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Abstract. In the present paper the enumeration of a certain class
of directed lattice paths is based on the analysis of dynamical corre-
lation functions of the exactly solvable XX0 model. This model is
the zero anisotropy limit of one of the basic models of the theory of
integrable systems, the XXZ Heisenberg magnet. We demonstrate
that the considered correlation functions under different boundary
conditions are the exponential generating functions of the different
types of paths, Dyck and Motzkin in particular.

§1. Introduction

In recent years lattice paths have received a lot of attention in differ-
ent fields, such as, computer science, biology,chemistry, physics, and many
more [1, 2]. Their enumeration is an active branch of combinatorics [3–5].
Different methods were developed for the studies of the directed lattice

paths [6–10]. Dyck and Motzkin paths are the most often considered not
only in enumerative combinatorics [11, 12] but also in the theory of quan-
tum computations [13, 14]. Finding integral representations of counting
numbers is also a topic of interest [15–17].

Our approach to the study of lattice paths is based on the analyzes of
correlation functions of integrable models [18–25]. The main goal of this
paper is to describe the alternative method of the derivation of mainly
known results in the theory of simple directed lattice paths. We will study
the dynamical correlation function over the state with all spins up of the
XX0 model which is the zero anisotropy limit of the XXZ Haisenberg
magnet. Depending on the boundary conditions this correlation function
is considered to be the exponential generating function of the directed
walks of different type.

The paper is organized as follows. We begin with notations, basic def-
initions and background results. The spin XX0 model is introduced and

Key words and phrases: XX0 Heisenberg chain, correlation functions, directed lat-
tice paths, generating functions.
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the dynamical correlation function over the state with all spins up is con-
sidered. The interpretation of correlation function in terms of the directed
lattice paths is given. In Sec. 3 the unconstrained paths and in Sec. 4 the
constrained ones are considered. We conclude with final remarks.

§2. Heisenberg XX0 model and weighted random walks.

The inhomogeneous asymmetric XX0 Heisenberg model of interacting
1
2 – spins in an external field hn on a one dimensional lattice (chain) is
defined by the Hamiltonian

Ĥ =
∑

n,m

∆nmσ−

n σ
+
m =

∑

n

{
σ−

n−1σ
+
n + σ−

n+1σ
+
n + hςn

}
. (1)

The 2× 2 spin Pauli matrices σ±
n , σz

n satisfy commutation relations

[σ+
n , σ

−

m] = σz
nδnm,

[σz
n, σ

±

m] = ±2σ±

n δnm,
(2)

and ςm = 1
2 (1 − σz

m) is a projector. The interaction of spins is defined by
matrix ∆:

∆nm = δn+1,m + δn−1,m + hδn,m. (3)

The state with all spins up

| ⇑〉 = ⊗n |↑〉n ≡ ⊗n

(
1
0

)

n

, (4)

where the product is taken over all lattice sites is called the ferromagnetic
state. The ferromagnetic state is annihilated by the Hamiltonian (1):

Ĥ |⇑〉 = 0 (5)

and satisfies the following properties. This state is normalized: 〈⇑ | ⇑〉 = 1.
It is annihilated by the operator σ+

m with the arbitrary m: σ+
m| ⇑〉 = 0; and

is an eigenvector of the σz
m matrix: σz

m| ⇑〉 = | ⇑〉. The matrix σ−
m flips the

m-th spin in the product (4): σ−
m| ↑〉m = | ↓〉m.

The continuous temporal evolution of the states, obtained by selective
flipping of the spin σ−

m |⇑〉, is defined by the one-particle correlation func-
tion

Gh (j,m|t) ≡ 〈⇑| σ+
j e

tĤσ−

m |⇑〉. (6)
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Differentiating Gh (j,m|t) with respect to t and applying the commu-
tation relation

[Ĥ, σ−

m] =
∑

n

∆nmσ−

n σz
m = σ−

m−1σ
z
m + σ−

m+1σ
z
m + hσ−

m, (7)

where ∆nm is the matrix element (3), we obtain the equality

d

dt
Gh (j,m|t) = 〈⇑| σ+

j e
tĤĤσ−

m |⇑〉

=
∑

n

∆nm〈⇑| σ+
j e

tĤσ−

n |⇑〉 =
∑

n

∆nmGh (j, n|t) .

and hence the correlation function satisfies the difference equation:

d

dt
Gh (j,m|t) = Gh (j − 1,m|t) +Gh (j + 1,m|t) + hGh (j,m|t) (8)

for the fixed index m, and the same equation for the index m with the
fixed j. The initial condition is defined by the equality Gh (j,m|0) = δjm.

The expansion of correlation function in powers of t gives:

Gh (j,m|t) =
∑

K

tK

K!
〈⇑| σ+

j (Ĥ)Kσ−

m |⇑〉. (9)

Applying then the commutation relation (7), one obtains

ĤKσ−

m |⇑〉 = ĤK−1[Ĥ, σ−

m] |⇑〉 = ĤK−1
∑

n1

∆n1mσ−

n1
|⇑〉

=
∑

n1,...,nK

∆nKnK−1
. . .∆n2n1

∆n1mσ−

nK
|⇑〉.

(10)

The multiplication of the equality (10) from the left on the state 〈⇑| σ+
j

leads to the equality:

〈⇑| σ+
j (Ĥ)Kσ−

m |⇑〉≡Gh(j,m|K)=
∑

n1,...,nK−1

∆jnK−1
. . .∆n2n1

∆n1m. (11)

From the definition (11) and the expansion (9) it follows that

Gh (j,m|t) =
∑

K

tK

K!
Gh(j,m|K). (12)

From Eqs. (8) and (9) it follows that the discreet correlation function
Gh(j,m|K) (11) satisfies equation:

Gh(j,m|K +1) = Gh(j− 1,m|K)+Gh(j+1,m|K)+hGh(j,m|K), (13)
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with the initial condition Gh(j,m|0) = δjm. From definition (11) it follows
that the following equation is also valid:

Gh(j,m|K + 2) = Gh(j − 2,m|K) +Gh(j + 2,m|K) + 2Gh(j,m|K)

+ 2h [Gh(j − 1,m|K) +Gh(j + 1,m|K)]

+ h2
Gh(j,m|K). (14)

To connect the discussed model with the theory of random walks let us
notice that moves of the single walker on a chain may be expressed by the
matrix ∆ (3). This choice of the matrix ∆ means that the walker can step
up either down from an arbitrary cite m or stay at it with a weight h. A
random weighted lattice path made by a walker is given by a sequence of
edges ∆ij which joins a sequence of lattice cites:

∆jnK−1
. . .∆n2n1

∆n1m. (15)

The generating function of all admissible weighted lattice paths running
from m to j of K steps is expressed as

∑

n1,...,nK−1

∆jnK−1
. . .∆n2n1

∆n1m, (16)

and thus is given by the function Gh(j,m|K) (11). The evaluation of
Gh(j,m|K) consists of all walks of K steps from m to j. In the case when
h = 1 this function gives the number of all lattice paths of the length K

from m into j.
The introduced one dimensional walks may be considered as random

directed paths in the plane integer lattice Z
2 defined by a series of equal

length steps. The paths made by a walker consist of up-steps (1, 1), down-
steps (1,−1) and level-steps (1, 0) with a weight h. The path of a length K

runs from a site (0,m) to a site (K, j). The directed paths are defined by
the fact, that for each step (x, y) one has x > 0. We consider only simple

paths, where every element in the step set S is of the form (1, a). We use
the abbreviation S = (a1, a2, . . . , aK) in this case. As illustrated in Fig. 1,
a walk can be visualized by its geometric realization.

The correlation function (6) may be considered as the exponential gen-
erating function (12) of directed walks. In the theory of random walks the
following generating function of all paths from m to j is mainly used

Fh(j,m|z) =
∑

K

zKGh(j,m|K) =
∑

K

zK〈⇑| σ+
j (Ĥ)Kσ−

m |⇑〉, (17)
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Figure 1. A: The weighted directed path of 9 steps from
(0, 0) to (9, 2) with a step set S = (−1, 1, 1, 0, 0, 1, 1, 0,−1)
that corresponds to the one dimensional walk
∆0,−1∆−1,0∆0,1∆1,0∆0,1∆1,2∆2,3∆3,3∆3,2. B: A bridge

with a step set S = (−1, 1, 1,−1, 1, 1, 1,−1,−1,−1).

which is the Laplace transformation of correlation function (9):

∞∫

0

e−
t
zGh(j,m|t)dt =

∞∫

0

e−
t
z 〈⇑| σ+

j e
tĤσ−

m |⇑〉dt

= z〈⇑| σ+
j

(
1

1− zĤ

)
σ−

m |⇑〉 = zFh(j,m|z).

(18)

Applying the Theorem 4.7.2 in [3] we obtain the determinant represen-
tation of generating function:

Fh(j,m|z) = (−1)j+m det[I − z∆ : m, j]

det[I − z∆]
,

where (A : m, j) denotes the matrix obtained by removing the mth row
and jth column.

§3. Unconstrained directed paths

A directed path that starts the origin and ends anywhere is called a
path (see Fig. 1A). If the path ends on the x-axis then it is called a bridge

(see Fig. 1B).
To study the unconstrained walks we consider the XX0 model on an

infinite chain. For the one-dimensional walks from 0 to 2j the solution of
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the equation (8) with h = 0 is the modified Bessel function

G (2j, 0|t) = I2j(2t) =
1

2π

π∫

−π

e2t cos θe2ijθdθ. (19)

Using the decomposition of modified Bessel function

In(2z) =

∞∑

k=0

zn+2k

k!(k + n)!
, (20)

we find out that

G(2j, 0|t) =
∞∑

K>j

t2K

(K − j)!(K + j)!
. (21)

From the expansion (12) follows that

DK(j) ≡ G(2j, 0|2K) =
2K!

(K − j)! (K + j)!
=

(
2K

K − j

)
. (22)

It is a well known binomial formula for a number of all lattice paths from
(0, 0) to (2K, 2j) of length 2K on Z

2. The number of bridges is given by
DK(0).

The generating function for this kind of paths is

D(j|z) ≡ F (2j, 0|z) = z−1

∞∫

0

e−
t
zG(2j, 0|t)dt

= z−1

∞∫

0

e−
t
z I2j(2t)dt =

(
1−

√
1− 4z2

)2j

22jz2j
√
1− 4z2

.

(23)

If besides the up and down steps we admit the level steps with the
weight h we have to consider the equation (8) with h 6= 0. In this case the
exponential generating function of the one-dimensional walks from 0 to j

is equal to

Gh (j, 0|t) = ethIj(2t) =

∞∑

K>j

tK

K!

[K−j
2

]∑

k=0

hK−2k−jK!

(K − 2k − j)!k!(k + j))!

=

∞∑

K>j

tK

K!

[K−j
2

]∑

k=0

hK−2k−j

(
K

2k + j

)(
2k + j

k

)
=

∞∑

K>j

tK

K!
Gh(j, 0|K).

(24)
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The generating function of weighted paths in K steps from (0, 0) to (K, j)
with the level steps carrying the weight h is given by the equality:

RK(j|h) ≡ Gh(j, 0|K) =

[K−j

2
]∑

k=0

hK−2k−j

(
K

2k + j

)(
2k + j

k

)
. (25)

From this expression it follows that the number of lattice paths of K steps
with L level steps is:

RL
K(j) =

(
K

K − L

)(
K − L
K−L−j

2

)
. (26)

The total number of the introduced lattice paths is given by:

RK(j|1) =
[K−j

2
]∑

k=0

(
K

2k + j

)(
2k + j

k

)
. (27)

The number of correspondent bridges is given by RK(0|1) and is equal to
the central trinomial coefficient

(
K

0

)

2

=

[K
2
]∑

k=0

(
K

2k

)(
2k

k

)
. (28)

These numbers are listed in [26].
The generating function of weighted paths is

R(j|z;h) ≡ Fh(j, 0|z) = z−1

∞∫

0

e−( 1

z
−h)tIj(2t)dt

=

(
1− zh−

√
1− 2hz − z2(4− h2)

)j

2jzj
√
1− 2hz − z2(4− h2)

.

(29)

The representation of the modified Bessel function

Ij(2t) =
tj√

πΓ(j + 1
2 )

1∫

−1

e2ts(1− s2)j−
1

2 ds (30)
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allows us to obtain the decomposition of the exponential generating func-
tion (24) in the form

Gh(j, 0|t) = ehtIj(2t)

=
22jj!

π(2j)!

∑

K>j

tK

(K − j)!

1∫

−1

(2s+ h)K−j(1− s2)j−
1

2 ds,
(31)

from which, the integral representation for the generating function (25)
follows

RK(j|h) = 22j

π

(
K

j

)
(
2j
j

)
1∫

−1

(2s+ h)K−j(1− s2)j−
1

2 ds. (32)

§4. Constrained paths

The constrained path moves from left to right never dipping below the
height it began on. Among these paths most known are Dyck and Motzkin
paths.

A Dyck path is a path constructed from the step set (1, 1), (1,−1), which
starts at the origin, never passes below the x-axis and ends on the x-axis.
A Dyck path of altitude m is a Dyck path that terminates at altitude m.

A Motzkin path is a Dyck path with the level steps (1, 0) allowed. Cor-
respondingly, a Motzkin path of altitude m is a Motzkin path that termi-
nates at altitude m. The weighted Motzkin paths are paths the level steps
of which are equipped with a wight h.

Dyck and Motzkin paths belong to a class of lattice paths known as
excursions, while Dyck and Motzkin paths of altitude j are meanders.

Since excursions and meanders never drop below x-axis we have to con-
sider the one-dimensional walks on the semiaxis (0 6 j < ∞). Their expo-
nential generating function G(j, 0|t) is given by the equation (8) with the
boundary condition G(2j, 0|t) = 0 for j = −1.

4.1. Dyck paths and Catalan numbers. Let us consider Dyck paths
of altitude 2j (Fig. 2B). The solution of the equation (8) on the semiaxis
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with h = 0 is equal to:

G(2j, 0|t) = 1

π

π∫

−π

e2t cos θ sin [(2j + 1)θ] sin θdθ

=
1

2π

π∫

−π

e2t cos θ {cos(2jθ)− cos [2(j + 1)θ]} dθ

= I2j(2t)− I2j+2(2t) =
2j + 1

t
I2j+1(2t).

(33)

x

y

x

y

12 12

2

A B

Figure 2. A: Dyck excursion in 12 steps. B: Dyck meander
of altitude 2 in 12 steps.

Using the decomposition of modified Bessel function (20) we find out
that

G(2j, 0|t) =
∞∑

K>j

(2j + 1)
t2K

(K + j + 1)!(K − j)!

=

∞∑

K>j

t2K

2K!
G(2j, 0|2K),

(34)

where

CK(j) ≡ G(2j, 0|2K) =
2j + 1

K + j + 1

(
2K

K − j

)
; K > j (35)

is the number of Dyck paths (Fig. 2A) of altitude 2j in 2K-steps from
(0, 0) to (2j, 2K). The number of Dyck paths in 2K-steps from (0, 0) to
(0, 2K) is equal to Catalan number CK :

CK ≡ CK(0) =
1

K + 1

(
2K

K

)
. (36)
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The recurrence relation on numbers CK(j) follows from the equation (14):

CK+2(j) = CK(j − 2) + CK(j + 2) + 2CK(j); CK(−1) = 0. (37)

It can be expressed in terms of generating function of Catalan numbers (36):

C(z) ≡ C(0|z) = 1−
√
1− 4z2

2z2
. (38)

We obtain that

C(j|z) = z2j

(2j + 1)
(C(z))

2j+1
. (39)

The generating function D(j|z) of unconstrained walks (22) may be
expressed through the generating function of Catalan numbers:

D(j|z) = (zC(z))2j

1− 2z2C(z)
. (40)

4.2. Motzkin paths and Motzkin numbers. The weighted Motzkin
paths of altitude j (Fig. 3B) are described by the solution G(j, 0|t) of the
equation (8) on the semiaxis with h 6= 0:

Gh(j, 0|t) = eth(j + 1)
Ij+1(2t)

t

=

∞∑

K>j

tK

K!

[K−j

2
]∑

k=0

(j + 1)K!

(K − 2k − j)!k!(k + j + 1))!
hK−2k−j

=

∞∑

K=0

tK

K!
Gh(j, 0|K).

(41)

x

y

x

y

12 12

2
h h

h

h h

h

h h

A B

Figure 3. A: weighted Motzkin excursion in 12 steps. B:
weighted Motzkin meander of altitude 2 in 12 steps.
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The generating function of weighted Motzkin paths of altitude j and
length K is given by the equality:

MK(j|h) ≡ Gh(j, 0|K)

=

[K−j

2
]∑

k=0

j + 1

k + j + 1

(
K

2k + j

)(
2k + j

k

)
hK−2k−j .

(42)

From this expression it follows that the number of Motzkin paths of alti-
tude j of length K with L level steps is:

ML
K(j) =

2(j + 1)

K − L+ j + 2

(
K

K − L

)(
K − L
K−L−j

2

)
. (43)

The number of the Motzkin paths of altitude j is:

MK(j|1) =
[K−j

2
]∑

k=0

j + 1

k + j + 1

(
K

2k + j

)(
2k + j

k

)
. (44)

From this formula follows that the number of Motzkin paths of the length
K is defined by the equality

MK ≡ MK(0|1) =
[K

2
]∑

k=0

(
K

2k

)
Ck, (45)

where CK is Catalan number (36), and MK is a Motzkin number.
The recurrence relation on the MK(j|1) numbers follows from the equa-

tion (14):

MK+2(j|1) = MK(j − 2|1) +MK(j + 2|1) (46)

+ 2MK(j − 1|1) + 2MK(j + 1|1) + 3MK(j|1);
MK(−2|1) = MK(−1|1) = 0.

The generating function of generalized Motzkin paths is:

M(j|z, h) = z−1

∞∫

0

e−(
1

z
−h)t I2j+1(2t)

t
dt =

z2j

2j + 1
(M(z, h))

2j+1
, (47)

where M(z, h) is the generating function of Motzkin paths:

M(z, h) ≡ M(0|z, h) = 1

2z2

(
1− zh−

√
1− 2hz − z2(4− h2)

)
. (48)
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The generating function R(j|z;h) of unconstrained walks (29) is ex-
pressed in terms of the generating function of weighted Motzkin paths:

R(j|z;h) = (zM(z, h))j

1− zh− 2z2M(z, h)
. (49)

The representation (30) allows us to obtain integral representation of
generating function MK(j|h). We have

MK(j|h) = 22(j+1)

π

(
K

j

)
(
2(j+1)
j+1

)
1∫

−1

(2s+ h)K−j(1− s2)j+
1

2 ds. (50)

From this equality follows the ontegral representation for the Motzkin
numbers (see [17] and refs. there):

MK =
2

π

1∫

−1

(2s+ 1)K
√
1− s2ds. (51)

If we change K → 2K and j → 2j and put h = 0 in (50) we obtain the
representation of the numbers CK(j) (35):

CK(j) =
22(K+j+1)

π

(
2K
2j

)
(
2(2j+1)
2j+1

)
1∫

−1

s2(K−j)(1− s2)2j+
1

2 ds. (52)

For j = 0 we obtain integral representation of Catalan numbers [15, 16]:

CK =
22K+1

π

1∫

−1

s2K
√
1− s2ds. (53)

§5. Conclusion

Generating functions play an important role in mathematics and physics
[27]. We have demonstrated that the main results in the theory of the
simple directed paths may be obtained from the exponential generating
function of the directed paths which in turn is the dynamical correlation
function of the XX0 model. The obtained results may be easily generalized
on the case when the path starts not from the origin.
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It is worth noting that the correlation function (6) of the XX0 model
with the nearest- and next-to-nearest neighbours interactions:

ĤNNN =
∑

n

{
σ−

n−1σ
+
n + σ−

n+1σ
+
n + σ−

n−2σ
+
n + σ−

n+2σ
+
n

}

describes a class of lattice paths constructed from the step set (1, 1), (1, 2),
(1,−2), (1,−1). These paths possess rich combinatorial properties and are
known as the basketball walks [7, 8]. Basketball walks with the step set
S = (2,−1, 1, 1, 2,−1,−2,−1, 1, 1,−2,−1) are presented in (Fig. 4). We

x

y

12

Figure 4. Basketball walks in 12 steps.

shall study this type of walks in the further publication.

I would like to thank C. Malyshev for valuable discussions.
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