
Automating Compensation in a Multidatabase t

Marian H. Nodine and Stanley B. Zdonik
Brown University

Providence, RI 02906

Abstract
Compensation is the process b y which a committed
transaction in a database is undone b y running the
semantic inverse o f that transaction on the database.
Compensation has been proposed as a technique for
undoing committed work in various situations where
strict atomicity cannot be maintained [GS87, MR91].

In this paper, we discuss compensation i n long-
running multidatabase transactions. W e define the
step approach to integrating local database schemas
into a mulitdatabase. In the step approach, each local
database is encapsulated b y a set of procedures (steps).
Steps can be grouped into atomic global transactions.
Each step also has an associated compensating step,
which is called i f the compensating transaction is run.

We examine two areas of multidatabase transaction
management where compensation is required. The first
is implementing compensation as a recovery technique
when an open nested transaction is aborted. The sec-
ond is in backing out the eflects of an atomic multi-
database transaction when some local database trans-
action commits before a global abort decision is made.

1 Introduction
In situations where a transaction is required to com-
mit some of its work before it actually makes a decision
itself whether to commit or abort, compensation is re-
quired to semantically undo that work if that trans-
action eventually aborts. Longer transactions release
resources early because holding them will severely im-
pact the amount of concurrency in a database [Gra81].
In multidatabase environments, local transaction au-
tonomy requires that the local databases commit their
parts of a global transaction before a coordinated com-
mit decision is finalized.

In this paper, we describe our approach for imple-
menting compensation in the Mongrel prototype mul-
tidatabase system. We propose a multidatabase archi-
tecture and a way of implementing global transactions
on that architecture that enables us to automatically
generate compensating transactions. In this architec-
ture, each local database presents a library of steps
that the multidatabase can execute on it. If all lo-
cal databases are only accessed through their step li-
braries, we can define multidatabase transactions flex-

tThis work was supported in part by ARPA order 8225,
ONR grant N00014-91-5-4052, and in part by an IBM Grad-
uate Fellowship.

1060-3425/94 $3.00 0 1994 IEEE

ibly while maintaining the ability to automatically
compute their compensating transactions as needed.

The step model is a new variant of the stan-
dard restricted access multidatabase model [HM85],
in that each step is not in itself a complete transac-
tion. Rather, steps in different local databases can be
grouped into a single atomic global transaction. At
the other extreme, the unrestricted model for mul-
tidatabase access allows arbitrary global queries and
updates on the local databases. Thus, the transac-
tion definer must explicitly specify how to compen-
sate. Our model provides some of the flexibility of the
unrestricted model while not requiring the transaction
definer to explicitly consider compensation.

Each step in a database’s Step Library is statically
associated with its compensating step. We assume
that the actual call to execute a compensating step
can be derived from the original step function name,
arguments, and return value. A compensating trans-
action executes these steps, in the inverse of the order
the original steps were executed. We specify a two-
level logging mechanism for storing the information
needed for compensation.

We also examine compensation in two areas of mul-
tidatabase transaction management. In each area,
we provide an underlying theory concerning compen-
satability, or the ability to decide when compensa-
tion will unconditionally succeed (given a failure-free
environment). We provide algorithms for using the
step/compensating step pairing in the Step Library to
generate the compensating transactions in a way that
maintains consistency in the database.

Open nested transaction models [GS87, Nod93bl
break up a long transaction into a set of shorter ones.
If the longer transaction is aborted, compensation is
required to undo any short transactions that have al-
ready committed. For open nested transactions, we
show how to use compensation to undo this committed
work. We give approaches for determining when com-
pensation is straightforward to execute, and when it
is not. We can place restrictions on the execution and
commitment of atomic transactions within the open
nested transaction to facilitate smooth operation of an
open nested transaction abort. When exact compen-
sation is not possible, we give alternative approaches.

The second area in which we examine compensation
is when emulating a two-phase commit of a atomic
global transaction. Compensation is required during
two-phase commit when a local commit decision is fi-
nalized before a global abort decision is made [MR91].

293 Proceedings of the “wenty-Seventh Annual Hawaii
International Conference on System Sciences, 1994

Compensating
Library

L e k . etc.

I Local Database I

Figure 1 : The local database interface to the multi-
database.

We show how to ensure that compensation eventually
succeeds in this case, thus ensuring semantic atom-
icity of global transactions. In some cases, the mul-
tidatabase must interfere with the local databases to
ensure that compensation will always succeed when
required.

2 The Step Approach
In the Mongrel prototype multidatabase, we take a
s t e p approach to integrating the information in the
local databases into the multidatabase. In this, each
local databaqe defines an interface of function calls,
or steps that it is willing to provide for use by the
multidatabase. These steps are collected together in
the local database's own S t e p Library. This approach
to integrating heterogeneous systems is similar to that
proposed by Rusinkiewicz e t al. [ROELSO] to support
their Distributed Operation Language.

Figure 1 shows a local database and its Step Li-
brary. Note that each step in the Step Library is ex-
plicitly paired with its compensating step. As stated
earlier, compensation is a necessary function in a mul-
tidatabase that attempts to preserve the autonomy of
its local databases. This explicit pairing allows the
multidatabase to determine, at the time a global trans-
action's step is executed on a local database, what
the appropriate compensating step is. Since the step
knows exactly what is run on the local database, it also
encodes the ability to compute the values required for
each parameter of the compensating step call. Thus,
the step can log this information as it executes to en-
sure that it is available when compensation is required.

The step approach differs from the two existing ap-
proaches for integrating local databases, which are the
restricted and the unrestricted approaches. The re-
stricted approach (e.g., [HM85, AGS871) states that
each time a multidatabase application accesses a local
database, it runs a complete, predefined transaction
on that local database. The step approach differs from
the restricted approach in that each step is not itself
a separate local database transaction. Rather, differ-

Atomic in h e
Transadion mulfidafabase

Figure 2: A global transaction execution.

ent steps on the same local database can be grouped
into a single atomic global subtransaction. Steps on
different local databases can be grouped into a single
atomic global transaction. Thus, the step model is
more flexible than the restricted model.

The unrestricted model (e.g. [CBE93]) allows glo-
bal transactions in the multidatabase to run arbitrary
sets of queries in the local databases. The step model
differs from the unrestricted model in that it only al-
lows access to the local databases through the defined
steps. This restriction is useful because it provides a
uniform way of accessing the information in the mul-
tidatabase, independent of any local database's data
manipulation language. It also allows the Step Li-
brary definer to associate a compensating step with
each step, and to define how to derive the compensat-
ing step call during the execution of a step. When a
global transaction must be semantically undone, these
compensating step calls are used to generate compen-
sating global transactions. This frees the user from
having to specify compensating subtransactions him-
self.

3 Global Transaction Execution
In the step model, different steps on different local
databases can be combined into a single atomic global
transaction. Within a global transaction, the steps
on each local database are grouped into global sub-
transactions. Thus, the global transactions encom-
pass multiple global subtransactions and span multi-
ple local databases. However, to help ensure that the
global transactions are atomic, no two global subtrans-
actions of the same transaction execute on the same
local database. Each global subtransaction begins a t
the time the global transaction starts executing on the
local database, and commits atomically with its global
transaction commit. This ensures that no other trans-
actions on any local database see partial results of the
global transaction.

Figure 2 shows the basic structure of a global trans-
action execution. It also summarizes the atomicity
properties of the different parts. The global transac-
tions in a multidatabase are assumed to be atomic or

294

Atomicity

No 1. Before
Effects

Semantic
Atomicity
1. Before

Effects L
Effects

2. After Abort

(when something
committed)

1. After Commit

2. After Abort
(when nothing

-F%E&iz
(when commit
is final)
2. After Commit
(when eventually

I undone)
1. Never I 1. After Abort

Figure 3: Summary of atomicity properties.

at least semantically atomic. If the global transaction
is atomic, this means that any other transaction will
see either no effects of the atomic transaction or all of
its effects. It sees no effects if it precedes the atomic
transaction or if the atomic transaction was aborted.
It sees all the effects if it follows the atomic transaction
and the atomic transaction was committed.

Semantic atomici ty differs from atomicity in that
it may be possible for another transaction to see the
effects of a semantically atomic transaction even if
that transaction eventually is aborted. With a se-
mantically atomic global transaction, some or all of
the subtransactions of the global transaction may be
committed in the local database, and other transac-
tions may read the effects of the committed subtrans-
actions. Then, if the global transaction is eventually
“aborted, those effects will have to be semantically
undone. A syntactic undo is not possible because the
data items written by the semantically atomic trans-
action may have been accessed and/or overwritten by
some other transaction between the time the semanti-
cally atomic transaction committed its effects on the
local database and the time the “abort” is processed.
Instead, each subtransaction has an associated com-
pensating subtransaction, which semantically undoes
the effects of the original subtransaction. For exam-
ple, a subtransaction that withdraws money from a
bank account may have a compensating subtransac-
tion that deposits that money back into the account.
When a global transaction is “aborted”, the compen-
sating subtransactions for each of its committed sub-
transactions must be executed.

Figure 3 summarizes the visibility properties for
atomic and semantically atomic global transactions.

4 Compensating Transactions
We can now show how a compensating transaction
can be automatically executed given information de-
rived during the original global transaction execution.
First, we assume that all compensating transactions
are atomic or semantically atomic, and have a similar

structure to the lobal transactions. While less re-
strictive models o! compensation have been described
in certain contexts (e.g., [LKSSl]), making compen-
sating transactions atomic enables us to generate com-
pensating transactions that are robust in any situation
where compensation is needed. It also means that the
commit protocol for the compensating transactions is
identical to the one used for global transactions.

Now, let us consider the compensating steps that
form a compensating subtransaction on a single local
database. The original global subtransaction executed
a sequence of steps, and then committed. Associated
with each of these steps is a compensating step that se-
mantically undoes the effects of the original step. Just,
like with a state-based undo, we need to back out of
each step in the inverse of the order the original steps
were executed. So the compensating subtransaction
execution algorithm is as follows:

Algorithm 4.1 Input: The identifier of the subtrans-
action to be compensated for.

1. Begin a transaction on the local database.

2. From the log that records compensating subtrans-
action information, extract the compensating s tep
calls using the input subtransaction identifier.

3. Execute the compensating s teps in the inverse of
the order i n which they are logged. The sequence
in which they are logged reflects the execution or-
der of the s teps i n the original transaction.

4. C o m m i t the global subtransaction as directed b y
the global level of the multidatabase. A coordi-
nated global commit such as two-phase commit i s
necessary t o preserve the atomici ty of the com-
pensating transaction.

This algorithm requires a log to maintain local-
level compensation information for the subtransac-
tions that execute as a part of the global transactions
in the multidatabase. We maintain this information
separately for each local database. The information
logged for compensation during a global subtransac-
tion execution includes the following:

1. The identifier of the global subtransaction on the

2. The compensating step for each step that was ex-
ecuted in the global subtransactions, computed
from the explicit pairing in the Step Library.

3. The arguments for all of the compensating steps,
derived from the step’s arguments, its return val-
ues, and possibly also from the results of sup-
plementary queries concerning the local database
state a t the time the step executed.

Given that we can log enough information to be
able to deduce the compensating subtransaction defi-
nition from the original subtransaction execution, the
question remains of how to combine the compensat-
ing subtransactions into a global transaction. If we

local database.

295

consider that the purpose of the compensating trans-
action is to undo (inverse) the effects of the original
global transaction semantically, we can see that the
different undos on the different local databases should
be independent. In the original execution, subtrans-
actions form dependencies because one subtransaction
reads information from its local database, and that
information is used as an argument to a step call in
a different local database. However, the compensat-
ing transaction is working with changes that are fully
specified before it executes, and therefore there can-
not be dependencies among the subtransactions in a
compensating transaction.

We therefore assume that the subtransactions of
a compensating transaction can be executed concur-
rently (because they are independent). Given this,
the log of global transaction compensation informa-
tion at the global level of the multidatabase must con-
tain only the local database and local identifier for
each global subtransaction that comprised the origi-
nal global transaction.

The algorithm for executing a compensating trans-
action is as follows:

Algorithm 4.2 Input:
transactzon io be compensated for.

1. Begin the global iransactzon.

2. For each commztted subtransactzon of the global
transactzon, do the followzng:

The zdentzfier of the global

Using the global transactzon zdentzfier, re-
trzeve from the global transactzon log the sub-
transactzon zdentzfier and the local database
that the subtransactzon ran on.
Submzt a request t o the local database to run
the compensatzng subtransactzon, gzven the
spec zji e d s u b t ra ns a c 1 z o n z den t zji e r

5. When all local databases have indicated that the
global subtransaction execution succeeded, initiate
a coordznated atomic commit protocol.

Note here that we assume that the compensating
transaction will commit. If some global subtransac-
tion does not succeed, that subtransaction must be
retried until it eventually succeeds. This requirement,
called persistence of compensation, is recognized as
necessary for maintaining complete database consis-
tency in an environment that allows a task to partially
c.ommit before a comprehensive commit decision can
be made (see, for instance [KLSSO]). Naturally, we at-
tempt to manipulate situations where compensation
is needed to ensure that it succeeds the first time.

5 Compensatability
In this section we discuss compensatabzlzty, which de-
fines the conditions under which compensation is pos-
sible, and when compensation can be expected to pro-
ceed smoothly. The compensatability property char-
acterizes situations where persistence of compensa-
tion is certain, and where it is problematic to enforce.

Whether or not a step, global subtransaction, or trans-
action is compensatable can be derived based on a
simple syntactic analysis of the compensation code.

Definition 5.1 (Compensatable) A step, global
subtransaction, or global transaction is compensatable
i f its compensating subtransaction will always succeed,
regardless of the state of the local database.

Examples of compensatable steps include a read-
only step (which has a null compensating subtransac-
tion), and a withdrawal (because the success of the
compensating deposit does not depend on the state of
the particular bank account).

We define a step, global subtransaction, or trans-
action as provisionally compensatable if the success
of the compensating step, global subtransaction, or
global transaction does depend on the state of the un-
derlying database. For example, a deposit is provi-
sionally compensatable; as long as no one withdraws
the money in the interim it can be compensated for.

Given that a step, global subtransaction, or global
transaction has compensating code written or derived
for i t , we can also specify the following theorem that
relates its structure to its compensatability:
Theorem 1 A step, global subtransaction, or trans-
action is compensatable if compensating code can be
specified and executed, and there are no conditional
branches in the compensating code that depend on in-
formation read from the database.

Intuitively, we see that this follows from the fact
that, even if some other transaction serializes between
the global transaction and its compensating transac-
tion on some local database, that transaction cannot
change that local database in a way that would affect
the execution of the compensating transac.tion.

Theorem 2 A step, global subtransaction, or global
transaction 2s provisionally compensatable if compen-
sating code can be specified, even zf it has conditional
branches tn the compensating code that depend on in-
formation read from the database.

Note that we assume here that if a compensating
subtransaction can be executed, it has permission to
execute as well. Also, we assume that code that has
no conditional branches that depend on the database
state also calls no subroutines that have conditional
branches that depend on the database state. Proofs
for these theorems are found in [Nod93a].
5.1 Computing the Properties
In the Mongrel multidatabase model, each step in a
local database’s step library has a compensating step
defined for i t . If the code for the step has conditional
branches based on information in the local database,
the step is labeled a t step definition time as provi-
sionally compensatable. Otherwise, it is labeled as
compensatable. This label is associated with the step
and the compensating step in the Step Library itself.

Given that all the steps executed as a part of a
global subtransaction are labeled, we can then com-
pute whether the global subtransaction itself is com-
pensatable based on the following (trivial) theorem:

296

Theorem 3 If all of the s teps in a global subtrans-
action are compensatable, the global subtransaction i s
compensatable. Otherwise, the global subtransaction is
provisionally compensatable.

Similarly, we can compute the compensatability of
a global transaction using the following theorem:

Theorem 4 If all of the global subtransactions in a
global transaction are compensatable, then the global
transaction is compensatable. Otherwise, the global
transaction is provisionally compensatable.

Proofs for these theorems are given in [Nod93a].
5.2 Implications
Given that compensating code can be written for a
global transaction or subtransaction, its compensata-
bility properties define exactly when the persistence
of compensation requirement becomes a problem. If
a global transaction is compensatable, then only the
failure of a process, system, or network can prevent
the compensating transaction from completing imme-
diately. Retrying the compensating transaction in the
presence of such a failure should succeed as soon as
the multidatabase becomes failure-free, so persistence
of compensation is guaranteed.

If a global transaction is only provisionally com-
pensatable, then problems can occur when persistence
of compensation is also required. This is because a
change in the state of some data item after the original
transaction committed could prevent the compensat-
ing transaction from succeeding. The success of the
compensating transaction would then depend entirely
on some third agent changing the state of a specific
data item in the local database, so the conditional
test that depends on that value would succeed.

In this second situation, alternative measures can
be taken to ensure that persistence of compensation
holds, or a t least does not create a problem. Examples
of these alternative measures include the following:

1. Find some means to ensure that critical data
items are not changed until we can be sure that
compensation can no longer be invoked (for some
specific purpose).

2. Avoid using compensation.

3. Find alternative means of compensation if the pri-

In the following two sections we discuss compensation
in open nested transactions and compensation during
two-phase commit. We propose using different combi-
nations of the above methods to facilitate the eventual
success of compensation in the specific context.

6 Open Nested Transactions
An open nested transaction is a partial order of atomic
global transactions, each of which runs over multiple
local databases and commits when it completes its ex-
ecution. An open nested transaction can be viewed
as a long, non-atomic transaction that is executed as

mary method fails.

a partially-ordered set of independent, atomic pieces
(the atomic global transactions).

In this section, we examine issues of how open
nested transactions can use compensation to enforce
their semantic atomicity. We first examine how depen-
dencies form. We then discuss the basic compensation
algorithm. We give some constraints on the original
execution that allow for more efficient recoverability.
We also give an approach to recovery when direct com-
pensation fails.
8.1 Global Transaction Dependencies
The execution of an open nested transaction is spec-
ified as a partial order because we assume that un-
related global transactions can execute concurrently.
We assume that the open nested transaction starts
out single-threaded, but can fork new threads as it
executes. A set of threads can join if none of them
has an active global transaction.

Different kinds of dependencies form between global
transactions in an open nested transaction. An exe-
cution dependency forms between two global transac-
tions T, and under one of the following conditions:

1. Ti precedes T j in the same execution thread.

2 . T . is the first transaction in a forked thread, and 2 is the last transaction that began on the forking
thread before the fork occurred.

3. T, is the first transaction after a join operation,
and Ti is the last transaction that committed on
one of the joining threads.

Execution dependencies reflect the specified order of
global transactions in the open nested transaction ex-
ecution.

A second form of dependency can occur among
global transactions if the open nested transaction
maintains some form of internal state. We call this
type of dependency a state dependency. A state de-
pendency occurs among two global transactions in an
open nested transaction when they conflict on an in-
ternal variable. In this case, even though the two
global transactions are specified in a way that allows
them to be executed concurrently, dependencies form
in the order in which conflicting operations on the in-
ternal variables are resolved.

Both state and execution dependencies can be com-
puted and logged as the open nested transaction exe-
cutes.

Formally, we define the partial order of global trans-
actions in an open nested transaction execution 0 as
0 = (To, <$) , where

1. To is the set of global transactions that are exe-

2. <$ is a partial order of those global transactions
as executed, where T, <$ Tb if Tb has an execu-
tion dependency or a state dependency on T,.

Aborting an open nested transaction means abort-
ing the uncommitted, but active global transactions

cuted as a part of 0, and

297

Uncommitted

1i-n
Figure 4: (a) Uncommitted Global Transaction B has
forked a second execution thread, and has a successor
committed Global Transaction C. (b) Same execution,
but in this case Global Transaction C is restricted to
not commit until Global Transaction B commits.

and then compensating for the committed global
transactions. We follow principles derived from the
Sagas work [GS87], and compensate for the commit-
ted global transactions in the inverse of the partial
order defined by <: to maintain consistency in the
multidatabase during compensation. This ensures, for
instance, that the conflicts on the internal state are re-
solved appropriately during compensation. Following
this order is also necessary to correctly inverse the ef-
fects of the open nested transaction on a data item in
some local database that is accessed more than once
hy the open nested transaction.

Thus, we have the following algorithm for open
nested transaction abort:

Algorithm 6.1 (Open Nested Abort)
Input: <;.

1. Abort all active, uncommitted global transactions
zn the open nested transactzon.

2. Compensate for each committed global transaction
once all of its successors i n <: are either aborted
or compensated for.

6.2 Global Transaction Commits
In the multidatabase, we assume that for correctness
the different global transactions in an open nested
transaction are serialized in an order consistent with
that open nested transaction’s partial order <$.

Ease of compensation is affected by the order in
which those global transactions commit. When the
new thread executes its first global transaction, care
must be taken to ensure that that global transaction
does not commit before the global transaction in the
forking thread that precedes it. This could happen
if the forking thread is in the middle of executing
a global tra.nsaction when the fork statement is ex-
ecuted. If the global transaction in the forked thread
were to commit first,, we would have the situation such
as the one shown in Figure 4(a). In this situation, if
the forking global transaction B were to abort, then
global transaction C would also have to be semanti-
cally undone. To avoid this cascading, we constrain

the commit order of the global transactions to be con-
sistent with the order imposed by its state and execu-
tion dependencies.

Thus, we define the following property for an open
nested transaction:

Definition 6.1 (Open Nested Recoverability)
The open nested recoverability property for an open
nested transaction states that no global transaction can
commit until all global transactions that precede it i n
<$ have committed.

If this property is enforced, then in no case can the
abort of some uncommitted global transaction cause
some later global transaction in <g to be compen-
sated for. This means that compensation can occur
regularly and smoothly, with the execution of the com-
pensating transactions following the inverse of the or-
der <:, as defined in the previous section.
6.3 Sloppy Compensation
Despite the precautions outlined in the previous sec-
tion to ease compensation, the requirement for persis-
tence of compensation does not hold in a general open
nested transaction environment. Open nested trans-
actions periodically release the resources they hold, al-
lowing other database transactions to interleave with
their own operation. This release of control by the
open nested transaction allows other transactions to
modify information required for compensation.

Consider as an example, a travel agent making a
reservation for a customer on a Pan Am flight. The
customer pays for the flight and gets his ticket. Then,
before the customer actually takes the flight, Pan Am
goes bankrupt. The customer may no longer be able
to go on the trip, but fully canceling the Pan Am flight
and getting a refund is impossible. The customer has
relinquished control over his money.’

We propose that compensating steps be specified as
prioritized sets of guarded code blocks. The top pri-
ority code block exactly semantically undoes the orig-
inal step, provided no intervening transactions have
changed the values of any data items that it reads.
Lower-priority code blocks could take alternative, au-
tomated steps if certain conditions hold true (“sloppy
compensation”). These blocks may not semantically
undo the transaction at all, but instead take other
options to back out of the original work as much as
possible. For example, one compensating code block
for buying the ticket could specify that if the airline
was bankrupt, a letter should be written to claim the
ticket money.

7 Emulated Two-Phase Commit
In this section, we discuss compensation and how it fits
into emulating an atomic or semantically atomic two-
phase commit protocol in a multidatabase. We shift
our focus somewhat because the primary concern here
is how to enforce the atomicity or a t least semantic
atomicity during the commit process itself.

Ultimately, compensation may succeed once the bankruptcy
proceedings have completed. However, this process is not timely
with respect to getting the money back for use on the trip.

298

We begin by briefly summarizing existing work
in two-phase commitment in distributed databases,
and in emulating two-phase commitment in multi-
databases. We then provide some theoretical back-
ground for understanding two-phase commit, includ-
ing a discussion of when and how atomic and seman-
tically atomic commit are possible. We describe a
two-phase commit algorithm that uses compensation
to ensure that semantic atomicity is preserved during
global transaction commit.
7.1 Two-Phase Commit (Review)
The two-phase commit protocol [BHG87] is the stan-
dard protocol used to coordinate commitment in a ho-
mogeneous, distributed database. In two-phase com-
mit, a commit coordinator polls the participant (local)
databases of the transaction being committed to de-
termine whether or not they are certain to commit.
Each participant checks whether its part of the trans-
action executed successfully. If so, it returns a “yes”
vote and enters the prepared state. If not, it returns
a “no” vote and aborts its subtransaction.

Once the commit coordinator receives votes from
all of its participants, it makes a global decision. If
all votes were “yes”, the global decision is “commit”;
otherwise, it is “abort”. The commit coordinator for-
wards the global decision to the participants, who
commit or abort their subtransactions from the pre-
pared state, according to the global decision.

The prepared state essentially allows the commit
process to be split into two parts in the local database.
First, it makes a local decision that can potentially be
revoked (if the local decision is to commit). Later,
it possibly revokes the decision. However, once the
global decision is made it becomes irrevocable.

In a multidatabase, local database autonomy as-
sumptions constrain us, in that we cannot ensure that
the local databases support a prepared state that can
be used by the multidatabase’s commit coordinator (a
“visible” prepared state). Thus, we are restricted to
taking one of the following two tactics for making a
global decision (from [MR91]):

Local commit before global decision: the local
database commits its subtransaction when it for-
wards the “yes” vote to the commit coordinator.
If the global decision is “abort”, a compensating
subtransaction must be run on the local database
to undo the committed effects.

Global commit before local commit: the local
database makes an educated guess concerning its
vote, but commits nothing. If the global decision
is “commit”, the local database commits the sub-
transaction. If the actual local commit fails, the
subtransaction must be redone.

In this work, we choose a local commit before global
decision strategy.
7.2 Subtransaction Information Flow
To understand the commit properties of global trans-
actions, we first need to examine information flow be-
tween the subtransactions in the global transaction

being committed. Let the subtransaction information
f low (SIF) be a relationship (T, < F) , where

1. T is the set of subtransactions in the global trans-
action, and

2. Ta < F Tb if subtransaction T, and T b in T conkin
conflicting steps sa and sb, respectively, and sb
reads information local to the global transaction
that Sa wrote.

For the purposes of this discussion we assume that
the subtransaction information flow is acyclic.’ *e
also assume that there is a begin marker B in the
subtransaction information flow, and that every sub-
transaction is a descendant of B. Similarly, we have a
commit marker C, where every subtransaction has C
as its descendant.

Let G be the directed graph representation of < F ,
with nodes for each subtransaction, as well as for B
and C. Given the assumptions in the previous para-
graph, we can see that G is a directed acyclic graph
with a single source at B and a single sink at C. Define
B and C to be compensatable. Label each subtrans-
action in the global transaction with a c if i t is always
compensatable or if i t executes on a local database
that supports a visible prepared state, and a cp if it is
only provisionally compensatable.

We assume that any subtransaction in a local
database that supports a visible prepared state can
be considered to be compensatable. This is because
we can emulate compensatability using the visible
prepared state. When a local commit decision is
made, we put the subtransaction in the prepared state.
This guarantees that the subtransaction will eventu-
ally commit. Once the global decision is made, the
subtransaction can commit or abort from the prepared
state.

Now, we make the following definition with respect
to the graph G:

Definition 7.1 (Max Compensatable Subgraph)
The maximum compensatable subgraph i s the largest
subgraph of G containing the node B i n which all the
nodes have c i n their label (are compensatable) and
whose ancestors are also all i n the max imum compen-
satable subgraph.

Figure 5 illustrates the maximum compensatable sub-
graph for an example global transaction.

Global transaction commit processing is con-
strained somewhat by the order < F . This is because if
we ever decided to retry a subtransaction, all subtrans-
actions that follow it in < F would also have to be re-
tried to ensure that they read the correct informations3
Starting at the source, intuitively we want to commit
each global transaction once all of its predecessors in
< F have committed. Since the maximum compen-
satable subgraph contains the largest portion of the

‘Further details concerning cycles in the subtransaction in-

3Forward recovery techniquesare not discussed in this paper,
formation flow can be found in [Nod93rrj.

but a detailed approach can be found in [Nod93a].

299

B (cl Maximum
Compensatable / Y

SJ- {c) s2 {c) Subgraph

Figure 5:
graph.

Example maximum compensatable sub-

global transaction execution that can always be com-
pensated for, it also represents the set of global sub-
transactions that can always be committed locally be-
fore a global decision is made. Thus, we have the in-
tuition behind following theorem, proved in [Nod93b]:

Theorem 5 The maxzmum compensatable subgraph
contazns the maxamum set of subtransactzons that can
uncondataonally be locally conimztted before a global de-
ctszon 2s m a d e , zf srmantzc atomzczty 2s to be mazn-
tazned.

7.3 Algorithm -
Given this background, we can now examine two-
phase commit, in a multidatabase. From Theorem 5,
we see that if a global transaction has a t most one
subtransaction that is not in the maximum compen-
satable subgraph, we can define a simple strategy
that, given the labeled subtransaction information
flow graph can commit its global transaction. First,
commit all of the the subtransactions of the global
transaction in the maximum compensatable subgraph.
If any return a “no” vote, compensate for the commit-
ted subtransactions and make a global “abort” deci-
sion. Then, a global decision can be made. If a single
uncommitted subtransaction remains, the global de-
cision is made during the process of committing it,
according to t,he outcome of that specific local com-
mit. Otherwise, a global “commit” decision is made.
This algorithm succeeds only because there is a t most
one global subtransaction where persistence of com-
pensation is questionable.

This algorithm is impractical in that we cannot
guarantee that, all global transactions will have a sub-
transaction information flow graph that fits its crite-
ria. linfortunately, if more than one global subtrans-
action is not in the maximum compensatable sub-
graph, then all such subtransactions must cooperate
to make a unanimous global decision. This cannot
be done if the local databases are fully autonomous.
In the following section, we describe ways that others
have proposed to help the multidatabase make a coor-
dinated decision while violating the autonomy of the
local databases as little as possible.

7.3.1 Blocking Protocols
Because autonomous local databases in a multi-
database do not necessarily provide a visible prepared
state, the multidatabase itself must provide other pro-
tocols (blockzng protocols) to block other transactions
from interfering with its subtransactions during vot-
ing and commit phases of the commit process. These
protocols intervene in the local databases for a period
to block the execution of conflicting transactions, and
thus all violate local database autonomy assumptions.

Both active and passive blocking protocols have
been proposed for multidatabases. An active block-
ing protocol is one that needs to be “turned on”
and “turned off’. A passive blocking protocol im-
plements a low-level filtering a t all times. The
most widely-proposed passive blocking protocols par-
tition the multidatabase according to what can be ac-
cessed in what ways by the global and local transac-
tions [BSTSO, MRKS91, MRB+92].

Several examples of active blocking protocols have
been proposed. For example, in Hydro [PRRSl], no
transactions are allowed to pass operations to the lo-
cal database while a global commit decision is being
made. This type of blocking protocol requires that the
multidatabase to be able to delay the local transac-
tions. Mullenet al. [MJS] propose a reservation proto-
col where the global transactions use additional data
in the database to reserve the resources they need.
Denied local updates, proposed for the 2PC agent
method [WVSO], require modifying the local databases
to prevent updates while a global commit decision is
being made.

7.3.2 The Generic Algorithm
We can now formalize a generic algorithm that can
successfully implement an emulated two-phase commit
in a multidatabase, provided that all local databases
support a visible prepared state or a blocking protocol:

Algorithm 7.1 (Emulated Two-Phase Commit)
Input: Labeled subtransaction information pow graph
for the global transaction.

1. Coniniit a l l of the global subtransactions in the
niazimtliri compensatable subgraph. If one aborts,
make a global abort decision, compensate for
the committed subtransactions, and return abort.
Note that the commits can all proceed concur-
rently, because the compensating subtransactions
should be independent of one another.

2. For the local databases that participated in the
global transaction and whose subtransactions did
not commit zn the first step: I f one or fewer
subtransactzons remains to commit, go to the
nrxt step directly. Otherwzse, f o r each such local
database, if it supports an actiwr blocking protocol,
turn blockzng on.

3. ~OPllltl2t a l l of the remaining subtransactions. I f
any of these abort (a “no” decision is returned),

300

make a global decision t o abort. Compensate f o r
all of the commit ted transactions, then turn of l
the blocking protocols on all local databases where
i t was turned on in the previous s tep.

4. Make a global decision to commit .

Provided that only one global transaction is in the
commit process at a time, this algorithm succeeds and
maintains the semantic atomicity of the global trans-
action. It succeeds because the blocking protocol ef-
fectively protects the data that the provisionally com-
pensatable transactions depend on from changing.

This algorithm only preserves semantic atomicity
because, a t least for the transactions committed in the
first step, their effects become visible and are accessi-
ble by other transactions on the local database. Even
if the blocking protocol is run on all local databases
for the entire duration of the algorithm, this algorithm
still does maintain full atomicity. This is because there
may be small side effects in the original global transac-
tion that cannot be compensated for easily, but whose
presence is deemed not to be significant by the ap-
plication designer. If no such side effects are present,
then full atomicity can be g ~ a r a n t e e d . ~

8 Related Work
Open nested transaction models such as Sagas GS871,
Flex Transactions [ELLRSO] , and ConTracts /WRS1]
use compensation during recovery. Compensation
was first defined in detail by Garcia-Molina and
Salem [GS87]. In Sagas, each transaction has a cor-
responding compensating transaction. A correct ex-
ecution of a Saga looks like a sequence of trans-
actions: T I , Tz, . . . , T,. However, the Saga may
also be undone in midstream, causing the compen-
sating transactions to be run in the inverse order:
TI , T2, . . . , Ti, Ci, . . . , C2, C1. This approach requires
a Saga’s code and compensating code to be stored per-
sistently.

Multilevel transactions also require compensation-
based recovery strategies [WHBMSO]. Multilevel
transaction recovery has been implemented in the
DASDBS project. [WeiSl] notes several other ap-
proaches for multilevel transactions, with different
strategies for maintaining (semantic) undo and redo
information at the various levels.

Nodine’s thesis Nod93aI expands on compensation
and other approac I es to maintaining semantic atom-
icity during two-phase commit. This thesis presents a
solid underlying theory concerning global transaction
properties and how they affect the ability to enforce
different kinds of atomicity in a multidatabase.

The Optimistic Commit Protocol [LKSSl] also sup-
ports semantic atomicity. However, Levy et al. ob-
serve that the compensating subtransactions do not
need to be coordinated as strongly because they are
largely independent.

Korth et al. [KLSSO] studied compensation with re-
spect to their entitywise 2PL correctness specification

4The presence or absence of side effects is a property of the
step code, and can thus be controlled by the step code definer.

for transaction execution. This paper provides a good
characterization of some of the stickier problems en-
countered when implementing any scheme that uses
compensation.

9 Conclusions
As more and more complex applications rely on
databases to persistently store information, new and
advanced transaction models are emerging. Mul-
tidatabases provide one situation where traditional
guarantees such as atomicity cannot be easily enforced
for all transactions, simply because local database
autonomy is incompatible with coordinating multi-
database decisions. Also, emerging classes of appli-
cations such as work flow applications map naturally
to an open nested transaction model, and may access
multiple databases.

Compensation is used to recover database consis-
tency semantically when committed work must be
undone. Work gets committed early in open nested
transactions because their length precludes using tech-
niques such as locking for holding the resources the
transaction touches. Open nesting encourages concur-
rency among long-lived applications, but also relaxes
atomicity guarantees. Work also gets committed early
during a multidatabase two-phase commit, because lo-
cal database autonomy precludes a commit coordina-
tor from being able to ensure that a commit of a sub-
transaction will succeed without actually committing
that subtransaction and releasing its resources. If the
global decision is ultimately to abort, compensation
must be used to recover database consistency.

We have discussed issues of compensation in both
of these situations, within the context of our multi-
database transaction model. This model is based on a
notion of steps, or procedures that encapsulate the ac-
tual information in the local databases. Global trans-
actions in the multidatabase can only access the lo-
cal databases via the steps. The step interface also
provides adequate information to determine if a step
is easily compensatable, or likely to cause trouble in
specific situations. It also encodes additional process-
ing in the function definition for the step to be able
to derive and log information that would be required
to compensate for the step. At the multidatabase
level, we can also independently compute dependency
information to ensure that compensation maintains
the consistency of the multidatabase at all times.
Thus, because of the step library interface, the multi-
database can use the information logged from an open
nested transaction execution to generate compensat-
ing transactions and subtransactions when needed.

Problems with compensation occur when interfer-
ence from other transactions prevents compensation
from succeeding. We provided a theory for determin-
ing when this interference is possible. In open nested
transactions, this interference cannot be prevented,
but we gave approaches to dealing with such conflicts
when they occur. In emulating two-phase commit, we
presented protocols to prevent such interference.

This multidatabase architecture and automated
compensation approach have been successfully imple-
mented in our prototype multidatabase, Mongrel.

301

References [MRB+92] Sharad Mehrotra, Rajeev Rastogi, Yuri
[AG S 8 71

[BHG87]

[BSTSO]

[CBE931

[EL L R90]

[Gra81]

[GS87]

[HM85]

[KLSSO]

[LKS9 I]

[MJSI

[MRSl]

R. Alonso, H . Garcia-Molina, and K. Sa-
lem. Concurrency control and recov-
ery for global procedures in federated
database systems. IEEE Data Engineer-
ing Bulletin, 10(3), 1987.

P. Bernstein, V. Hadzilacos, and
N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-
Wesley, 1987.

Yuri Breitbart, Avi Silberschatz, and
Glenn R. Thompson. Reliable transaction
management in a multidatabase system.
In SIGMOD Proceedings, pages 215-224,
1990.

Jiansan Chen, Omran Bukhres, and Ah-
med K. Elmagarmid. IPL: A multi-
database transaction specification lan-
guage. In Proceedings of the 13th Inter-
national Conference on Distributed Com-
puting Systems, 1993.

A. K. Elmagarmid, Y. Leu, W. Litwin,
and M. Rusinkiewicz. A multidatabase
transaction model for InterBase. In
VLDB Proceedings, pages 507-518, 1990.

Jim Gray. The transaction concept: Vir-
tues and limitations. In VLDB Proceed-
ings, pages 144-154, 1981.

Hector Garcia-Molina and Kenneth Sa-
lem. Sagas. In ACM SIGMOD Proceed-
in!gs, pages 249-259. ACM, 1987.

Dennis Heimbinger and Dennis McLeod.
A federated architecture for information
management. ACM Transactions on Of-
fice Automation Systems, 3(3):253-278,
July 1985.

Henry F. Korth, Eliezer Levy, and Abra-
ham Silberschatz. A formal approach
to recovery by compensating transac-
tions. In VLDB Proceedings, pages 95-
106, 1990.

Eliezer Levy, Henry F. Korth, and Abra-
ham Silberschatz. An optimistic commit
protocol for distributed transaction man-
agement. In 1991 ACM SIGMOD Pro-
ceedings, pages 88-97, 1991.

James G . Mullen, Jin Jing, and Jamshid
Sharif-Askary. Reservation commitment
and its use in multidatabase systems.
(submitted to DEXA 1993).

Peter Muth and Thomas G . Rakow. Ato-
mic commitment for integrated database
systems. In 1991 Data Engineering Pro-
ceedings, pages 296-304, 1991.

Breitbart, Henry F. Korth, and #vi Sil-
berschatz. Ensuring transaction atomic-
ity in multidatabase systems. In PODS
1992 Proceedings, pages 164-175, 1992.

[MRKSSl] Sharad Mehrotra, Rajeev Rastogi, Hen-
ry F . Korth, and Abraham Silberschatz.
Non-serializable executions in heteroge-
neous distributed database systems. In
Proceedings of the First International
Conference on Parallel and Distributed
Information Systems, 1991.

[Nod93a] Marian H. Nodine. Interactions: Mu1-
tidatabase Suppod for Planning Appli-
cations. PhD thesis, Brown University,
1993. (Also Brown University Com-
puter Scinece Department Technical Re-
port CS-93- 17).

[Nod93b] Marian H. Nodine. Supporting long-
running tasks on an evolving multi-
database using Interactions and events.
In Proceedings of the Second Interna-
tional Conference on Parallel and Dis-
tributed Information Systems, pages 125-
132, 1993.

[PRRSl] William Perrizo, Joseph Rajkumar, and
Prabhu Ram. Hydro: A heterogeneous
distributed database system. In SIGMOD
Proceedings, pages 32-39, 1991.

[ROELSO] M . Rusinkiewicz, S . Ostermann, A. El-
magarmid, and K. Loa. The distributed
operation language for specifying multi-
system applications. In Proceedings of the
First International Conference on System
Integration, pages 337-345, April 1990.

Principles and real-
ization strategies of multilevel transac-
tion management. ACM Transactions on
Database Systems, 16(1):132-180, March
1991.

[WHBMSO] Gerhard Weikum, Christof Hasse, Peter
Broessler, and Peter Muth. Multi-level
recovery. In Proceedings of the 9th ACM
SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages

[WR91] Helmut Waechter and Andreas Reuter.
The ConTract model. In A. Elmagar-
mid, editor, Database Transaction Mod-
els for Advanced Applications. Morgan-
Kauffman, 1991.

[WVSO] Antoni Wolski and Jari Veijalainen. 2PC
agent method: Achieving serializability
in presence of failures in a heterogeneous
multidatabase. In Proceedings of PAR-
BASE, pages 321-330, 1990.

[Weigl] Gerhard Weikum.

109-123, 1990.

302

