in=
0x0160 2e67 6f6f 676c 652e 636f 6d0d 0a0d 0a3c .google.com.. ..<
0x0170 6874 6d6c 3e3c 6865 6164 3e3c 6d65 7461 html><head><m eta
0x0180 2068 7474 702d 6571 7569 763d 2263 6f6e .http-equiv=" con
0x0190 7465 6e74 2d74 7970 6522 2063 6f6e 7465 tent-type".co nte
0x01a0 6e74 3d22 7465 7874 2f68 746d 6c3b 2063 nt="text/html ;.c
0x01b0 6861 7273 6574 3d49 534f 2d38 3835 392d harset=ISO-88 59-
0x01c0 3122 3e3c 7469 746c 653e 476f 6f67 6c65 1"><title>Goo gle
0x01d0 3c2f 7469 746c 653e 3c73 7479 6c65 3e3c </title><styl e><
...
0x0360 3237 3620 6865 6967 6874 3d31 3130 2061 276.height=11 0.a
0x0370 6c74 3d22 476f 6f67 6c65 223e 3c2f 7464 lt="Google">< /td
...
1044328495.737951 216.239.51.101.80 > 192.150.187.28.1 472:

P 2897:3025(128) ack 81 win 31856
<nop,nop,timestamp 752104553 92919823> (DF)

0x0030 0589 d80f 6f6e 743e 0a3c 703e 3c66 6f6eont>.<p>< fon
0x0040 7420 7369 7a65 3d2d 323e 2663 6f70 793b t.size=-2>&co py;
0x0050 3230 3033 2047 6f6f 676c 653c 2f66 6f6e 2003.Google</ fon
0x0060 743e 3c66 6f6e 7420 7369 7a65 3d2d 323e t><font.size= -2>
0x0070 202d 2053 6561 7263 6869 6e67 2033 2c30 .-.Searching. 3,0
...
1044328495.737987 192.150.187.28.1472 > 216.239.51.101 .80:

. ack 1449 win 57920
<nop,nop,timestamp 92919833 752104553> (DF)

1044328495.738022 216.239.51.101.80 > 192.150.187.28.1 472:
F 3025:3025(0) ack 81 win 31856
<nop,nop,timestamp 752104553 92919823> (DF)

1044328495.738054 192.150.187.28.1472 > 216.239.51.101 .80:
. ack 1449 win 57920
<nop,nop,timestamp 92919833 752104553> (DF)

1044328495.739267 216.239.51.101.80 > 192.150.187.28.1 472:
P 1449:2897(1448) ack 81 win 31856
<nop,nop,timestamp 752104553 92919823> (DF)

0x0030 0589 d80f 2f66 6f6e 743e 3c2f 613e 3c2f/font></
0x0040 7464 3e3c 7464 2077 6964 7468 3d31 353e td><td.width= 15>
0x0050 266e 6273 703b 3c2f 7464 3e3c 7464 2069 </td><t d.i
0x0060 643d 3320 6267 636f 6c6f 723d 2365 6665 d=3.bgcolor=# efe
0x0070 6665 6620 616c 6967 6e3d 6365 6e74 6572 fef.align=cen ter
...
0x0370 7562 6d69 7420 7661 6c75 653d 2247 6f6f ubmit.value=" Goo
0x0380 676c 6520 5365 6172 6368 2220 6e61 6d65 gle.Search".n ame
...
1044328495.739318 192.150.187.28.1472 > 216.239.51.101 .80:

. ack 3026 win 56344
<nop,nop,timestamp 92919833 752104553> (DF)

1044328495.741006 192.150.187.28.1472 > 216.239.51.101 .80:
F 81:81(0) ack 3026 win 57920
<nop,nop,timestamp 92919834 752104553> (DF)

1044328495.823516 216.239.51.101.80 > 192.150.187.28.1 472:
. ack 82 win 31856
<nop,nop,timestamp 752104562 92919834> (DF)

Replacing data entity with MD5 hash value:
1044328495.549695 192.150.187.28.1472 > 216.239.51.101 .80:

S 1352447574:1352447574(0) win 57344
<mss 1460,nop,wscale 0,nop,nop,timestamp 92919815 0>

1044328495.632608 216.239.51.101.80 > 192.150.187.28.1 472:
S 3009119707:3009119707(0) ack 1352447575 win 1460
<mss 1460,nop,nop,timestamp 752104543 92919815,nop,wsc ale 0>

1044328495.632647 192.150.187.28.1472 > 216.239.51.101 .80:
. ack 1 win 57920
<nop,nop,timestamp 92919823 752104543>

1044328495.632966 192.150.187.28.1472 > 216.239.51.101 .80:
P 1:130(129) ack 1 win 57920
<nop,nop,timestamp 92919823 752104543>

0x0030 2cd4 345f 4745 5420 2f20 4854 5450 2f31 ,.4_GET./.HTT P/1
0x0040 2e30 0d0a 5553 4552 2d41 4745 4e54 3a20 .0..USER-AGEN T:.
0x0050 5767 6574 2f31 2e35 2e33 0d0a 484f 5354 Wget/1.5.3..H OST
0x0060 3a20 7777 772e 676f 6f67 6c65 2e63 6f6d :.www.google. com
0x0070 3a38 300d 0a41 4343 4550 543a 202a 2f2a :80..ACCEPT:. * / *
0x0080 0d0a 0d0a 582d 4163 7475 616c 2d44 6174X-Actual- Dat
0x0090 612d 4c65 6e67 7468 3a20 303b 2067 6170 a-Length:.0;. gap
0x00a0 3d30 2c20 636f 6e74 656e 742d 6c65 6e67 =0,.content-l eng
0x00b0 7468 3d0d 0a th=..
1044328495.716691 216.239.51.101.80 > 192.150.187.28.1 472:

. ack 130 win 30660
<nop,nop,timestamp 752104551 92919823>

1044328495.737787 216.239.51.101.80 > 192.150.187.28.1 472:
P 1:371(370) ack 130 win 31856
<nop,nop,timestamp 752104553 92919823>

0x0030 0589 d80f 4854 5450 2f31 2e30 2032 3030HTTP/1.0. 200
0x0040 204f 4b0d 0a43 6f6e 7465 6e74 2d4c 656e .OK..Content- Len
0x0050 6774 683a 2033 320d 0a58 2d41 6374 7561 gth:.32..X-Ac tua
0x0060 6c2d 4461 7461 2d4c 656e 6774 683a 2032 l-Data-Length :.2
0x0070 3730 393b 2067 6170 3d30 2c20 636f 6e74 709;.gap=0,.c ont
0x0080 656e 742d 6c65 6e67 7468 3d20 3237 3039 ent-length=.2 709
0x0090 0d0a 434f 4e4e 4543 5449 4f4e 3a20 436c ..CONNECTION: .Cl
0x00a0 6f73 650d 0a53 4552 5645 523a 2047 5753 ose..SERVER:. GWS
0x00b0 2f32 2e30 0d0a 4441 5445 3a20 5475 652c /2.0..DATE:.T ue,
0x00c0 2030 3420 4665 6220 3230 3033 2030 333a .04.Feb.2003. 03:
0x00d0 3134 3a35 3520 474d 540d 0a43 4f4e 5445 14:55.GMT..CO NTE
0x00e0 4e54 2d54 5950 453a 2074 6578 742f 6874 NT-TYPE:.text /ht
0x00f0 6d6c 0d0a 4341 4348 452d 434f 4e54 524f ml..CACHE-CON TRO
0x0100 4c3a 2070 7269 7661 7465 0d0a 5345 542d L:.private..S ET-
0x0110 434f 4f4b 4945 3a20 5052 4546 3d49 443d COOKIE:.PREF= ID=
0x0120 3165 3863 3735 3862 3166 3239 6538 3664 1e8c758b1f29e 86d
0x0130 3a54 4d3d 3130 3434 3332 3834 3935 3a4c :TM=104432849 5:L
0x0140 4d3d 3130 3434 3332 3834 3935 3a53 3d66 M=1044328495: S=f
0x0150 3834 4d67 5379 4833 4745 2d34 3950 703b 84MgSyH3GE-49 Pp;
0x0160 2065 7870 6972 6573 3d53 756e 2c20 3137 .expires=Sun, .17
0x0170 2d4a 616e 2d32 3033 3820 3139 3a31 343a -Jan-2038.19: 14:
0x0180 3037 2047 4d54 3b20 7061 7468 3d2f 3b20 07.GMT;.path= /;.
0x0190 646f 6d61 696e 3d2e 676f 6f67 6c65 2e63 domain=.googl e.c
0x01a0 6f6d 0d0a 0d0a om....
1044328495.737987 192.150.187.28.1472 > 216.239.51.101 .80:

. ack 371 win 57920
<nop,nop,timestamp 92919833 752104553>

1044328495.739267 216.239.51.101.80 > 192.150.187.28.1 472:
FP 371:403(32) ack 130 win 31856
<nop,nop,timestamp 752104553 92919823>

0x0030 0589 d80f 3836 3731 3139 3239 3432 3635867119294 265
0x0040 6533 6634 3435 3730 3863 3366 6366 6232 e3f445708c3fc fb2
0x0050 3134 3466 144f
1044328495.739318 192.150.187.28.1472 > 216.239.51.101 .80:

. ack 404 win 56344
<nop,nop,timestamp 92919833 752104553>

1044328495.741006 192.150.187.28.1472 > 216.239.51.101 .80:
F 130:130(0) ack 404 win 57920
<nop,nop,timestamp 92919834 752104553>

1044328495.823516 216.239.51.101.80 > 192.150.187.28.1 472:
. ack 131 win 31856
<nop,nop,timestamp 752104562 92919834>

Substituting “Google” with “Goooogle”:
1044328495.737787 216.239.51.101.80 > 192.150.187.28.1 472:

P 1:373(372) ack 130 win 31856
<nop,nop,timestamp 752104553 92919823>

0x0030 0589 d80f 4854 5450 2f31 2e30 2032 3030HTTP/1.0. 200
0x0040 204f 4b0d 0a43 6f6e 7465 6e74 2d4c 656e .OK..Content- Len
0x0050 6774 683a 2032 3731 370d 0a58 2d41 6374 gth:.2717..X- Act
0x0060 7561 6c2d 4461 7461 2d4c 656e 6774 683a ual-Data-Leng th:
0x0070 2032 3730 393b 2067 6170 3d30 2c20 636f .2709;.gap=0, .co
0x0080 6e74 656e 742d 6c65 6e67 7468 3d20 3237 ntent-length= .27
0x0090 3039 0d0a 434f 4e4e 4543 5449 4f4e 3a20 09..CONNECTIO N:.
...
1044328495.739267 216.239.51.101.80 > 192.150.187.28.1 472:

P 373:1821(1448) ack 130 win 31856
<nop,nop,timestamp 752104553 92919823>

...
0x0080 3838 3539 2d31 223e 3c74 6974 6c65 3e47 8859-1"><titl e>G
0x0090 6f6f 6f6f 676c 653c 2f74 6974 6c65 3e3c oooogle</titl e><
...
0x0230 743d 3131 3020 616c 743d 2247 6f6f 6f6f t=110.alt="Go ooo
0x0240 676c 6522 3e3c 2f74 643e 3c2f 7472 3e3c gle"></td></t r><
...
1044328495.739267 216.239.51.101.80 > 192.150.187.28.1 472:

F 1821:3090(1269) ack 130 win 31856
<nop,nop,timestamp 752104553 92919823>

...
0x0230 7574 2074 7970 653d 7375 626d 6974 2076 ut.type=submi t.v
0x0240 616c 7565 3d22 476f 6f6f 6f67 6c65 2053 alue="Goooogl e.S
0x0250 6561 7263 6822 206e 616d 653d 6274 6e47 earch".name=b tnG
...
0x04c0 7079 3b32 3030 3320 476f 6f6f 6f67 6c65 py;2003.Goooo gle
0x04d0 3c2f 666f 6e74 3e3c 666f 6e74 2073 697a <font. siz
...

153

Bibliography

[1] Mark B. Abbott and Larry L. Peterson. A language-based approach to protocol implementation.

IEEE/ACM Transactions on Networking, 1(1):4–19, 1993.

[2] W32 Agobot IB. http://www.sophos.com/virusinfo/analyses/trojagobotib.html.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers: principles, techniques, and tools.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[4] William Aiello, Chuck Kalmanek, Patrick McDaniel, Shubo Sen, Oliver Spatscheck, and K. van der

Merwe. Analysis of communities of interest in data networks. In Proceedings of Passive and Active

Measurement Workshop (PAM), March 2005.

[5] M. Allman, E. Blanron, and W. Eddy. A scalable system for sharing Internet measurement. In

Proceedings of Passive and Active Measurement Workshop (PAM), 2002.

[6] M. Arlitt and C. Williamson. Web server workload characterization: The search for invariants. In

Proceedings of ACM SIGMETRICS, Philadelphia, PA, May 1996.

[7] Martin Arlitt, Balachander Krishnamurthy, and JeffreyC. Mogul. Predicting short-transfer latency

from TCP arcana: A trace-based validation. InProceedings of the Internet Measurement Conference

(IMC), October 2005.

[8] Abstract Syntax Notation One (ASN.1). ISO/IEC 8824-1:2002.

[9] Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion detection.ACM Transactions

on Information and System Security, 3(3):186–205, August 2000.

154

[10] Godmar Back. DataScript—a specification and scriptinglanguage for binary data. InGPCE ’02: The

ACM SIGPLAN/SIGSOFT Conference on Generative Programmingand Component Engineering,

pages 66–77, London, UK, 2002. Springer-Verlag.

[11] Lawrence Baldwin, Philip Sloss, and Steve Friedl. Iraqi trace. http://www.mynetwatchman.com/kb/

security/articles/iraqiworm/iraqitrace.htm.

[12] Paul Barford and Mark Crovella. Generating representative Web workloads for network and server

performance evaluation. InProceedings of ACM SIGMETRICS, pages 151–160, July 1998.

[13] W32 Beagle.J.http://securityresponse.symantec.com/avcenter/venc/data/w32.beagle.j@mm.html.

[14] Edoardo Biagioni, Robert Harper, and Peter Lee. A network protocol stack in Standard ML.Higher-

Order and Symbolic Computation, 14(4):309–356, 2001.

[15] Nikita Borisov, David J. Brumley, Helen J. Wang, John Dunagan, Pallavi Joshi, and Chuanxiong

Guo. Generic application-level protocol analyzer and its language. Under submission.

[16] Ramon Cáceres. Measurements of wide area Internet traffic. Technical report, EECS, University of

California, Berkeley, 1989.

[17] Ramon Caceres, Peter Danzig, Sugih Jamin, and Danny Mitzel. Characteristics of wide-area TCP/IP

conversations. InProceedings of the ACM SIGCOMM Conference, 1991.

[18] Capture the capture the flag.http://www.shmoo.com/cctf/.

[19] Common Internet File System.http://www.snia.org/tech activities/CIFS/CIFS-TR-1p00 FINAL.pdf.

[20] D. Crocker.RFC 2234: Augmented BNF for Syntax Specifications: ABNF.

[21] Weidong Cui, Vern Paxson, and Nicholas Weaver. Gq: Realizing a system to catch worms in a

quarter million places. Under submission.

[22] Weidong Cui, Vern Paxson, Nicholas Weaver, and Randy H.Katz. Protocol-independent adaptive

replay of application dialog. InProceedings of Network and Distributed System Security Symposium

(NDSS), San Diego, CA, February 2006.

[23] M. Dacier, F. Pouget, and H. Debar. Attack processes found on the Internet. InProceedings of NATO

Symposium, 2004.

155

[24] Peter Danzig, S. Jamin, R. Cáceres, D. Mitzel, and D. Estrin. An empirical workload model for

driving wide-area TCP/IP network simulations.Internetworking: Research and Experience, 3(1):1–

26, 1992.

[25] DCE 1.1: Remote procedure call.http://www.opengroup.org/onlinepubs/9629399/toc.htm.

[26] H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R. Sommer.Dynamic application-layer protocol

analysis for network intrusion detection. InProceedings of USENIX Security Symposium, August

2006.

[27] DSniff. www.monkey.org/ dugsong/dsniff.

[28] Daniel Ellard, Jonathan Ledlie, Pia Malkani, and MargoSeltzer. Passive NFS tracing of Email

and research workloads. InProceedings of USENIX Conference on File and Storage Technologies

(FAST), 2003.

[29] The Ethereal Network Analyzer. http://www.ethereal.com/.

[30] Federal Committee on Statistical Methodology. Reporton statistical disclosure limitation methodol-

ogy (statistical policy working paper 22), 1994.http://www.fcsm.gov/working-papers/spwp22.html.

[31] Anja Feldmann. BLT: Bi-layer tracing of HTTP and TCP/IP. In Proceedings of World Wide Web

Conference, May 2000.

[32] Anja Feldmann, Nils Kammenhuber, Olaf Maennel, Bruce Maggs, Roberto De Prisco, and Ravi

Sundaram. A methodology for estimating interdomain web traffic demand. InProceedings of the

Internet Measurement Conference (IMC), October 2004.

[33] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.RFC 2616:

Hypertext Transfer Protocol – HTTP/1.1, June 1999.

[34] Kathleen Fisher and Robert Gruber. PADS: A domain-specific language for processing ad hoc

data. InProceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), pages 295–304, New York, NY, USA, 2005. ACM Press.

[35] Kathleen Fisher, Yitzhak Mandelbaum, and David Walker. The next 700 data description languages.

In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages (POPL), pages 2–15, New York, NY, USA, 2006. ACM Press.

156

[36] Flowreplay design notes.http://www.synfin.net/papers/flowreplay.pdf.

[37] Sally Floyd, Mark Allman, A. Jain, and Pasi Sarolahti. Quick-start for TCP and IP, June 2006.

Internet-Draft draft-ietf-tsvwg-quickstart-04.txt (work in progress).

[38] H. J. Fowler and W. E. Leland. Local area network traffic characteristics, with implications for

broadband network congestion management.IEEE Journal on Selected Areas in Communications,

SAC-9:1139–49, 1991.

[39] Luiz Gomes, Cristiano Cazita, Jussara Almeida, Virgilio Almeida, and Wagner Meira Jr. Charac-

terizing a SPAM traffic. InProceedings of the Internet Measurement Conference (IMC), October

2004.

[40] B. Greene. BGPv4 Security Risk Assessment, June 2002.

[41] Steven D. Gribble and Eric A. Brewer. System design issues for Internet middleware services:

Deductions from a large client trace. InProceedings of USENIX Symposium on Internet Technologies

and Systems, December 1997.

[42] R. Gusella. A measurement study of diskless workstation traffic on an Ethernet.IEEE Transactions

on Communications, 38(9):1557–1568, September 1990.

[43] Mark Handley, Christian Kreibich, and Vern Paxson. Network intrusion detection: Evasion, traffic

normalization, and end-to-end protocol semantics. InProceedings of USENIX Security Symposium,

2001.

[44] The Honeynet Project.http://project.honeynet.org, 2003.

[45] The honeypot challenge.http://project.honeynet.org/misc/chall.html.

[46] The IANA port assignment.http://www.iana.org/assignments/port-numbers.

[47] S. Ita.s_ita ’s port list. http://www.bekkoame.ne.jp/∼s ita/port/.

[48] Editor J. Klensin.RFC 2821: Simple Mail Transfer Protocol, April 2001.

[49] Van Jacobson, Craig Leres, and Steven McCanne.TCPDUMP. ftp://ftp.ee.lbl.gov/libpcap.tar.Z.

157

[50] Xuxian Jiang and Dongyan Xu. Collapsar: A VM-based architecture for network attack detention

center. InProceedings of USENIX Security Symposium, San Diego, CA, August 2004.

[51] Jaeyeon Jung, Vern Paxson, Arthur Berger, and Hari Balakrishnan. Fast portscan detection using

sequential hypothesis testing. InProceedings of IEEE Symposium on Security and Privacy, Oakland,

CA, May 2004.

[52] Jaeyeon Jung and Emil Sit. An empirical study of spam traffic and the use of DNS black lists. In

Proceedings of the Internet Measurement Conference (IMC), Taormina, Italy, October 2004.

[53] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. DNS performance and the effective-

ness of caching. InProceedings of the ACM SIGCOMM Internet Measurement Workshop (IMW),

November 2001.

[54] H. Kim and B. Karp. Autograph: Toward automated, distributed worm signature detection. In

Proceedings of USENIX Security Symposium, San Diego, CA, August 2004.

[55] E. Kohler, R. Morris, B. Chen, J. Jannotti, and F. Kaashoek. The Click modular router.ACM

Transactions on Computer Systems, 18(3), August 2000.

[56] Eddie Kohler, M. Frans Kaashoek, and David R. Montgomery. A readable TCP in the Prolac protocol

language. InProceedings of the ACM SIGCOMM Conference, pages 3–13, Cambridge, MA, August

1999.

[57] Tadayoshi Kohno, Andre Broido, and kc claffy. Remote physical device fingerprinting. InProceed-

ings of IEEE Symposium on Security and Privacy, Oakland, CA, May 2005.

[58] Christian Kreibich.NetDuDe (NETwork DUmp data Displayer and Editor). .

http://netdude.sourceforge.net/.

[59] Christian Kreibich and John Crowcroft. Honeycomb–creating intrusion detection signatures using

honeypots. InProceedings of Workshop on Hot Topics in Networks (HotNets), Cambridge, MA,

November 2003.

[60] Abhishek Kumar, Vern Paxson, and Nicholas Weaver. Exploiting underlying structure for detailed

reconstruction of an Internet-scale event. InProceedings of the Internet Measurement Conference

(IMC), October 2005.

158

[61] Richard Lippmann, Seth Webster, and Douglas Stetson. The effect of identifying vulnerabilities and

patching software on the utility of network intrusion detection. In Proceedings of Recent Advances

in Intrusion Detection, number 2516 in Lecture Notes in Computer Science. Springer-Verlag, 2002.

[62] M. Lottor. RFC 1296: Internet Growth (1981-1991).

[63] Bruce Mah. An empirical model of HTTP network traffic. InProceedings of IEEE INFOCOM,

April 1997.

[64] G. Robert Malan and Farnam Jahanian. An extensible probe architecture for network protocol per-

formance measurement. InProceedings of the ACM SIGCOMM Conference, 1998.

[65] Peter J. McCann and Satish Chandra. Packet Types: Abstract specifications of network protocol

messages. InProceedings of the ACM SIGCOMM Conference, pages 321–333, 2000.

[66] Greg Minshall.TCPdpriv: Program for Eliminating Confidential Information from Traces. Ipsilon

Networks, Inc.http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html.

[67] Jeffrey Mogul. Trace anonymization misses the point. Presentation on WWW 2002 Panel on Web

Measurements.

[68] D. Moore. Network telescopes: Observing small or distant security events. Invited Presentation at

the 11th USENIX Security Symposium, 2002.

[69] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside the Slammer

worm. InProceedings of IEEE Symposium on Security and Privacy, Oakland, CA, June 2003.

[70] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. The spread of the

Sapphire/Slammer worm.http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html, 2003.

[71] D. Moore, C. Shannon, and J. Brown. Code Red: A case studyon the spread and victims of an

Internet worm. InProceedings of the ACM SIGCOMM Internet Measurement Workshop (IMW),

November 2002.

[72] D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet Quarantine: Requirements for containing

self-propagating code. InProceedings of IEEE INFOCOM, April 2003.

159

[73] D. Moore, G. Voelker, and S. Savage. Inferring Internetdenial of service activity. InProceedings of

USENIX Security Symposium, Washington D.C., August 2001.

[74] W32 Mydoom.A@mm. .

http://securityresponse.symantec.com/avcenter/venc/data/w32.mydoom.a@mm.html.

[75] NFR Security. http://www.nfr.com.

[76] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling TCP throughput: A simple

model and its empirical validation. InProceedings of the ACM SIGCOMM Conference, September

1998.

[77] Ruoming Pang, Mark Allman, Mike Bennett, Jason Lee, Vern Paxson, and Brian Tierney. A first

look at modern enterprise traffic. InProceedings of the Internet Measurement Conference (IMC),

October 2005.

[78] Ruoming Pang, Mark Allman, Vern Paxson, and Jason Lee. The devil and packet trace anonymiza-

tion. SIGCOMM Computer Communication Review, 36(1):29–38, 2006.

[79] Ruoming Pang and Vern Paxson. Anonymized FTP traces.http://www-nrg.ee.lbl.gov/anonymized-

traces.html.

[80] Ruoming Pang and Vern Paxson. A high-level programmingenvironment for packet trace anonymi-

zation and transformation. InProceedings of the ACM SIGCOMM Conference, August 2003.

[81] Ruoming Pang, Vinod Yegneswaran, Paul Barford, Vern Paxson, and Larry Peterson. Characteristics

of Internet background radiation. InProceedings of the Internet Measurement Conference (IMC),

October 2004.

[82] LBNL/ICSI enterprise tracing project.http://www.icir.org/enterprise-tracing/.

[83] T. Parr and R. Quong. ANTLR: A predicated-LL (k) parser generator. Software, Practice and

Experience, 25, July 1995.

[84] Simon Patarin and Mesaac Makpangou. Pandora: A flexiblenetwork monitoring platform. In

Proceedings of the USENIX Annual Technical Conference, San Diego, June 2000.

160

[85] V. Paxson, K. Asanovic, S. Dharmapurikar, J. Lockwood,R. Pang, R. Sommer, and N. Weaver. Re-

thinking hardware support for network analysis and intrusion prevention. InProceedings of Work-

shop on Hot Topics in Security (HotSec), Vancouver, B.C., Canada, July 2006.

[86] Vern Paxson.Bro: A System for Detecting Network Intruders in Real-Time. http://www.bro-ids.org.

[87] Vern Paxson. Empirically-derivedanalytic models of wide-area TCP connections.IEEE/ACM Trans-

actions on Networking, 2(4):316–336, August 1994.

[88] Vern Paxson. Growth trends in wide-area TCP connections. IEEE Network, 8(4):8–17, July/August

1994.

[89] Vern Paxson. Bro: A system for detecting network intruders in real time. Computer Networks,

December 1999.

[90] Vern Paxson. Strategies for sound Internet measurement. In Proceedings of the Internet Measure-

ment Conference (IMC), 2004.

[91] Markus Peuhkuri. A method to compress and anonymize packet traces. InProceedings of the ACM

SIGCOMM Internet Measurement Workshop (IMW), November 2001.

[92] Jon Postel.RFC 768: User Datagram Protocol, August 1980.

[93] Jon Postel.RFC 791: Internet Protocol, September 1981.

[94] Jon Postel.RFC 793: Transmission Control Protocol, September 1981.

[95] NetWare Core Protocol. http://forge.novell.com/modules/xfmod/project/?ncp.

[96] Niels Provos. The Honeyd Virtual Honeypot.http://www.honeyd.org.

[97] Niels Provos. A virtual honeypot framework. InProceedings of USENIX Security Symposium, San

Diego, CA, August 2004.

[98] Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion, and denial of service: Eluding

network intrusion detection. Technical report, Secure Networks, Inc., January 1998.

[99] W32 Randex.D.http://www.liutilities.com/products/wintaskspro/processlibrary/msmsgri32.

161

[100] M. Roesch. SNORT: Lightweight intrusion detection for networks. InProceedings of USENIX LISA,

1999.

[101] The SNORT network intrusion detection system.http://www.snort.org.

[102] Stefan Saroiu, Krishna P. Gummadi, Richard J. Dunn, Steven D. Gribble, and Henry M. Levy. An

analysis of Internet content delivery systems. InProceedings of the Fifth Symposium on Operating

Systems Design and Implementation (OSDI), December 2002.

[103] W32 Sasser.Worm. .

http://securityresponse.symantec.com/avcenter/venc/data/w32.sasser.worm.html.

[104] Stefen Savage. Private communication.

[105] Security Focus. Microsoft IIS 5.0 “translate: f” source disclosure vulnerability. .

http://www.securityfocus.com/bid/1578/discussion/, April 2004.

[106] Subhabrata Sen and Jia Wang. Analyzing peer-to-peer traffic across large networks. InProceedings

of the ACM SIGCOMM Internet Measurement Workshop (IMW), pages 137–150, November 2002.

[107] Aman Shaikh, Chris Isett, Albert Greenberg, Matthew Roughan, and Joel Gottlieb. A case study

of OSPF behavior in a large enterprise network. InProceedings of the ACM SIGCOMM Internet

Measurement Workshop (IMW), pages 217–230, New York, NY, USA, 2002. ACM Press.

[108] Colleen Shannon and David Moore. The spread of the Witty worm. .

http://www.caida.org/analysis/security/witty, 2004.

[109] S. Singh, C. Estan, G. Varghese, and S. Savage. The Earlybird system for real-time detection of

unknown worms. Technical Report CS2003-0761, University of California, San Diego, August

2003.

[110] R. Srinivasan.RFC 1831: RPC: Remote Procedure Call Protocol Specification.

[111] R. Srinivasan.RFC 1832: XDR: External Data Representation Standard.

[112] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Internet in Your Spare Time. InProceedings

of USENIX Security Symposium, 2002.

162

[113] Jonathan Stone and Craig Partridge. When the CRC and TCP checksum disagree. InProceedings

of the ACM SIGCOMM Conference, September 2000.

[114] Q. Sun, D. R. Simon, Y. Wang, W. Russell, V. N. Padmanabhan, and L. Qiu. Statistical identification

of encrypted web browsing traffic. InProceedings of IEEE Symposium on Security and Privacy,

Oakland, CA, May 2002.

[115] Godfrey Tan, Massimiliano Poletto, John Guttag, and Frans Kaashoek. Role classification of hosts

within enterprise networks based on connection patterns. In Proceedings of the USENIX Annual

Technical Conference, June 2003.

[116] K. Thompson, G. Miller, and R. Wilder. Wide area Internet traffic patterns and characteristics.IEEE

Network, 11(6):10–23, November 1997.

[117] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan.RFC 2165: Service Location Protocol.

[118] Michael Vrable, Justin Ma, Jay Chen, David Moore, ErikVandekieft, Alex C. Snoeren, Geoffrey M.

Voelker, and Stefan Savage. Scalability, fidelity, and containment in the Potemkin virtual honeyfarm.

In Proceedings of ACM Symposium on Operating Systems Principles (SOSP), 2005.

[119] Ethereal OSPF protocol dissector buffer overflow vulnerability. .

http://www.idefense.com/intelligence/vulnerabilities/display.php?id=349.

[120] Snort TCP stream reassembly integer overflow exploit. .

http://www.securiteam.com/exploits/5BP0O209PS.html.

[121] Symantec multiple firewall NBNS response processing stack overflow. .

http://www.eeye.com/html/research/advisories/AD20040512A.html.

[122] tcpdump ISAKMP packet delete payload buffer overflow.http://xforce.iss.net/xforce/xfdb/15680.

[123] DameWare Mini Remote Control Server<= 3.72 buffer overflow. .

http://www.securityfocus.com/archive/1/347576.

[124] Microsoft Windows DCOM RPC interface buffer overrun vulnerability (MS03-026). .

http://www.securityfocus.com/bid/8205.

163

[125] Microsoft Windows Locator Service buffer overflow vulnerability (MS03-001). .

http://www.securityfocus.com/bid/6666.

[126] Microsoft Windows 2000 WebDAV buffer overflow vulnerability (MS03-007). .

http://www.securityfocus.com/bid/7116.

[127] Separation of concerns.http://en.wikipedia.org/wiki/Separation of concerns.

[128] WildPackets, Inc.EtherPeek. http://www.etherpeek.com/.

[129] Windows Messenger popup spam.http://www.lurhq.com/popup spam.html.

[130] Cynthia Wong, Stan Bielski, Jonathan M. McCune, and Chenxi Wang. A study of mass-mailing

worms. InProceedings of the 2005 ACM Workshop on Rapid Malcode (WORM), pages 1–10, New

York, NY, USA, 2004. ACM Press.

[131] W32 Xibo. http://www.sophos.com/virusinfo/analyses/w32xiboa.html.

[132] Jun Xu, Jinliang Fan, Mostafa Ammar, and Sue B. Moon. Onthe design and performance of prefix

preserving IP traffic trace anonymization. InProceedings of the ACM SIGCOMM Internet Measure-

ment Workshop (IMW), November 2001.

[133] V. Yegneswaran, P. Barford, and D. Plonka. On the design and use of Internet sinks for network

abuse monitoring. InProceedings of Recent Advances in Intrusion Detection, 2004.

[134] V. Yegneswaran, P. Barford, and J. Ullrich. Internet intrusions: Global characteristics and prevalence.

In Proceedings of ACM SIGMETRICS, June 2003.

[135] T. Ylonen. Thoughts on how to mount an attack on TCPdpriv’s “-a50” option. .

http://ita.ee.lbl.gov/html/contrib/attack50/attack50.html.

164

