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DECOMPOSITIONS OF A HIGHER-ORDER TENSOR IN BLOCK
TERMS—PART II: DEFINITIONS AND UNIQUENESS∗
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Abstract. In this paper we introduce a new class of tensor decompositions. Intuitively, we
decompose a given tensor block into blocks of smaller size, where the size is characterized by a
set of mode-n ranks. We study different types of such decompositions. For each type we derive
conditions under which essential uniqueness is guaranteed. The parallel factor decomposition and
Tucker’s decomposition can be considered as special cases in the new framework. The paper sheds
new light on fundamental aspects of tensor algebra.
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1. Introduction. The two main tensor generalizations of the matrix singular
value decomposition (SVD) are, on one hand, the Tucker decomposition/higher-order
singular value decomposition (HOSVD) [59, 60, 12, 13, 15] and, on the other hand, the
canonical/parallel factor (CANDECOMP/PARAFAC) decomposition [7, 26]. These
are connected with two different tensor generalizations of the concept of matrix rank.
The Tucker decomposition/HOSVD is linked with the set of mode-n ranks, which
generalize column rank, row rank, etc. CANDECOMP/PARAFAC has to do with rank
in the meaning of the minimal number of rank-1 terms that are needed in an expansion
of the matrix/tensor. In this paper we introduce a new class of tensor SVDs, which
we call block term decompositions. These lead to a framework that unifies the Tucker
decomposition/HOSVD and CANDECOMP/PARAFAC. Block term decompositions
also provide a unifying view on tensor rank.

We study different types of block term decompositions. For each type, we derive
sufficient conditions for essential uniqueness, i.e., uniqueness up to trivial indeter-
minacies. We derive two types of uniqueness conditions. The first type follows from
a reasoning that involves invariant subspaces associated with the tensor. This type
of conditions generalizes the result on CANDECOMP/PARAFAC uniqueness that
is presented in [6, 40, 47, 48]. The second type generalizes Kruskal’s condition for
CANDECOMP/PARAFAC uniqueness, discussed in [38, 49, 54].

In the following subsection we explain our notation and introduce some basic def-
initions. In subsection 1.2 we recall the Tucker decomposition/HOSVD and also the
CANDECOMP/PARAFAC decomposition and summarize some of their properties.
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1034 LIEVEN DE LATHAUWER

In section 2 we define block term decompositions. We subsequently introduce decompo-
sition in rank-(L,L, 1) terms (subsection 2.1), decomposition in rank-(L,M,N) terms
(subsection 2.2), and type-2 decomposition in rank-(L,M, ·) terms (subsection 2.3).
The uniqueness of these decompositions is studied in sections 4, 5, and 6, respectively.
In the analysis we use some tools that have been introduced in [19]. These will briefly
be recalled in section 3.

Several proofs of lemmas and theorems establishing Kruskal-type conditions for
essential uniqueness of the new decompositions generalize results for PARAFAC pre-
sented in [54]. We stay quite close to the text of [54]. We recommend studying the
proofs in [54] before reading this paper.

1.1. Notation and basic definitions.

1.1.1. Notation. We use K to denote R or C when the difference is not im-
portant. In this paper scalars are denoted by lowercase letters (a, b, . . . ), vectors are
written in boldface lowercase (a, b, . . . ), matrices correspond to boldface capitals
(A, B, . . . ), and tensors are written as calligraphic letters (A, B, . . . ). This notation
is consistently used for lower-order parts of a given structure. For instance, the entry
with row index i and column index j in a matrix A, i.e., (A)ij , is symbolized by
aij (also (a)i = ai and (A)ijk = aijk). If no confusion is possible, the ith column
vector of a matrix A is denoted as ai, i.e., A = [a1 a2 . . .]. Sometimes we will use
the MATLAB colon notation to indicate submatrices of a given matrix or subtensors
of a given tensor. Italic capitals are also used to denote index upper bounds (e.g.,
i = 1, 2, . . . , I). The symbol ⊗ denotes the Kronecker product,

A ⊗ B =

⎛
⎜⎝

a11B a12B . . .
a21B a22B . . .

...
...

⎞
⎟⎠ .

Let A = [A1 . . . AR] and B = [B1 . . . BR] be two partitioned matrices. Then the
Khatri–Rao product is defined as the partitionwise Kronecker product and represented
by � [46]:

(1.1) A � B = (A1 ⊗ B1 . . .AR ⊗ BR) .

In recent years, the term “Khatri–Rao product” and the symbol � have been used
mainly in the case where A and B are partitioned into vectors. For clarity, we denote
this particular, columnwise, Khatri–Rao product by �c:

A �c B = (a1 ⊗ b1 . . .aR ⊗ bR) .

The column space of a matrix and its orthogonal complement will be denoted by
span(A) and null(A). The rank of a matrix A will be denoted by rank(A) or rA.
The superscripts ·T , ·H , and ·† denote the transpose, complex conjugated transpose,
and Moore–Penrose pseudoinverse, respectively. The operator diag(·) stacks its scalar
arguments in a square diagonal matrix. Analogously, blockdiag(·) stacks its vector
or matrix arguments in a block-diagonal matrix. For vectorization of a matrix A =
[a1 a2 . . .] we stick to the following convention: vec(A) = [aT

1 aT
2 . . .]T . The symbol

δij stands for the Kronecker delta, i.e., δij = 1 if i = j and 0 otherwise. The (N ×N)
identity matrix is represented by IN×N . The (I × J) zero matrix is denoted by 0I×J .
1N is a column vector of all ones of length N . The zero tensor is denoted by O.
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1.1.2. Basic definitions.
Definition 1.1. Consider T ∈ K

I1×I2×I3 and A ∈ K
J1×I1 , B ∈ K

J2×I2 , C ∈
K

J3×I3 . Then the Tucker mode-1 product T •1A, mode-2 product T •2B, and mode-3
product T •3 C are defined by

(T •1 A)j1i2i3 =

I1∑
i1=1

ti1i2i3aj1i1 ∀j1, i2, i3,

(T •2 B)i1j2i3 =

I2∑
i2=1

ti1i2i3bj2i2 ∀i1, j2, i3,

(T •3 C)i1i2j3 =

I3∑
i3=1

ti1i2i3cj3i3 ∀i1, i2, j3,

respectively [11].
In this paper we denote the Tucker mode-n product in the same way as in [10];

in the literature the symbol ×n is sometimes used [12, 13, 15].
Definition 1.2. The Frobenius norm of a tensor T ∈ K

I×J×K is defined as

‖T ‖ =

⎛
⎝ I∑

i=1

J∑
j=1

K∑
k=1

|tijk|2
⎞
⎠

1
2

.

Definition 1.3. The outer product A ◦ B of a tensor A ∈ K
I1×I2×···×IP and a

tensor B ∈ K
J1×J2×···×JQ is the tensor defined by

(A ◦ B)i1i2...iP j1j2...jQ = ai1i2...iP bj1j2...jQ

for all values of the indices.
For instance, the outer product T of three vectors a, b, and c is defined by

tijk = aibjck for all values of the indices.
Definition 1.4. A mode-n vector of a tensor T ∈ K

I1×I2×I3 is an In-dimensional
vector obtained from T by varying the index in and keeping the other indices fixed [34].

Mode-n vectors generalize column and row vectors.
Definition 1.5. The mode-n rank of a tensor T is the dimension of the subspace

spanned by its mode-n vectors.
The mode-n rank of a higher-order tensor is the obvious generalization of the

column (row) rank of a matrix.
Definition 1.6. A third-order tensor is rank-(L,M,N) if its mode-1 rank, mode-

2 rank, and mode-3 rank are equal to L, M , and N , respectively.
A rank-(1, 1, 1) tensor is briefly called rank-1. This definition is equivalent to the

following.
Definition 1.7. A third-order tensor T has rank 1 if it equals the outer product

of 3 vectors.
The rank (as opposed to mode-n rank) is now defined as follows.
Definition 1.8. The rank of a tensor T is the minimal number of rank-1 tensors

that yield T in a linear combination [38].
The following definition has proved useful in the analysis of PARAFAC uniqueness

[38, 49, 51, 54].
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Definition 1.9. The Kruskal rank or k-rank of a matrix A, denoted by rankk(A)
or kA, is the maximal number r such that any set of r columns of A is linearly
independent [38].

We call a property generic when it holds with probability one when the parameters
of the problem are drawn from continuous probability density functions. Let A ∈
K

I×R. Generically, we have kA = min(I,R).
It will sometimes be useful to express tensor properties in terms of matrices and

vectors. We therefore define standard matrix representations of a third-order tensor.
Definition 1.10. The standard (JK × I) matrix representation (T )JK×I =

TJK×I , (KI × J) representation (T )KI×J = TKI×J , and (IJ × K) representation
(T )IJ×K = TIJ×K of a tensor T ∈ K

I×J×K are defined by

(TJK×I)(j−1)K+k,i = (T )ijk,

(TKI×J)(k−1)I+i,j = (T )ijk,

(TIJ×K)(i−1)J+j,k = (T )ijk

for all values of the indices [34].
Note that in these definitions indices to the right vary more rapidly than indices

to the left. Further, the ith (J ×K) matrix slice of T ∈ K
I×J×K will be denoted as

TJ×K,i. Similarly, the jth (K × I) slice and the kth (I × J) slice will be denoted by
TK×I,j and TI×J,k, respectively.

1.2. HOSVD and PARAFAC. We have now enough material to introduce
the Tucker/HOSVD [12, 13, 15, 59, 60] and CANDECOMP/PARAFAC [7, 26] de-
compositions.

Definition 1.11. A Tucker decomposition of a tensor T ∈ K
I×J×K is a decom-

position of T of the form

(1.2) T = D •1 A •2 B •3 C.

An HOSVD is a Tucker decomposition, normalized in a particular way. The nor-
malization was suggested in the computational strategy in [59, 60].

Definition 1.12. An HOSVD of a tensor T ∈ K
I×J×K is a decomposition of T

of the form

(1.3) T = D •1 A •2 B •3 C,

in which
• the matrices A ∈ K

I×L, B ∈ K
J×M , and C ∈ K

K×N are columnwise or-
thonormal,

• the core tensor D ∈ K
L×M×N is

− all-orthogonal,

〈DM×N,l1 ,DM×N,l2〉 = trace(DM×N,l1 · DH
M×N,l2) = σ

(1)2

l1
δl1,l2 ,

1 � l1, l2 � L,

〈DN×L,m1 ,DN×L,m2〉 = trace(DN×L,m1
· DH

N×L,m2
) = σ(2)2

m1
δm1,m2

,

1 � m1,m2 � M,

〈DI×J,n1 ,DI×J,n2〉 = trace(DL×M,n1 · DH
L×M,n2

) = σ(3)2

n1
δn1,n2 ,

1 � n1, n2 � N,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DECOMPOSITIONS OF A HIGHER-ORDER TENSOR IN BLOCK TERMS—II 1037

− ordered,

σ
(1)2

1 � σ
(1)2

2 � . . . � σ
(1)2

L � 0,

σ
(2)2

1 � σ
(2)2

2 � . . . � σ
(2)2

M � 0,

σ
(3)2

1 � σ
(3)2

2 � . . . � σ
(3)2

N � 0.

The decomposition is visualized in Figure 1.1.

T D
II J

J

K
K

L

L MM

N

N

A
B

C

=

Fig. 1.1. Visualization of the HOSVD/Tucker decomposition.

Equation (1.3) can be written in terms of the standard (JK × I), (KI × J), and
(IJ ×K) matrix representations of T as follows:

TJK×I = (B ⊗ C) · DMN×L · AT ,(1.4)

TKI×J = (C ⊗ A) · DNL×M · BT ,(1.5)

TIJ×K = (A ⊗ B) · DLM×N · CT .(1.6)

The HOSVD exists for any T ∈ K
I×J×K . The values L, M , and N correspond to

the rank of TJK×I , TKI×J , and TIJ×K , i.e., they are equal to the mode-1, mode-2
and mode-3 rank of T , respectively. In [12] it has been demonstrated that the SVD
of matrices and the HOSVD of higher-order tensors have some analogous properties.

Define D̃ = D •3 C. Then

(1.7) T = D̃ •1 A •2 B

is a (normalized) Tucker-2 decomposition of T . This decomposition is visualized in
Figure 1.2.

T D̃
II J

J
KK

L

L MM

A
B

=

Fig. 1.2. Visualization of the (normalized) Tucker-2 decomposition.

Besides the HOSVD, there exist other ways to generalize the SVD of matrices.
The most well known is CANDECOMP/PARAFAC [7, 26].

Definition 1.13. A canonical or parallel factor decomposition (CANDECOMP/
PARAFAC) of a tensor T ∈ K

I×J×K is a decomposition of T as a linear combination
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of rank-1 terms:

(1.8) T =

R∑
r=1

ar ◦ br ◦ cr.

The decomposition is visualized in Figure 1.3.
In terms of the standard matrix representations of T , decomposition (1.8) can be

written as

TJK×I = (B �c C) · AT ,(1.9)

TKI×J = (C �c A) · BT ,(1.10)

TIJ×K = (A �c B) · CT .(1.11)

In terms of the (J ×K), (K × I), and (I × J) matrix slices of T , we have

TJ×K,i = B · diag(ai1, . . . , aiR) · CT , i = 1, . . . , I.(1.12)

TK×I,j = C · diag(bj1, . . . , bjR) · AT , j = 1, . . . , J.(1.13)

TI×J,k = A · diag(ck1, . . . , ckR) · BT , k = 1, . . . ,K.(1.14)

T

a1 a2 aR

b1 b2 bR

c1 c2 cR

= + . . .++

Fig. 1.3. Visualization of the CANDECOMP/PARAFAC decomposition.

The fully symmetric variant of PARAFAC, in which ar = br = cr, r = 1, . . . , R,
was studied in the nineteenth century in the context of invariant theory [9]. The un-
symmetric decomposition was introduced by F. L. Hitchcock in 1927 [27, 28]. Around
1970, the unsymmetric decomposition was independently reintroduced in psychomet-
rics [7] and phonetics [26]. Later, the decomposition was applied in chemometrics
and the food industry [1, 5, 53]. In these various disciplines PARAFAC is used for
the purpose of multiway factor analysis. The term “canonical decomposition” is stan-
dard in psychometrics, while in chemometrics the decomposition is called a parallel
factors model. PARAFAC has found important applications in signal processing and
data analysis [37]. In wireless telecommunications, it provides powerful means for the
exploitation of different types of diversity [49, 50, 18]. It also describes the basic struc-
ture of higher-order cumulants of multivariate data on which all algebraic methods
for independent component analysis (ICA) are based [8, 14, 29]. Moreover, the de-
composition is finding its way to scientific computing, where it leads to a way around
the curse of dimensionality [2, 3, 24, 25, 33].

To a large extent, the practical importance of PARAFAC stems from its unique-
ness properties. It is clear that one can arbitrarily permute the different rank-1 terms.
Also, the factors of a same rank-1 term may be arbitrarily scaled, as long as their prod-
uct remains the same. We call a PARAFAC decomposition essentially unique when it
is subject only to these trivial indeterminacies. The following theorem establishes a
condition under which essential uniqueness is guaranteed.
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Theorem 1.14. The PARAFAC decomposition (1.8) is essentially unique if

(1.15) kA + kB + kC � 2R + 2.

This theorem was first proved for real tensors in [38]. A concise proof that also
applies to complex tensors was given in [49]; in this proof, the permutation lemma
of [38] was used. The result was generalized to tensors of arbitrary order in [51]. An
alternative proof of the permutation lemma was given in [31]. The overall proof was
reformulated in terms of accessible basic linear algebra in [54]. In [17] we derived a
more relaxed uniqueness condition that applies when T is tall in one mode (meaning
that, for instance, K � R).

2. Block term decompositions.

2.1. Decomposition in rank-(L, L, 1) terms.
Definition 2.1. A decomposition of a tensor T ∈ K

I×J×K in a sum of rank-
(L,L, 1) terms is a decomposition of T of the form

(2.1) T =

R∑
r=1

Er ◦ cr,

in which the (I × J) matrices Er are rank-L.
We also consider the decomposition of a tensor in a sum of matrix-vector outer

products, in which the different matrices do not necessarily all have the same rank.
Definition 2.2. A decomposition of a tensor T ∈ K

I×J×K in a sum of rank-
(Lr, Lr, 1) terms, 1 � r � R, is a decomposition of T of the form

(2.2) T =

R∑
r=1

Er ◦ cr,

in which the (I × J) matrix Er is rank-Lr, 1 � r � R.
If we factorize Er as Ar · BT

r , in which the matrix Ar ∈ K
I×Lr and the matrix

Br ∈ K
J×Lr are rank-Lr, r = 1, . . . , R, then we can write (2.2) as

(2.3) T =

R∑
r=1

(Ar · BT
r ) ◦ cr.

Define A = [A1 . . .AR], B = [B1 . . .BR], C = [c1 . . . cR]. In terms of the standard
matrix representations of T , (2.3) can be written as

TIJ×K = [(A1 �c B1)1L1 . . . (AR �c BR)1LR
] · CT ,(2.4)

TJK×I = (B � C) · AT ,(2.5)

TKI×J = (C � A) · BT .(2.6)

In terms of the matrix slices of T , (2.3) can be written as

TJ×K,i = B · blockdiag([(A1)i1 . . . (A1)iL1 ]
T , . . . , [(AR)i1 . . . (AR)iLR

]T ) · CT ,

i = 1, . . . , I,(2.7)

TK×I,j = C · blockdiag([(B1)j1 . . . (B1)jL1
], . . . , [(BR)j1 . . . (BR)jLR

]) · AT ,

j = 1, . . . , J,(2.8)

TI×J,k = A · blockdiag(ck1IL1×L1 , . . . , ckRILR×LR
) · BT , k = 1, . . . ,K.

(2.9)
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It is clear that in (2.3) one can arbitrarily permute the different rank-(Lr, Lr, 1)
terms. Also, one can postmultiply Ar by any nonsingular (Lr × Lr) matrix Fr ∈
K

Lr×Lr , provided Br is premultiplied by the inverse of Fr. Moreover, the factors of a
same rank-(Lr, Lr, 1) term may be arbitrarily scaled, as long as their product remains
the same. We call the decomposition essentially unique when it is subject only to
these trivial indeterminacies. Two representations (A,B,C) and (Ā, B̄, C̄) that are
the same up to trivial indeterminacies are called essentially equal. We (partially)
normalize the representation of (2.2) as follows. Scale/counterscale the vectors cr and
the matrices Er such that cr are unit-norm. Further, let Er = Ar ·Dr ·BT

r denote the
SVD of Er. The diagonal matrix Dr can be interpreted as an (Lr × Lr × 1) tensor.
Then (2.2) is equivalent to

(2.10) T =

R∑
r=1

Dr •1 Ar •2 Br •3 cr.

Note that in this equation each term is represented in HOSVD form. The decompo-
sition is visualized in Figure 2.1.

T

III

J J

J

K

K K

=
L1

L1

LR

LR

D1
DR

+ . . .+

A1

B1

c1

AR

BR

cR

Fig. 2.1. Visualization of the decomposition of a tensor in a sum of rank-(Lr, Lr, 1) terms,
1 � r � R.

2.2. Decomposition in rank-(L, M, N) terms.
Definition 2.3. A decomposition of a tensor T ∈ K

I×J×K in a sum of rank-
(L,M,N) terms is a decomposition of T of the form

(2.11) T =
R∑

r=1

Dr •1 Ar •2 Br •3 Cr,

in which Dr ∈ K
L×M×N are full rank-(L,M,N) and in which Ar ∈ K

I×L (with
I � L), Br ∈ K

J×M (with J � M), and Cr ∈ K
K×N (with K � N) are full column

rank, 1 � r � R.
Remark 1. One could also consider a decomposition in rank-(Lr,Mr, Nr) terms,

where the different terms possibly have different mode-n ranks. In this paper we focus
on the decomposition in rank-(L,M,N) terms.

Define partitioned matrices A= [A1 . . .AR], B= [B1 . . .BR], and C=[C1 . . .
CR]. In terms of the standard matrix representations of T , (2.11) can be written as

TJK×I = (B � C) · blockdiag((D1)MN×L, . . . , (DR)MN×L) · AT ,(2.12)

TKI×J = (C � A) · blockdiag((D1)NL×M , . . . , (DR)NL×M ) · BT ,(2.13)

TIJ×K = (A � B) · blockdiag((D1)LM×N , . . . , (DR)LM×N ) · CT .(2.14)
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It is clear that in (2.11) one can arbitrarily permute the different terms. Also,
one can postmultiply Ar by a nonsingular matrix Fr ∈ K

L×L, Br by a nonsingular
matrix Gr ∈ K

M×M , and Cr by a nonsingular matrix Hr ∈ K
N×N , provided Dr is

replaced by Dr •1 F−1
r •2 G−1

r •3 H−1
r . We call the decomposition essentially unique

when it is subject only to these trivial indeterminacies. We can (partially) normalize
(2.11) by representing each term by its HOSVD. The decomposition is visualized in
Figure 2.2.

III

J J

J

K K

K

=
LL

M M
N N

T

D1 DR

+ . . .+

A1

B1

C1

AR

BR

CR

Fig. 2.2. Visualization of the decomposition of a tensor in a sum of rank-(L,M,N) terms.

Define D = blockdiag(D1, . . . ,DR). Equation (2.11) can now also be seen as the
multiplication of a block-diagonal core tensor D by means of factor matrices A, B,
and C:

(2.15) T = D •1 A •2 B •3 C.

This alternative interpretation of the decomposition is visualized in Figure 2.3. Two
representations (A,B,C,D) and (Ā, B̄, C̄, D̄) that are the same up to trivial indeter-
minacies are called essentially equal.

II

J

J

K

K

= L

M
N

T
D

. . .

...

...

. . .

A B

C

Fig. 2.3. Interpretation of decomposition (2.11) in terms of the multiplication of a block-diagonal
core tensor D by transformation matrices A, B, and C.

2.3. Type-2 decomposition in rank-(L, M, ·) terms.
Definition 2.4. A type-2 decomposition of a tensor T ∈ K

I×J×K in a sum of
rank-(L,M, ·) terms is a decomposition of T of the form

(2.16) T =

R∑
r=1

Cr •1 Ar •2 Br,
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in which Cr ∈ K
L×M×K (with mode-1 rank equal to L and mode-2 rank equal to M)

and in which Ar ∈ K
I×L (with I � L) and Br ∈ K

J×M (with J � M) are full column
rank, 1 � r � R.

Remark 2. The label “type 2” is reminiscent of the term “Tucker-2 decomposi-
tion.”

Remark 3. One could also consider a type-2 decomposition in rank-(Lr,Mr, ·)
terms, where the different terms possibly have different mode-1 and/or mode-2 rank.
In this paper we focus on the decomposition in rank-(L,M, ·) terms.

Define partitioned matrices A = [A1 . . .AR] and B = [B1 . . .BR]. In terms of
the standard matrix representations of T , (2.16) can be written as

TIJ×K = (A � B) ·

⎛
⎜⎝

(C1)(LM×K)

...
(CR)(LM×K)

⎞
⎟⎠ ,(2.17)

TJK×I = [(C1 •2 B1)JK×L . . . (CR •2 BR)JK×L] · AT ,(2.18)

TKI×J = [(C1 •1 A1)KI×M . . . (CR •1 AR)KI×M ] · BT .(2.19)

Define C ∈ K
LR×MR×K as an all-zero tensor, except for the entries given by

(C)(r−1)L+l,(r−1)M+m,k = (Cr)lmk ∀l,m, k, r.

Then (2.16) can also be written as

T = C •1 A •2 B.

It is clear that in (2.16) one can arbitrarily permute the different terms. Also, one
can postmultiply Ar by a nonsingular matrix Fr ∈ K

L×L and postmultiply Br by a
nonsingular matrix Gr ∈ K

M×M , provided Cr is replaced by Cr •1 (Fr)
−1 •2 (Gr)

−1.
We call the decomposition essentially unique when it is subject only to these triv-
ial indeterminacies. Two representations (A,B, C) and (Ā, B̄, C̄) that are the same
up to trivial indeterminacies are called essentially equal. We can (partially) normal-
ize (2.16) by representing each term by its normalized Tucker-2 decomposition. The
decomposition is visualized in Figure 2.4.

III

J J

J

KKK

=
LL

MM

T

C1 CR

+ . . .+

A1

B1

AR

BR

Fig. 2.4. Visualization of the type-2 decomposition of a tensor in a sum of rank-(L,M, ·) terms.

3. Basic lemmas. In this section we list a number of lemmas that we will use
in the analysis of the uniqueness of the block term decompositions.

Let ω(x) denote the number of nonzero entries of a vector x. The following lemma
was originally proposed by Kruskal in [38]. It is known as the permutation lemma.
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It plays a crucial role in the proof of (1.15). The proof was reformulated in terms of
accessible basic linear algebra in [54]. An alternative proof was given in [31]. The link
between the two proofs is also discussed in [54].

Lemma 3.1 (permutation lemma). Consider two matrices Ā, A ∈ K
I×R, that

have no zero columns. If for every vector x such that ω(xT Ā) � R− rĀ + 1, we have
ω(xTA) � ω(xT Ā), then there exists a unique permutation matrix Π and a unique
nonsingular diagonal matrix Λ such that Ā = A · Π · Λ.

In [19] we have introduced a generalization of the permutation lemma to parti-
tioned matrices. Let us first introduce some additional prerequisites. Let ω′(x) denote
the number of parts of a partitioned vector x that are not all-zero. We call the parti-
tioning of a partitioned matrix A uniform when all submatrices are of the same size.
Finally, we generalize the k-rank concept to partitioned matrices [19].

Definition 3.2. The k’-rank of a (not necessarily uniformly) partitioned matrix
A, denoted by rankk′(A) or k′A, is the maximal number r such that any set of r
submatrices of A yields a set of linearly independent columns.

Let A ∈ K
I×LR be uniformly partitioned in R matrices Ar ∈ K

I×L. Generically,
we have k′A = min(
 I

L�, R).

We are now in a position to formulate the lemma that generalizes the permutation
lemma.

Lemma 3.3 (equivalence lemma for partitioned matrices). Consider Ā, A ∈
K

I×∑R
r=1 Lr , partitioned in the same but not necessarily uniform way into R subma-

trices that are full column rank. Suppose that for every μ � R − k′Ā + 1 there holds
that for a generic1 vector x such that ω′(xT Ā) � μ, we have ω′(xTA) � ω′(xT Ā).
Then there exists a unique block-permutation matrix Π and a unique nonsingular
block-diagonal matrix Λ, such that Ā = A · Π · Λ, where the block-transformation is
compatible with the block-structure of A and Ā.

(Compared to the presentation in [19] we have dropped the irrelevant complex
conjugation of x.)

We note that the rank rĀ in the permutation lemma has been replaced by the k’-
rank k′Ā in Lemma 3.3. The reason is that the permutation lemma admits a simpler
proof when we can assume that rĀ = kĀ. It is this simpler proof, given in [31], that
is generalized in [19].

The following lemma gives a lower-bound on the k’-rank of a Khatri–Rao product
of partitioned matrices [19].

Lemma 3.4. Consider partitioned matrices A = [A1 . . . AR] with Ar ∈ K
I×Lr ,

1 � r � R, and B = [B1 . . . BR] with Br ∈ K
J×Mr , 1 � r � R.

(i) If k′A = 0 or k′B = 0, then k′A�B = 0.
(ii) If k′A � 1 and k′B � 1, then k′A�B � min(k′A + k′B − 1, R).

Finally, we have a lemma that says that a Khatri–Rao product of partitioned
matrices is generically full column rank [19].

1We mean the following. Consider, for instance, a partitioned matrix Ā = [a1 a2|a3 a4] ∈ K
4×4

that is full column rank. The set S = {x|ω′(xT Ā) � 1} is the union of two subspaces, S1 and
S2, consisting of the set of vectors orthogonal to {a1,a2} and {a3,a4}, respectively. When we say
that for a generic vector x such that ω′(xT Ā) � 1, we have ω′(xTA) � ω′(xT Ā), we mean that
ω′(xTA) � ω′(xT Ā) holds with probability one for a vector x drawn from a continuous probability
density function over S1 and that ω′(xTA) � ω′(xT Ā) also holds with probability one for a vector x
drawn from a continuous probability density function over S2. In general, the set S = {x|ω′(xT Ā) �
μ} consists of a finite union of subspaces, where we count only the subspaces that are not contained
in an other subspace. For each of these subspaces, the property should hold with probability one for
a vector x drawn from a continuous probability density function over that subspace.
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Lemma 3.5. Consider partitioned matrices A = [A1 . . . AR] with Ar ∈ K
I×Lr ,

1 � r � R, and B = [B1 . . . BR] with Br ∈ K
J×Mr , 1 � r � R. Generically we have

that rank(A � B) = min(IJ,
∑R

r=1 LrMr).

4. The decomposition in rank-(Lr, Lr, 1) terms. In this section we derive
several conditions under which essential uniqueness of the decomposition in rank-
(L,L, 1) or rank-(Lr, Lr, 1) terms is guaranteed. We use the notation introduced in
section 2.1.

For decompositions in generic rank-(L,L, 1) terms, the results of this section can
be summarized as follows. We have essential uniqueness if

(i) Theorem 4.1:

(4.1) min(I, J) � LR and C does not have proportional columns;

(ii) Theorem 4.4:

(4.2) K � R and min

(⌊
I

L

⌋
, R

)
+ min

(⌊
J

L

⌋
, R

)
� R + 2;

(iii) Theorem 4.5:

(4.3) I � LR and min

(⌊
J

L

⌋
, R

)
+ min(K,R) � R + 2

or

(4.4) J � LR and min

(⌊
I

L

⌋
, R

)
+ min(K,R) � R + 2;

(iv) Theorem 4.7:

(4.5)

⌊
IJ

L2

⌋
� R and min

(⌊
I

L

⌋
, R

)
+ min

(⌊
J

L

⌋
, R

)
+ min(K,R) � 2R + 2.

First we mention a result of which the first version appeared, in a slightly different
form, in [52]. The proof describes a procedure by which, under the given conditions, the
components of the decomposition may be computed. This procedure is a generalization
of the computation of PARAFAC from the generalized eigenvectors of the pencil
(TT

I×J,1,T
T
I×J,2), as explained in [20, section 1.4].

Theorem 4.1. Let (A,B,C) represent a decomposition of T in rank-(Lr, Lr, 1)
terms, 1 � r � R. Suppose that A and B are full column rank and that C does not
have proportional columns. Then (A,B,C) is essentially unique.

Proof. Assume that c21, . . . , c2R are different from zero and that c11/c21, . . . ,
c1R/c2R are mutually different. (If this is not the case, consider linear combinations
of matrix slices in the reasoning below.) From (2.9) we have

TI×J,1 = A · blockdiag(c11IL1×L1 , . . . , c1RILR×LR
) · BT ,(4.6)

TI×J,2 = A · blockdiag(c21IL1×L1 , . . . , c2RILR×LR
) · BT .(4.7)

This means that the columns of (AT )† are generalized eigenvectors of the pencil
(TT

I×J,1,T
T
I×J,2) [4, 22]. The columns of the rth submatrix of A are associated with

the same generalized eigenvalue c1r/c2r and can therefore not be separated, 1 � r �
R. This is consistent with the indeterminacies of the decomposition. On the other
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hand, the different submatrices of A can be separated, as they correspond to different
generalized eigenvalues. After computation of a possible matrix A, the corresponding
matrix B can be computed, up to scaling of its submatrices, from (4.7):

(A† · TI×J,2)
T = B · blockdiag(c21IL1×L1

, . . . , c2RILR×LR
).

Matrix C finally follows from (2.4):

C =
{
[(A1 �c B1)1L1

. . . (AR �c BR)1LR
]† · TIJ×K

}T
.

Next, we derive generalizations of Kruskal’s condition (1.15) under which essential
uniqueness of A, or B, or C is guaranteed. Lemma 4.2 concerns essential uniqueness
of C. In its proof, we assume that the partitioning of A and B is uniform. Hence,
the lemma applies only to the decomposition in rank-(L,L, 1) terms. Lemma 4.3
concerns essential uniqueness of A and/or B. This lemma applies more generally to
the decomposition in rank-(Lr, Lr, 1) terms. Later in this section, essential uniqueness
of the decomposition of T will be inferred from essential uniqueness of one or more
of the matrices A, B, C.

Lemma 4.2. Let (A,B,C) represent a decomposition of T in R rank-(L,L, 1)
terms. Suppose the condition

(4.8) k′A + k′B + kC � 2R + 2

holds and that we have an alternative decomposition of T , represented by (Ā, B̄, C̄).
Then there holds C̄ = C · Πc · Λc, in which Πc is a permutation matrix and Λc a
nonsingular diagonal matrix.

Proof. We work in analogy with [54]. Equality of C and C̄, up to column per-
mutation and scaling, follows from the permutation lemma if we can prove that for
any x such that ω(xT C̄) � R− rC̄ + 1, there holds ω(xTC) � ω(xT C̄). This proof is
structured as follows. First, we derive an upper-bound on ω(xT C̄). Then we derive a
lower-bound on ω(xT C̄). Combination of the two bounds yields the desired result.

(i) Derivation of an upper-bound on ω(xT C̄). From (2.9) we have that
vec(TT

I×J,k) = [(A1 �c B1)1L . . . (AR �c BR)1L] · [ck1 . . . ckR]T . Consider the linear

combination of (I × J) slices
∑K

k=1 xkTI×J,k. Since (A,B,C) and (Ā, B̄, C̄) both
represent a decomposition of T , we have

[(A1 �c B1)1L . . . (AR �c BR)1L] · CTx

= [(Ā1 �c B̄1)1L . . . (ĀR �c B̄R)1L] · C̄Tx.

By Lemma 3.4, the matrix A�B has full column rank. The matrix [(A1�cB1)1L . . .
(AR�c BR)1L] is equal to (A�B) · [vec(IL×L)T . . . vec(IL×L)T ]T and thus also has
full column rank. This implies that if ω(xT C̄) = 0, then also ω(xTC) = 0. Hence,
null(C̄) ⊆ null(C). Basic matrix algebra yields span(C) ⊆ span(C̄) and rC � rC̄.
This implies that if ω(xT C̄) � R− rC̄ + 1, then

(4.9) ω(xT C̄) � R− rC̄ + 1 � R− rC + 1 � R− kC + 1 � k′A + k′B − (R + 1),

where the last inequality corresponds to condition (4.8).
(ii) Derivation of a lower-bound on ω(xT C̄). By (2.9), the linear combination

of (I × J) slices
∑K

k=1 xkTI×J,k is given by

A · blockdiag(xT c1IL×L, . . . ,x
T cRIL×L) · BT

= Ā · blockdiag(xT c̄1IL×L, . . . ,x
T c̄RIL×L) · B̄T .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1046 LIEVEN DE LATHAUWER

We have

Lω(xT C̄) = rblockdiag(xT c̄1IL×L,...,xT c̄RIL×L)

� rĀ·blockdiag(xT c̄1IL×L,...,xT c̄RIL×L)·B̄T

= rA·blockdiag(xT c1IL×L,...,xT cRIL×L)·BT .(4.10)

Let γ = ω(xTC) and let Ã and B̃ consist of the submatrices of A and B, respectively,
corresponding to the nonzero elements of xTC. Then Ã and B̃ both have γL columns.
Let u be the (γ × 1) vector containing the nonzero elements of xTC such that

A·blockdiag(xT c1IL×L, . . . ,x
T cRIL×L)·BT = Ã·blockdiag(u1IL×L, . . . , uγIL×L)·B̃T .

Sylvester’s inequality now yields

rA·blockdiag(xT c1IL×L,...,xT cRIL×L)·BT = rÃ·blockdiag(u1IL×L,...,uγIL×L)·B̃T

� rÃ + rblockdiag(u1IL×L,...,uγIL×L)·B̃T − γL

= rÃ + rB̃ − γL,(4.11)

where the last equality is due to the fact that u has no zero elements. From the
definition of k′-rank, we have

(4.12) rÃ � Lmin(γ, k′A), rB̃ � Lmin(γ, k′B).

Combination of (4.10)–(4.12) yields the following lower-bound on ω(xT C̄):

(4.13) ω(xT C̄) � min(γ, k′A) + min(γ, k′B) − γ.

(iii) Combination of the two bounds. Combination of (4.9) and (4.13) yields

(4.14) min(γ, k′A) + min(γ, k′B) − γ � ω(xT C̄) � k′A + k′B − (R + 1).

To be able to apply the permutation lemma, we need to show that γ = ω(xTC) �
ω(xT C̄). By (4.14), it suffices to show that γ < min(k′A, k′B). We prove this by
contradiction. Suppose γ > max(k′A, k′B). Then (4.14) yields γ � R + 1, which is
impossible. Suppose next that k′A � γ � k′B. Then (4.14) yields k′B � R+ 1, which
is also impossible. Since A and B can be exchanged in the latter case, we have that
γ < min(k′A, k′B). Equation (4.14) now implies that ω(xTC) � ω(xT C̄). By the
permutation lemma, there exist a unique permutation matrix Πc and a nonsingular
diagonal matrix Λc such that C̄ = C · Πc · Λc.

In the following lemma, we prove essential uniqueness of A and B when we restrict
our attention to alternative Ā and B̄ that are, in some sense, “nonsingular.” What we
mean is that there are no linear dependencies between columns that are not imposed
by the dimensionality constraints.

Lemma 4.3. Let (A,B,C) represent a decomposition of T in rank-(Lr, Lr, 1)
terms, 1 � r � R. Suppose the condition

(4.15) k′A + k′B + kC � 2R + 2

holds and that we have an alternative decomposition of T , represented by (Ā, B̄, C̄),
with k′Ā and k′B̄ maximal under the given dimensionality constraints. Then there
holds Ā = A · Πa · Λa, in which Πa is a block permutation matrix and Λa a square
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nonsingular block-diagonal matrix, compatible with the block structure of A. There
also holds B̄ = B · Πb · Λb, in which Πb is a block permutation matrix and Λb a
square nonsingular block-diagonal matrix, compatible with the block structure of B.

Proof. It suffices to prove the lemma for A. The result for B can be obtained
by switching modes. We work in analogy with the proof of Lemma 4.2. Essential
uniqueness of A now follows from the equivalence lemma for partitioned matrices.

(i) Derivation of an upper-bound on ω′(xT Ā). The constraint on k′Ā implies
that k′Ā � k′A. Hence, if ω′(xT Ā) � R− k′Ā + 1, then

(4.16) ω′(xT Ā) � R− k′Ā + 1 � R− k′A + 1 � k′B + kC − (R + 1),

where the last inequality corresponds to condition (4.15).
(ii) Derivation of a lower-bound on ω′(xT Ā). By (2.7), the linear combination

of (J ×K) slices
∑I

i=1 xiTJ×K,i is given by

B · blockdiag(AT
1 x, . . . ,AT

Rx) · CT = B̄ · blockdiag(ĀT
1 x, . . . , ĀT

Rx) · C̄T .

We have

ω′(xT Ā) = rblockdiag(ĀT
1 x,...,ĀT

Rx)

� rB̄·blockdiag(ĀT
1 x,...,ĀT

Rx)·C̄T

= rB·blockdiag(AT
1 x,...,AT

Rx)·CT .(4.17)

Let γ = ω′(xTA) and let B̃ and C̃ consist of the submatrices of B·blockdiag(AT
1 x, . . . ,

AT
Rx) and C, respectively, corresponding to the parts of xTA that are not all-zero.

Then B̃ and C̃ both have γ columns. Sylvester’s inequality now yields

(4.18) rB·blockdiag(AT
1 x,...,AT

Rx)·CT � rB̃ + rC̃ − γ.

The matrix B̃ consists of γ nonzero vectors, sampled in the column spaces of the
submatrices of B that correspond to the parts of xTA that are not all-zero. From the
definition of k′-rank, we have

(4.19) rB̃ � min(γ, k′B).

On the other hand, from the definition of k-rank, we have

(4.20) rC̃ � min(γ, kC).

Combination of (4.17)–(4.20) yields the following lower-bound on ω′(xT Ā):

(4.21) ω′(xT Ā) � min(γ, k′B) + min(γ, kC) − γ.

(iii) Combination of the two bounds. This is analogous to Lemma 4.2.

We now use Lemmas 4.2 and 4.3, which concern the essential uniqueness of the
individual matrices A, B, and C, to establish essential uniqueness of the overall
decomposition of T . Theorem 4.4 states that if C is full column rank and tall (meaning
that R � K), then its essential uniqueness implies essential uniqueness of the overall
tensor decomposition. Theorem 4.5 is the equivalent for A (or B). However, none of
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the factor matrices needs to be tall for the decomposition to be unique. A more general
case is dealt with in Theorem 4.7. Its proof makes use of Lemma 4.6, guaranteeing that
under a generalized Kruskal condition, A and B not only are individually essentially
unique but, moreover, are subject to the same permutation of their submatrices.

We first consider essential uniqueness of a tall full column rank matrix C.
Theorem 4.4. Let (A,B,C) represent a decomposition of T in R rank-(L,L, 1)

terms. Suppose that we have an alternative decomposition of T , represented by (Ā, B̄,
C̄). If

(4.22) kC = R and k′A + k′B � R + 2,

then (A,B,C) and (Ā, B̄, C̄) are essentially equal.
Proof. From (2.4) we have

TIJ×K = [(A1 �c B1)1L . . . (AR �c BR)1L] · CT

= [(Ā1 �c B̄1)1L . . . (ĀR �c B̄R)1L] · C̄T .(4.23)

From Lemma 4.2 we have

(4.24) C̄ = C · Πc · Λc.

Since kC = R, C is full column rank. Substitution of (4.24) in (4.23) now yields

[(A1 �c B1)1L . . . (AR �c BR)1L]

= [(Ā1 �c B̄1)1L . . . (ĀR �c B̄R)1L] · ΛT
c · ΠT

c .(4.25)

Taking into account that (Ār�cB̄r)1L is a vector representation of the matrix Ār ·B̄T
r ,

1 � r � R, this implies that the matrices Ār · B̄T
r are ordered in the same way as

the vectors c̄r. Furthermore, if c̄i = λcj , then (Āi �c B̄i)1L = λ−1(Aj �c Bj)1L, or,
equivalently, Āi · B̄T

i = λ−1Aj · BT
j .

We now consider essential uniqueness of a tall full column rank matrix A or B.
Theorem 4.5. Let (A,B,C) represent a decomposition of T in rank-(Lr, Lr, 1)

terms, 1 � r � R. Suppose that we have an alternative decomposition of T , represented
by (Ā, B̄, C̄), with k′Ā and k′B̄ maximal under the given dimensionality constraints.
If

(4.26) k′A = R and k′B + kC � R + 2

or

(4.27) k′B = R and k′A + kC � R + 2,

then (A,B,C) and (Ā, B̄, C̄) are essentially equal.
Proof. It suffices to prove the theorem for condition (4.26). The result for (4.27)

is obtained by switching modes.
From (2.5) we have

(4.28) TJK×I = (B � C) · AT = (B̄ � C̄) · ĀT .

From Lemma 4.3 we have

(4.29) Ā = A · Πa · Λa.
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Since k′A = R, A is full column rank. Substitution of (4.29) in (4.28) now yields

(4.30) B � C = (B̄ � C̄) · ΛT
a · ΠT

a .

This implies that the matrices B̄r ⊗ c̄r are ordered in the same way as the matrices
Ār. Furthermore, if Āi = Aj ·L, with L nonsingular, then B̄i ⊗ c̄i = (Bj ⊗ cj) ·L−T ,
or, equivalently, B̄i ◦ c̄i = (Bj · L−T ) ◦ cj .

We now prove that under a generalized Kruskal condition, the submatrices of Ā
and B̄ in an alternative decomposition of T are ordered in the same way.

Lemma 4.6. Let (A,B,C) represent a decomposition of T into rank-(Lr, Lr, 1)
terms, 1 � r � R. Suppose that we have an alternative decomposition of T , represented
by (Ā, B̄, C̄), with k′Ā and k′B̄ maximal under the given dimensionality constraints.
If the condition

(4.31) k′A + k′B + kC � 2R + 2

holds, then Ā = A · Π · Λa and B̄ = B · Π · Λb, in which Π is a block permutation
matrix and Λa and Λb nonsingular block-diagonal matrices, compatible with the block
structure of A and B.

Proof. From Lemma 4.3 we know that Ā = A ·Πa ·Λa and B̄ = B ·Πb ·Λb. We
show that Πa = Πb if (4.31) holds. We work in analogy with [38, pp. 129–132] and
[54].

From (2.9) we have

TI×J,k = A · blockdiag(ck1IL1×L1 , . . . , ckRILR×LR
) · BT

= Ā · blockdiag(c̄k1IL1×L1 , . . . , c̄kRILR×LR
) · B̄T .

For vectors v and w we have

(vTA) · blockdiag(ck1IL1×L1 , . . . , ckRILR×LR
) · (wTB)T

= (vT Ā) · blockdiag(c̄k1IL1×L1
, . . . , c̄kRILR×LR

) · (wT B̄)T

= (vTAΠa) · Λa · blockdiag(c̄k1IL1×L1
, . . . , c̄kRILR×LR

) · ΛT
b · (wTBΠb)

T .

(4.32)

We stack (4.32), for k = 1, . . . ,K, in

C · blockdiag(vTA) · blockdiag(BTw) ·

⎛
⎜⎝

1
...
1

⎞
⎟⎠

= C̄ · blockdiag(vTAΠa) · Λa · ΛT
b · blockdiag(ΠT

b BTw) ·

⎛
⎜⎝

1
...
1

⎞
⎟⎠ .(4.33)

We define

p = blockdiag(vTA) · blockdiag(BTw) ·

⎛
⎜⎝

1
...
1

⎞
⎟⎠ =

⎛
⎜⎝

vTA1 · BT
1 w

...
vTAR · BT

Rw

⎞
⎟⎠ .
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Let the index function g(x) be given by AΠa =
(
Ag(1) Ag(2) . . . Ag(R)

)
. Let a second

index function h(x) be given by BΠb =
(
Bh(1) Bh(2) . . . Bh(R)

)
. We define

q = blockdiag(vTAΠa) · Λa · ΛT
b · blockdiag(ΠT

b BTw) ·

⎛
⎜⎝

1
...
1

⎞
⎟⎠

=

⎛
⎜⎝

vTAg(1) · Λa,1 · ΛT
b,1 · BT

h(1)w
...

vTAg(R) · Λa,R · ΛT
b,R · BT

h(R)w

⎞
⎟⎠ ,

where Λa,r and Λb,r denote the rth block of Λa and Λb, respectively.
Equation (4.33) can now be written as C · p = C̄ · q. Below we show by contra-

diction that Πa = Πb if (4.31) holds. If Πa = Πb, then we will be able to find vectors
v and w such that q = 0 and p = 0 has less than kC nonzero elements. This implies
that a set of less than kC columns of C is linearly dependent, which contradicts the
definition of kC.

Suppose that Πa = Πb. Then there exists an r such that Ar is the sth submatrix
of AΠa, Br is the tth submatrix of BΠb, and s = t. Formally, there exists an r such
that r = g(s) = h(t) and s = t. We now create two index sets S,T ⊂ {1, . . . , R} as
follows:

• Put g(t) in S and h(s) in T.
• For x ∈ {1, . . . , R}\{s, t}, add g(x) to S if card(S) < k′A−1. Otherwise, add
h(x) to T.

The sets S and T have the following properties. Since k′A−1 � R−1, S contains exactly
k′A − 1 elements. The set T contains R− card(S) = R− k′A + 1 elements. Because of
(4.31) and kC � R, this is less than or equal to k′B − 1 elements. In the xth element
of q we have either g(x) ∈ S or h(x) ∈ T, x = 1, . . . , R. The index r = g(s) = h(t)
is neither an element of S nor an element of T. Denote {i1, i2, . . . , ik′

A−1} = S and
{j1, j2, . . . , jR−k′

A+1} = T.
We choose vectors v and w such that vTAi = 0 if i ∈ S, wTBj = 0 if

j ∈ T and vTArB
T
r w = 0. This is possible for the following reasons. By the def-

inition of k′A, [Ai1 . . . Aik′
A−1

Ar] is full column rank. We have to choose v in

null([Ai1 . . . Aik′
A−1

]). The projection of this subspace on span(Ar) is of dimension

Lr. By varying v in null([Ai1 . . . Aik′
A−1

]), vTAr can be made equal to any vector

in K
1×Lr . For instance, we can choose v such that vTAr = (1 0 . . . 0). Similarly, we

can choose a vector w in null([Bj1 . . . BjR−k′
A+1

]) satisfying wTBr = (1 0 . . . 0).
For the vectors v and w above, we have q = 0. On the other hand, the rth

element of p is nonzero. Define Sc = {1, . . . , R} \ S and Tc = {1, . . . , R} \ T. The
number of nonzero entries of p is bounded from above by

card(Sc ∩ Tc) � card(Sc) � R− k′A + 1 � kC − 1,

where the last inequality is due to (4.31) and k′B � R. Hence, C · p = 0 implies
that a set of less than kC columns of C is linearly dependent, which contradicts the
definition of kC. This completes the proof.

Theorem 4.7. Let (A,B,C) represent a decomposition of T in generic rank-
(Lr, Lr, 1) terms, 1 � r � R. Suppose that we have an alternative decomposition of
T , represented by (Ā, B̄, C̄), with k′Ā and k′B̄ maximal under the given dimensionality
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constraints. If the conditions

IJ �
R∑

r=1

L2
r,(4.34)

k′A + k′B + kC � 2R + 2(4.35)

hold, then (A,B,C) and (Ā, B̄, C̄) are essentially equal.
Proof. From Lemma 4.6 we have that Ā = A · Π · Λa and B̄ = B · Π · Λb. Put

the submatrices of Ā and B̄ in the same order as the submatrices of A and B. After
reordering, we have Ā = A·Λa, with Λa = blockdiag(Λa,1, . . . ,Λa,R), and B̄ = B·Λb,
with Λb = blockdiag(Λb,1, . . . ,Λb,R). From (2.4) we have that

TIJ×K = (A �c B) · blockdiag(1L1
, . . . ,1LR

) · CT

= (A � B) · blockdiag(vec(IL1×L1), . . . , vec(ILR×LR
)) · CT

= (Ā � B̄) · blockdiag(vec(IL1×L1), . . . , vec(ILR×LR
)) · C̄T

= (A � B) · blockdiag(vec(Λa,1 · ΛT
b,1), . . . , vec(Λa,R · ΛT

b,R)) · C̄T .(4.36)

From [19, Lemma 3.3] we have that, under condition (4.34), A�B is generically full
column rank. Equation (4.36) then implies that there exist nonzero scalars αr such
that Λa,r ·ΛT

b,r = αr ILr×Lr
(i.e., Λa,r = αr Λ−T

b,r ) and cr = αrc̄r, 1 � r � R. In other

words, (A,B,C) and (Ā, B̄, C̄) are equal up to trivial indeterminacies.

5. The decomposition in rank-(L, M, N) terms. In this section we study
the uniqueness of the decomposition in rank-(L,M,N) terms. We use the notation in-
troduced in section 2.2. Section 5.1 concerns uniqueness of the general decomposition.
In section 5.2 we have a closer look at the special case of rank-(2, 2, 2) terms.

5.1. General results. In this section we follow the same structure as in section
4:

Theorem 5.1 corresponds to Theorem 4.1
Lemma 5.2 Lemma 4.3
Theorem 5.3 Theorem 4.5
Lemma 5.4 Lemma 4.6
Theorem 5.5 Theorem 4.7.

For decompositions in generic rank-(L,M,N) terms, the results of this section
can be summarized as follows. We have essential uniqueness if

(i) Theorem 5.1:

L = M and I � LR and J � MR and N � 3

and Cr is full column rank, 1 � r � R;(5.1)

(ii) Theorem 5.3:
(5.2)

I � LR and N > L + M − 2 and min

(⌊
J

M

⌋
, R

)
+ min

(⌊
K

N

⌋
, R

)
� R + 2;

or

J � MR and N > L + M − 2 and min

(⌊
I

L

⌋
, R

)
+ min

(⌊
K

N

⌋
, R

)
� R + 2.

(5.3)
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(iii) Theorem 5.5:

N > L + M − 2 and min

(⌊
I

L

⌋
, R

)
+ min

(⌊
J

M

⌋
, R

)
(5.4)

+ min

(⌊
K

N

⌋
, R

)
� 2R + 2.

First we have a uniqueness result that stems from the fact that the column spaces
of Ar, 1 � r � R, are invariant subspaces of quotients of tensor slices.

Theorem 5.1. Let (A,B,C,D) represent a decomposition of T ∈ K
I×J×K in R

rank-(L,L,N) terms. Suppose that rank(A) = LR, rank(B) = LR, rankk′(C) � 1,
N � 3, and that D is generic. Then (A,B,C,D) is essentially unique.

Proof. From Theorem 6.1 below we have that under the conditions specified in
Theorem 5.1, a decomposition in terms of the form Dr•1Ar•2Br is essentially unique.
Consequently, a decomposition in terms of the form Dr •1 Ar •2 Br •3 C is essentially
unique if C is full column rank. A fortiori, reasoning as in the proof of Theorem 6.1,
a decomposition in terms of the form Dr •1 Ar •2 Br •3 Cr, in which the matrices
Cr are possibly different, is essentially unique if these matrices Cr are full column
rank.

Remark 4. The generalization to the decomposition in rank-(Lr, Lr, Nr) terms,
1 � r � R, is trivial.

Remark 5. In the nongeneric case, lack of uniqueness can be due to the fact that
tensors Dr can be further block-diagonalized by means of basis transformations in
their mode-1, mode-2, and mode-3 vector space. We give an example.

Example 1. Assume a tensor T ∈ K
12×12×12 that can be decomposed in three

rank-(4, 4, 4) terms as follows:

T =
3∑

r=1

Dr •1 Ar •2 Br •3 Cr

with Dr ∈ K
4×4×4, Ar,Br,Cr ∈ K

12×4, 1 � r � 3. Now assume that D1, D2, and D3

can be further decomposed as follows:

D1 = u1 ◦ v1 ◦ w1 + u2 ◦ v2 ◦ w2 + H1 •1 E1 •2 F1 •3 G1,

D2 = u3 ◦ v3 ◦ w3 + H2 •1 E2 •2 F2 •3 G2,

D3 = u4 ◦ v4 ◦ w4 + H3 •1 E3 •2 F3 •3 G3,

where us,vs,ws ∈ K
4, 1 � s � 4, E1,F1,G1 ∈ K

4×2, E2,E3,F2,F3,G2,G3 ∈ K
4×3,

H1 ∈ K
2×2×2, H2,H3 ∈ K

3×3×3. Then we have the following alternative decomposi-
tion in three rank-(4, 4, 4) terms:

T = [(A2u3) ◦ (B2v3) ◦ (C2w3) + (A3u4) ◦ (B3v4) ◦ (C3w4)

+ H1 •1 (A1E1) •2 (B1F1) •3 (C1G1)]

+ [(A1u1) ◦ (B1v1) ◦ (C1w1) + H2 •1 (A2E2) •2 (B2F2) •3 (C2G2)]

+ [(A1u2) ◦ (B1v2) ◦ (C1w2) + H3 •1 (A3E3) •2 (B3F3) •3 (C3G3)] .

We now prove essential uniqueness of A and B under a constraint on the block
dimensions and a Kruskal-type condition.
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Lemma 5.2. Let (A,B,C,D) represent a decomposition of T in R rank-(L,M,N)
terms. Suppose that the conditions

N > L + M − 2,(5.5)

k′A + k′B + k′C � 2R + 2(5.6)

hold and that we have an alternative decomposition of T , represented by (Ā, B̄, C̄, D̄),
with k′Ā and k′B̄ maximal under the given dimensionality constraints. For generic D
there holds that Ā = A ·Πa ·Λa, in which Πa is a block permutation matrix and Λa a
square nonsingular block-diagonal matrix, compatible with the structure of A. There
also holds B̄ = B ·Πb ·Λb, in which Πb is a block permutation matrix and Λb a square
nonsingular block-diagonal matrix, compatible with the structure of B.

Proof. It suffices to prove the lemma for A. The result for B can be obtained by
switching modes. We work in analogy with [54] and the proof of Lemma 4.2 and 4.3.
We use the equivalence lemma for partitioned matrices to prove essential uniqueness
of A.

(i) Derivation of an upper-bound on ω′(xT Ā). The constraint on k′Ā implies
that k′Ā � k′A. Hence, if ω′(xT Ā) � R− k′Ā + 1, then

(5.7) ω′(xT Ā) � R− k′Ā + 1 � R− k′A + 1 � k′B + kC − (R + 1),

where the last inequality corresponds to condition (5.6).
(ii) Derivation of a lower-bound on ω′(xT Ā). Consider Dr •1 (xTAr) and D̄r •1

(xT Ār), 1 � r � R, as (M × N) matrices. Then the linear combination of slices∑I
i=1 xiTJ×K,i is given by

B · blockdiag[D1 •1 (xTA1), . . . ,DR •1 (xTAR)] · CT

= B̄ · blockdiag[D̄1 •1 (xT Ā1), . . . , D̄R •1 (xT ĀR)] · C̄T .

Taking into account that N > M , we have

Mω′(xT Ā) � rblockdiag[D̄1•1(xT Ā1),...,D̄R•1(xT ĀR)]

� rB̄·blockdiag[D̄1•1(xT Ā1),...,D̄R•1(xT ĀR)]·C̄T

= rB·blockdiag[D1•1(xTA1),...,DR•1(xTAR)]·CT .(5.8)

Since the tensors Dr are generic, and because of condition (5.5), all the (M × N)
matrices Dr •1 (xTAr) are rank-M . (Rank deficiency would imply that N − M + 1
determinants are zero, while x provides only L − 1 independent parameters and an
irrelevant scaling factor.) Define (K×M) matrices Cr = Cr ·[Dr •1 (xTAr)]

T , 1 � r �
R. Let γ = ω′(xTA) and C = (C1 . . . CR). Let B̃ and C̃ consist of the submatrices
of B and C, respectively, corresponding to the parts of xTA that are not all-zero.
From (5.8) we have

(5.9) Mω′(xT Ā) � r
B̃·C̃T .

Both B̃ and C̃ have γM columns. Sylvester’s inequality now yields

(5.10) r
B̃·C̃T � rB̃ + rC̃ − γM.

From the definition of k′-rank, we have

(5.11) rB̃ � M min(γ, k′B).
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On the other hand, C̃ consists of γ (K ×M) submatrices, of which the columns are
sampled in the column space of the corresponding submatrix of C. From the definition
of k′-rank, we must have

(5.12) rC̃ � M min(γ, k′C).

Combination of (5.9)–(5.12) yields the following lower-bound on ω′(xT Ā):

(5.13) ω′(xT Ā) � min(γ, k′B) + min(γ, k′C) − γ.

(iii) Combination of the two bounds. This is analogous to Lemma 4.2.
If matrix A or B is tall and full column rank, then its essential uniqueness implies

essential uniqueness of the overall tensor decomposition.
Theorem 5.3. Let (A,B,C,D) represent a decomposition of T in R rank-

(L,M,N) terms, with N > L + M − 2. Suppose that we have an alternative de-
composition of T , represented by (Ā, B̄, C̄, D̄), with k′Ā and k′B̄ maximal under the
given dimensionality constraints. For generic D there holds that if

(5.14) k′A = R and k′B + k′C � R + 2

or

(5.15) k′B = R and k′A + k′C � R + 2,

then (A,B,C,D) and (Ā, B̄, C̄, D̄) are essentially equal.
Proof. It suffices to prove the theorem for A. The result for B is obtained by

switching modes. From (2.12) we have

TJK×I = (B � C) · blockdiag((D1)MN×L, . . . , (DR)MN×L) · AT

= (B̄ � C̄) · blockdiag((D̄1)MN×L, . . . , (D̄R)MN×L) · ĀT .(5.16)

From Lemma 5.2 we have

(5.17) Ā = A · Πa · Λa.

Since k′A = R, A is full column rank. Substitution of (5.17) in (5.16) now yields

(B � C) · blockdiag((D1)MN×L, . . . , (DR)MN×L)

= (B̄ � C̄) · blockdiag((D̄1)MN×L, . . . , (D̄R)MN×L) · ΛT
a · ΠT

a .(5.18)

This implies that the matrices (B̄r ⊗ C̄r) · (D̄r)MN×L are permuted in the same
way with respect to (Br ⊗ Cr) · (Dr)MN×L as the matrices Ār with respect to Ar.
Furthermore, if Āi = Aj ·F, then (B̄i⊗C̄i) · (D̄i)MN×L ·FT = (Bj⊗Cj) · (Dj)MN×L.
Equivalently, we have D̄i •2 B̄i •3 C̄i = Dj •1 F−1 •2 Bj •3 Cj .

We now prove that under conditions (5.5) and (5.6), the submatrices of Ā and B̄
in an alternative decomposition of T are ordered in the same way.

Lemma 5.4. Let (A,B,C,D) represent a decomposition of T in R rank-(L,M,N)
terms. Suppose that we have an alternative decomposition of T , represented by (Ā, B̄,
C̄, D̄), with k′Ā and k′B̄ maximal under the given dimensionality constraints. For
generic D there holds that if conditions (5.5) and (5.6) hold, then Ā = A ·Π ·Λa and
B̄ = B · Π · Λb, in which Π is a block permutation matrix and Λa and Λb square
nonsingular block-diagonal matrices, compatible with the block structure of A and B.
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Proof. From Lemma 5.2 we know that Ā = A · Πa · Λa and B̄ = B · Πb · Λb.
We show that Πa = Πb if (5.5) and (5.6) hold. We work in analogy with [38, pp.
129–132], [54], and the proof of Lemma 4.6.

Since both (A,B,C,D) and (Ā, B̄, C̄, D̄) represent a decomposition of T , we have
for vectors v and w,

T •1 vT •2 wT =

R∑
r=1

Dr •1 (vTAr) •2 (wTBr) •3 Cr

=

R∑
r=1

D̄r •1 (vT Ār) •2 (wT B̄r) •3 C̄r.(5.19)

Let the index functions g(x) and h(x) be given by AΠa =
(
Ag(1) Ag(2) . . . Ag(R)

)
and BΠb =

(
Bh(1) Bh(2) . . . Bh(R)

)
, respectively. Then (5.19) can be written as

(5.20) C · p = C̄ · q,

in which p and q are defined by

p =

⎛
⎜⎝

(D1)N×LM · [(AT
1 v) ⊗ (BT

1 w)]
...

(DR)N×LM · [(AT
Rv) ⊗ (BT

Rw)]

⎞
⎟⎠ ,

q =

⎛
⎜⎝

(D̄1)N×LM · [(ΛT
a,1Ā

T
g(1)v) ⊗ (ΛT

b,1B̄
T
h(1)w)]

...
(D̄R)N×LM · [(ΛT

a,RĀT
g(R)v) ⊗ (ΛT

b,RB̄T
h(R)w)]

⎞
⎟⎠ ,

where Λa,r and Λb,r denote the rth block of Λa and Λb, respectively.
We will now show by contradiction that Πa = Πb. If Πa = Πb, then we will be

able to find vectors v and w such that q = 0 and p = 0 has less than k′C nonzero
(N×1) subvectors. This implies that a set of less than k′C vectors, each sampled in the
column space of a different submatrix of C, is linearly dependent, which contradicts
the definition of k′C.

Suppose that Πa = Πb. Then there exists an r such that Ar is the sth submatrix
of AΠa, Br is the tth submatrix of BΠb, and s = t. Formally, there exists an r such
that r = g(s) = h(t) and s = t. We now create two index sets S,T ⊂ {1, . . . , R} in
the same way as in the proof of Lemma 4.6.

Since k′A − 1 � R − 1, S contains exactly k′A − 1 elements. The set T contains
R − card(S) = R − k′A + 1 elements. Because of (5.6) and k′C � R, this is less than
or equal to k′B − 1 elements. In the xth element of q we have either g(x) ∈ S or
h(x) ∈ T, x = 1, . . . , R. The index r = g(s) = h(t) is neither an element of S nor an
element of T. Denote {i1, i2, . . . , ik′

A−1} = S and {j1, j2, . . . , jR−k′
A+1} = T.

We choose a vector v such that vTAi = 0 if i ∈ S, and vTAr = 0. This is
always possible. The vector v has to be chosen in null([Ai1 . . . Aik′

A−1
]), which is

an (I − (k′A − 1)L)-dimensional space. If a column of Ar is orthogonal to all possible
vectors v, then it lies in span([Ai1 . . . Aik′

A−1
]). Then we would have a contradiction

with the definition of k′A. Similarly, we can choose a vector w such that wTBj = 0
if j ∈ T, and wTBr = 0.

Because of condition (5.5), the genericity of Dr, and the fact that vTAr = 0, the
(N×M) matrix Dr•1 (vTAr) is rank-M . Rank deficiency would imply that N−M+1
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determinants are zero, while vTAr provides only L− 1 parameters and an irrelevant
scaling factor. Since Dr •1 (vTAr) is full column rank, and since wTBr = 0, we have
Dr •1 (vTAr) •2 (wTBr) = 0. Equivalently, (Dr)N×LM · [(AT

r v) ⊗ (BT
r w)] = 0.

Define Sc = {1, . . . , R} \ S and Tc = {1, . . . , R} \ T. The number of nonzero
subvectors of p is bounded from above by

card(Sc ∩ Tc) � card(Sc) � R− k′A + 1 � k′C − 1,

where the last inequality is due to (5.6) and k′B � R. Hence, C · p = 0 implies
that a set of less than k′C columns, each sampled in the column space of a different
submatrix of C, is linearly dependent, which contradicts the definition of k′C. This
completes the proof.

Theorem 5.5. Let (A,B,C,D) represent a decomposition of T in R rank-
(L,M,N) terms. Suppose that we have an alternative decomposition of T , repre-
sented by (Ā, B̄, C̄, D̄), with k′Ā and k′B̄ maximal under the given dimensionality
constraints. For generic D there holds that, if conditions (5.5) and (5.6) hold, then
(A,B,C,D) and (Ā, B̄, C̄, D̄) are essentially equal.

Proof. From Lemma 5.4 we have that Ā = A · Π · Λa and B̄ = B · Π · Λb. Put
the submatrices of Ā and B̄ in the same order as the submatrices of A and B. After
reordering, we have Ā = A·Λa, with Λa = blockdiag(Λa,1, . . . ,Λa,R), and B̄ = B·Λb,
with Λb = blockdiag(Λb,1, . . . ,Λb,R). From (2.14) we have that

TIJ×K = (A � B) · blockdiag((D1)LM×N , . . . , (DR)LM×N ) · CT

= (Ā � B̄) · blockdiag((D̄1)LM×N , . . . , (D̄R)LM×N ) · C̄T

= (A � B) · blockdiag((Λa,1 ⊗ Λb,1) · (D̄1)LM×N , . . . ,

(Λa,R ⊗ Λb,R) · (D̄R)LM×N ) · C̄T .(5.21)

From Lemma 3.4 we have that k′A�B � min(k′A + k′B − 1, R). From (5.6) we have
that k′A + k′B − 1 � 2R + 1 − k′C � R + 1. Hence, k′A�B = R, which implies that
A � B is full column rank. Multiplying (5.21) from the left by (A � B)†, we obtain
that

(Λa,r ⊗ Λb,r) · (D̄r)LM×N · C̄T
r = (Dr)LM×N · CT

r , 1 � r � R.

This can be rewritten as

D̄r •1 Λa,r •2 Λb,r •3 C̄r = Dr •3 Cr, 1 � r � R.

This means that (A,B,C,D) and (Ā, B̄, C̄, D̄) are equal up to trivial
indeterminacies.

5.2. Rank-(2, 2, 2) blocks. In the Kruskal-type results of the previous section,
we have only considered rank-(L,M,N) terms for which N > L + M − 2. Rank-
(2, 2, 3) terms, for instance, satisfy this condition. However, it would also be interesting
to know whether the decomposition of a tensor in rank-(2, 2, 2) terms is essentially
unique. This special case is studied in this section.

A first result is that in C the decomposition of a tensor T in R � 2 rank-(2, 2, 2)
terms is not essentially unique. This is easy to understand. Assume, for instance, that
T is the sum of two rank-(2, 2, 2) terms T1 and T2. It is well known that in C the rank
of rank-(2, 2, 2) tensor is always equal to 2 [55]. Hence we have for some vectors ar,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DECOMPOSITIONS OF A HIGHER-ORDER TENSOR IN BLOCK TERMS—II 1057

br, cr, 1 � r � 4,

T = T1 + T2

= (a1 ◦ b1 ◦ c1 + a2 ◦ b2 ◦ c2) + (a3 ◦ b3 ◦ c3 + a4 ◦ b4 ◦ c4)

= (a1 ◦ b1 ◦ c1 + a3 ◦ b3 ◦ c3) + (a2 ◦ b2 ◦ c2 + a4 ◦ b4 ◦ c4)

= T̃1 + T̃2.

Since T̃1 and T̃2 yield an other decomposition, the decomposition of T in 2 rank-
(2, 2, 2) terms is not essentially unique.

Theorem 5.5 does not hold in the case of rank-(2, 2, 2) terms because Lemma 5.2
does not hold. The problem is that in (5.8) the (2 × 2) matrices Dr ×1 (xTAr) are
not necessarily rank-2. Indeed, let λ be a generalized eigenvalue of the pencil formed
by the (2× 2) matrices (Dr)1,:,: and (Dr)2,:,:. Then Dr •1 (xTAr) is rank-1 if xTAr is
proportional to (1,−λ). As a result, (5.12) does not hold.

On the other hand, if we work in R, the situation is somewhat different. In R,
rank-(2, 2, 2) terms can be either rank-2 or rank-3 [30, 39, 55]. If Dr is rank-2 in R,
then the pencil ((Dr)1,:,:, (Dr)2,:,:) has two real generalized eigenvalues. Conversely, if
the generalized eigenvalues of ((Dr)1,:,:, (Dr)2,:,:) are complex, then Dr is rank-3. (The
tensor Dr can also be rank-3 when an eigenvalue has algebraic multiplicity two but
geometric multiplicity one. This case occurs with probability zero when the entries of
Dr are drawn from continuous probability density functions and will not further be
considered in this section.) We now have the following variant of Theorem 5.5.

Theorem 5.6. Let (A,B,C,D) represent a real decomposition of T ∈ R
I×J×K

in R rank-(2, 2, 2) terms. Suppose that the condition

k′A + k′B + k′C � 2R + 2

holds and that the generalized eigenvalues of ((Dr)1,:,:, (Dr)2,:,:) are complex, 1 � r �
R. Then (A,B,C,D) is essentially unique.

Proof. Under the condition on the generalized eigenvalues of ((Dr)1,:,:, (Dr)2,:,:),
the matrices Dr •1 (xTAr) in (5.8) are necessarily rank-2, and the reasoning in the
proof of Lemma 5.2 remains valid.

On the other hand, assuming that Ā = A · Πa · Λa and B̄ = B · Πb · Λb,
only a technical modification of the proof of Lemma 5.4 is required to make sure that
Πa = Πb does hold. We only have to verify whether vectors v and w can be found such
that vTAi = 0 if i ∈ S, wTBj = 0 if j ∈ T, and (Dr)N×LM · [(AT

r v) ⊗ (BT
r w)] = 0.

Reasoning as in the proof of Lemma 5.4, we see that the constraint vTAi = 0,
i ∈ S, still leaves enough freedom for vTAr to be any vector in R

2. Equivalently, the
constraint wTBj = 0, j ∈ T, leaves enough freedom for wTBr to be any vector in
R

2. We conclude that it is always possible to find the required vectors v and w if
Dr = O.

Essential uniqueness of the overall tensor decomposition now follows from Ā =
A ·Π ·Λa and B̄ = B ·Π ·Λb in the same way as in the proof of Theorem 5.5.

From Theorem 5.6 follows that a generic decomposition in real rank-3 rank-
(2, 2, 2) terms is essentially unique provided,

min

(⌊
I

2

⌋
, R

)
+ min

(⌊
J

2

⌋
, R

)
+ min

(⌊
K

2

⌋
, R

)
� 2R + 2.

Finally, we have the following variant of Theorem 5.1.
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Theorem 5.7. Let (A,B,C,D) represent a real decomposition of T ∈ R
I×J×K

in R rank-(L,M,N) terms, with L = M = N = 2. Suppose that rank(A) = 2R,
rank(B) = 2R, rankk′(C) � 1 and that all generalized eigenvalues of the pencil
((Dr)L×M,1, (Dr)L×M,2) are complex, 1 � r � R. Then (A,B,C,D) is essentially
unique.

Proof. Consider two vectors x,y ∈ R
K for which xTCr is not proportional to

yTCr, 1 � r � R. Since all matrices Cr are full column rank, this is the case for
generic vectors x,y. Define T1 =

∑K
k=1 xkTI×J,k and T2 =

∑K
k=1 ykTI×J,k. We

have

T2 · T†
1 = A · blockdiag{([D1 •3 (yTC1)] · [D1 •3 (xTC1)]

†, . . . ,
[DR •3 (yTCR)] · [DR •3 (xTCR)]†)} · A†.

From this equation it is clear that the column space of any Ar is an invariant subspace
of T2 · T†

1.
Define CT

r x = x̃r and CT
r y = ỹr. We have

Dr •3 (xTCr) = (x̃r)1(Dr)L×M,1 + (x̃r)2(Dr)L×M,2,

Dr •3 (yTCr) = (ỹr)1(Dr)L×M,1 + (ỹr)2(Dr)L×M,2.

If there exist real values α and β, with α2 +β2 = 1, such that αDr •3 (xTCr)+βDr •3

(yTCr) is rank-1, then there also exist real values γ en μ, with γ2 +μ2 = 1, such that
γ (Dr)L×M,1 + μ (Dr)L×M,2 is rank-1. The condition on the generalized eigenvalues
of the pencils ((Dr)L×M,1, (Dr)L×M,2) implies thus that the blocks [Dr •3 (yTCr)] ·
[Dr •3 (xTCr)]

† cannot be diagonalized by means of a real similarity transformation.

We conclude that the only two-dimensional invariant subspaces of T2 · T†
1 are the

column spaces of the matrices Ar. In other words, A is essentially unique.
Essential uniqueness of the overall decomposition now follows from (2.12). As-

sume that we have an alternative decomposition of T , represented by (Ā, B̄, C̄, D̄).
We have Ā = A · Πa · Λa, in which Πa is a block-permutation matrix and Λa =
blockdiag(Λa,1, . . . ,Λa,R) a square nonsingular block-diagonal matrix, compatible
with the block structure of A. From (2.12) we have

TJK×I = (B � C) · blockdiag((D1)MN×L, . . . , (DR)MN×L) · AT

= (B̄ � C̄) · blockdiag((D̄1)MN×L, . . . , (D̄R)MN×L) · ΠT
a · ΛT

a · AT .

Right multiplication by (AT )† yields

(B � C) · blockdiag((D1)MN×L, . . . , (DR)MN×L)

= (B̄ � C̄) · blockdiag((D̄1)MN×L, . . . , (D̄R)MN×L) · ΠT
a · ΛT

a .(5.22)

Assume that the rth submatrix of A corresponds to the s-th submatrix of Ā. Then
we have from (5.22) that

(Br � Cr) · (Dr)MN×L = (B̄s � C̄s) · (D̄s)MN×L · ΛT
a,s

in which Λa,s is the sth block of Λa. Equivalently,

Dr •2 Br •3 Cr = D̄s •1 Λa,s •2 B̄s •3 C̄s.

This completes the proof.
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6. Type-2 decomposition in rank-(L, M, ·) terms. In this section we derive
several conditions under which the type-2 decomposition in rank-(L,M, ·) terms is
unique. We use the notation introduced in section 2.3.

First we have a uniqueness result that stems from the fact that the column spaces
of Ar, 1 � r � R, are invariant subspaces of quotients of tensor slices. This result is
the counterpart of Theorem 4.1 in section 4 and Theorem 5.1 in section 5.1.

Theorem 6.1. Let (A,B, C) represent a type-2 decomposition of T ∈ K
I×J×K

in R rank-(L,L, ·) terms. Suppose that rank(A) = LR, rank(B) = LR, K � 3, and
that C is generic. Then (A,B, C) is essentially unique.

Proof. We have

TI×J,2 ·T†
I×J,1 = A·blockdiag((C1)L×M,2 ·(C1)

†
L×M,1, . . . , (CR)L×M,2 ·(CR)†L×M,1)·A†,

where M = L. From this equation it is clear that the column space of any Ar is
an invariant subspace of TI×J,2 · T†

I×J,1. However, any set of eigenvectors forms an
invariant subspace. To determine which eigenvectors belong together, we use the third
slice TI×J,3. We have

(6.1)

TI×J,3 ·T†
I×J,1 = A·blockdiag((C1)L×M,3 ·(C1)

†
L×M,1, . . . , (CR)L×M,3 ·(CR)†L×M,1)·A†.

It is clear that the column space of any Ar is also an invariant subspace of TI×J,3 ·
T†

I×J,1. On the other hand, because of the genericity of C, we can interpret (Cr)L×M,3 ·
(Cr)†L×M,1 as (Cr)L×M,2·(Cr)†L×M,1+Er, in which Er ∈ K

L×L is a generic perturbation,
1 � r � R. Perturbation analysis now states that the individual eigenvectors of
TI×J,3 · T†

I×J,1 do not correspond to those of TI×J,2 · T†
I×J,1 [23, 32]. We conclude

that A is essentially unique.
Essential uniqueness of the overall decomposition follows directly from the essen-

tial uniqueness of A. Assume that we have an alternative decomposition of T , repre-
sented by (Ā, B̄, C̄). We have Ā = A · Πa · Λa, in which Πa is a block-permutation
matrix and Λa a square nonsingular block-diagonal matrix, compatible with the block
structure of A. From (2.18) we have

TJK×I = [(C1 •2 B1)JK×L . . . (CR •2 BR)JK×L] · AT

=
[
(C̄1 •2 B̄1)JK×L . . . (C̄R •2 B̄R)JK×L

]
· ĀT .

Hence,

[(C1 •2 B1)JK×L . . . (CR •2 BR)JK×L]

=
[
(C̄1 •2 B̄1)JK×L . . . (C̄R •2 B̄R)JK×L

]
· ΛT

a · ΠT
a .

This implies that the matrices (Cr •2 Br)JK×L are ordered in the same way as the
matrices Ar. Furthermore, if Āi = Aj ·F, then (C̄i •2 B̄i)JK×L ·FT = (Cj •2 Bj)JK×L.
Equivalently, we have C̄i •2 B̄i = Cj •1 F−1 •2 Bj . This means that (A,B, C) and
(Ā, B̄, C̄) are essentially equal.

Remark 6. The generalization to the decomposition in rank-(Lr, Lr, ·) terms, 1 �
r � R, is trivial.

Remark 7. In the nongeneric case, lack of uniqueness can be due to the fact that
tensors Cr can be subdivided in smaller blocks by means of basis transformations in
their mode-1 and mode-2 vector space. We give an example.
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Example 2. Consider a tensor T ∈ K
10×10×5 that can be decomposed in two

rank-(5, 5, ·) terms as follows:

T =
2∑

r=1

Cr •1 Ar •2 Br

with Cr ∈ K
5×5×5, Ar ∈ K

10×5, and Br ∈ K
10×5, 1 � r � 2. Now assume that C1 and

C2 can be further decomposed as follows:

C1 = G11 •1 E11 •2 F11 + G12 •1 E12 •2 F12,

C2 = G21 •1 E21 •2 F21 + G22 •1 E22 •2 F22,

where G11,G21 ∈ K
2×2×5, G12,G22 ∈ K

3×3×5, E11,E21,F11,F21 ∈ K
5×2, E12,E22,

F12,F22 ∈ K
5×3. Define

Ã1 = [A1 · E11 A2 · E22], Ã2 = [A2 · E21 A1 · E12],

B̃1 = [B1 · F11 B2 · F22], B̃2 = [B2 · F21 B1 · F12],

(C̃1)1:2,1:2,: = G11, (C̃1)3:5,3:5,: = G22, (C̃1)1:2,3:5,: = O, (C̃1)3:5,1:2,: = O,

(C̃2)1:2,1:2,: = G21, (C̃2)3:5,3:5,: = G12, (C̃2)1:2,3:5,: = O, (C̃2)3:5,1:2,: = O.

Then an alternative decomposition of T in rank-(5, 5, ·) terms is given by

(6.2) T =
2∑

r=1

C̃r •1 Ãr •2 B̃r.

For the case in which Cr ∈ R
2×2×2, 1 � r � R, we have the following theorem.

Theorem 6.2. Let (A,B, C) represent a real type-2 decomposition of T ∈ R
I×J×2

in R rank-(L,M, 2) terms with L = M = 2. Suppose that rank(A) = 2R, rank(B) =
2R and that all generalized eigenvalues of the pencil ((Cr)L×M,1, (Cr)L×M,2) are com-
plex, 1 � r � R. Then (A,B, C) is essentially unique.

Proof. This theorem is a special case of Theorem 5.7. The tensors Dr in Theorem
5.7 correspond to Cr, and the matrices Cr in Theorem 5.7 are equal to I2×2.

In some cases, uniqueness of the decomposition can be demonstrated by direct
application of the equivalence lemma for partitioned matrices. This is illustrated in
the following example.

Example 3. We show that the decomposition of a tensor T ∈ K
5×6×6 in R = 3

generic rank-(2, 2, ·) terms is essentially unique. Denote I = 5, J = K = 6, and
L = M = 2. Let the decomposition be represented by (A,B, C) and let us assume the
existence of an alternative decomposition, represented by (Ā, B̄, C̄), which is “nonsin-
gular” in the sense that the columns of Ā are as linearly independent as possible.

To show that (A,B, C) and (Ā, B̄, C̄) are essentially equal, we first use the equiv-
alence lemma for partitioned matrices to show that Ā = A ·Πa ·Λa, in which Πa is a
block permutation matrix and Λa a square nonsingular block-diagonal matrix, both
consisting of (2×2) blocks. We show that for every μ � R−k′Ā+1 = 2 there holds that
for a generic vector x ∈ K

5 such that ω′(xT Ā) � μ, we have ω′(xTA) � ω′(xT Ā).
We will subsequently examine the different cases corresponding to μ = 0, 1, 2.

We first derive an inequality that will prove useful. Denote by (Cr•1(xTAr))M×K

the (M × K) matrix formed by the single slice of Cr •1 (xTAr), and denote by
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(C̄r •1 (xT Ār))M×K the (M ×K) matrix formed by the single slice of C̄r •1 (xT Ār),
1 � r � R. Then the (J ×K) matrix formed by the single slice of T •1 xT is given by

B̄ ·

⎛
⎜⎝

(C̄1 •1 (xT Ā1))M×K

...
(C̄R •1 (xT ĀR))M×K

⎞
⎟⎠ = B ·

⎛
⎜⎝

(C1 •1 (xTA1))M×K

...
(CR •1 (xTAR))M×K

⎞
⎟⎠ .

For the rank of this matrix, we have

Mω′(xT Ā) � rank

⎡
⎢⎣B̄ ·

⎛
⎜⎝

(C̄1 •1 (xT Ā1))M×K

...
(C̄R •1 (xT ĀR))M×K

⎞
⎟⎠
⎤
⎥⎦

= rank

⎡
⎢⎣B ·

⎛
⎜⎝

(C1 •1 (xTA1))M×K

...
(CR •1 (xTAR))M×K

⎞
⎟⎠
⎤
⎥⎦ .

Let B̃ and D̃(x)T consist of the submatrices of B and

⎛
⎜⎝

(C1 •1 (xTA1))M×K

...
(CR •1 (xTAR))M×K

⎞
⎟⎠ ,

respectively, corresponding to the nonzero subvectors of xTA. Then we have

Mω′(xT Ā) � rB̃·D̃(x)T .

Since B is generic, we have

(6.3) Mω′(xT Ā) � rD̃(x)T .

First, note that due to the “nonsingularity” of Ā, there does not exist a vector x
such that ω′(xT Ā) = 0. This means that the case μ = 0 does not present a difficulty.

Next, we consider the case μ = 1. Since ω′(xT Ā) � μ, we have that Mω′(xT Ā) in
(6.3) is less than or equal to 2. Since x is orthogonal to two submatrices of Ā, the set V
of vectors x satisfying ω′(xT Ā) � μ is the union of three one-dimensional subspaces in
K

5. We prove by contradiction that for a generic x ∈ V, we have ω′(xTA) � 1. Assume
first that ω′(xTA) = 2. Then D̃(x) in (6.3) is a (6×4) matrix. For this (6×4) matrix
to be rank-2, eight independent conditions on x have to be satisfied. (This value is
the total number of entries (i.e., 24) minus the number of independent parameters in
a (6 × 4) rank-2 matrix (i.e., 16). The latter value can easily be determined as the
number of independent parameters in, for instance, an SVD.) These conditions can
impossibly be satisfied in a subset of V that is not of measure zero. We conclude that
for a generic x ∈ V, ω′(xTA) = 2. Next assume that ω′(xTA) = 3. Then D̃(x) in
(6.3) is a (6 × 6) matrix. For this matrix to be rank-2, 36 − 20 = 10 independent
conditions on x have to be satisfied. We conclude that for a generic x, ω′(xTA) = 3.
This completes the case μ = 1.

Finally, we consider the case μ = 2. We now have that Mω′(xT Ā) in (6.3) is less
than or equal to 4. Since x is orthogonal to one submatrix of Ā, the set V of vectors x
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satisfying ω′(xT Ā) � μ is the union of three three-dimensional subspaces in K
5. We

prove by contradiction that for a generic x ∈ V, we have ω′(xTA) � 2. Assume that
ω′(xTA) = 3. Then D̃(x) in (6.3) is a (6 × 6) matrix. For this matrix to be rank-4,
36 − 32 = 4 independent conditions on x have to be satisfied. These conditions can
impossibly be satisfied in a subset of V that is not of measure zero. This completes
the case μ = 2.

We conclude that the condition of the equivalence lemma for partitioned matrices
is satisfied. Hence, Ā = A ·Πa ·Λa. Essential uniqueness of the decomposition follows
directly from the essential uniqueness of A; cf. the proof of Theorem 6.1.

7. Discussion and future research. In this paper we introduced the concept
of block term decompositions. A block term decomposition of a tensor T ∈ K

I×J×K

decomposes the given (I ×J ×K)-dimensional block in a number of blocks of smaller
size. The size of a block is characterized by its mode-n rank triplet. (We mean the
following. Consider a rank-(L,M,N) tensor T ∈ K

I×J×K . The observed dimensions
of T are I, J , K. However, its inner dimensions, its inherent size, are given by L, M ,
N .) The number of blocks that are needed in a decomposition depends on the size of
the blocks. On the other hand, the number of blocks that is allowed determines which
size they should minimally be.

The concept of block term decompositions unifies HOSVD/Tucker’s decompo-
sition and CANDECOMP/PARAFAC. HOSVD is a meaningful representation of a
rank-(L,M,N) tensor as a single block of size (L,M,N). PARAFAC decomposes a
rank-R tensor in R scalar blocks.

In the case of matrices, column rank and row rank are equal; moreover, they are
equal to the minimal number of rank-1 terms in which the matrix can be decomposed.
This is a consequence of the fact that matrices can be diagonalized by means of basis
transformations in their column and row space. On the other hand, tensors cannot in
general be diagonalized by means of basis transformations in their mode-1, mode-2,
and mode-3 vector space. This has led to the distinction between mode-n rank triplet
and rank. Like HOSVD and PARAFAC, these are the two extrema in a spectrum. It is
interesting to note that “the” rank of a higher-order tensor is actually a combination
of the two aspects: one should specify the number of blocks and their size. This is
not clear at the matrix level because of the lack of uniqueness of decompositions in
nonscalar blocks.

Matrices can actually be diagonalized by means of orthogonal (unitary) basis
transformations in their column and row space. On the other hand, by imposing or-
thogonality constraints on PARAFAC one obtains different (approximate) decomposi-
tions, with different properties [8, 35, 36, 42]. Generalizations to block decompositions
can easily be formulated. For instance, the generalization of [8, 42] to decomposi-
tions in rank-(L,M,N) terms is simply obtained by claiming that AH

r · As = 0L×L,
BH

r · Bs = 0M×M , and CH
r · Cs = 0N×N , 1 � r = s � R.

Interestingly enough, the generalization of different aspects of the matrix SVD
most often leads to different tensor decompositions. Although the definition of block
term decompositions is very general, tensor SVDs that do not belong to this class
do exist. For instance, a variational definition of singular values and singular vectors
was generalized in [41]. Although Tucker’s decomposition and the best rank-(L,M,N)
approximation can be obtained by means of a variational approach [13, 15, 61], the
general theory does not fit in the framework of block decompositions.

Block term decompositions have an interesting interpretation in terms of the
decomposition of homogeneous polynomials or multilinear forms. The PARAFAC de-
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composition of a fully symmetric tensor (i.e., a tensor that is invariant under arbitrary
index permutations) can be interpreted in terms of the decomposition of the associ-
ated homogeneous polynomial (quantic) in a sum of powers of linear forms [9]. For
block term decompositions we now have the following. Given the quantic, linear forms
are defined and clustered in subsets. Only within the same subset, products are ad-
missible. The block term decomposition then decomposes the quantic in a sum of
admissible products.

For instance, let P ∈ K
I×I×I be fully symmetric. Let x ∈ K

I be a vector of
unknowns. Associate the quantic p(x) = P •1 xT •2 xT •3 xT to P. Let a PARAFAC
decomposition of P be given by

P =

R∑
r=1

dr ar ◦ ar ◦ ar.

Define yr = xTar, 1 � r � R. Then the quantic can be written as

p(y) =

R∑
r=1

dr y
3
r .

On the other hand, let a decomposition of P in rank-(Lr, Lr, Lr) terms be given by

P =

R∑
r=1

Dr •1 Ar •2 Ar •3 Ar,

in which Dr ∈ K
Lr×Lr×Lr and Ar ∈ K

I×Lr , 1 � r � R. Define ylr = xT (Ar):,l,
1 � l � Lr, 1 � r � R. Then the quantic can be written as

p(y) =
R∑

r=1

Lr∑
l1,l2,l3=1

(Dr)l1l2l3 yl1ryl2ryl3r.

In this paper we have presented EVD-based and Kruskal-type conditions guar-
anteeing essential uniqueness of the decompositions. Important work that remains
to be done is the relaxation of the dimensionality constraints on the blocks in the
Kruskal-type conditions. Some results based on simultaneous matrix diagonalization
are presented in [44]. Also, we have restricted our attention to alternative decomposi-
tions that are “nonsingular.” We should now check whether, for generic block terms,
alternative decompositions in singular terms can exist.

It would be interesting to investigate, given the tensor dimensions I, J , and K,
for which block sizes and number of blocks one obtains a generic (in the sense of
existing with probability one) or a typical (in the sense of existing with probability
different from zero) decomposition. In the context of PARAFAC, generic and typical
rank have been studied in [55, 56, 57, 58].

In this paper we limited ourselves to the study of some algebraic aspects of block
term decompositions. The computation of the decompositions, by means of alternating
least squares algorithms, is addressed in [20]. Some applications are studied in [21,
43, 45].
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