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Abstract
The unique aquatic nature of swimming makes it very dif-

ficult to use social or technical strategies to mitigate the te-
diousness of monotonous exercises. In this study, we pro-
pose MobyDick, a smartphone-based multi-player exergame
designed to be used while swimming, in which a team of
swimmers collaborate to hunt down a virtual monster. In this
paper, we present a novel, holistic game design that takes
into account both human factors and technical challenges.
Firstly, we perform a comparative analysis of a variety of
wireless networking technologies in the aquatic environment
and identify various technical constraints on wireless net-
working. Secondly, we develop a single phone-based inertial
and barometric stroke activity recognition system to enable
precise, real-time game inputs. Thirdly, we carefully devise
a multi-player interaction mode viable in the underwater en-
vironment highly limiting the abilities of human communi-
cation. Finally, we prototype MobyDick on waterproof off-
the-shelf Android phones, and deploy it to real swimming
pool environments (n = 8). Our qualitative analysis of user
interview data reveals certain unique aspects of multi-player
swimming games.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General—Games; C.3

[Special-purpose and Application-based Systems]:
Real-time and embedded systems; C.2.1 [Computer-
Communication Networks]: Network Architecture and
Design—Wireless communication

General Terms
Measurement, Human Factors, Experimentation

Keywords
Exertion Games, Swimming, Activity Recognition, Wire-

less Networking Performance
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1 Introduction
Owing to the high dropout rates of fitness activities,

Human-Computer Interaction (HCI)-related research on
gamifying exercise activities has received significant atten-
tion in both academia and industry in recent years. Wii Fit
and Kinect Sports are the leading gaming consoles that sup-
port various exercise activities, for example, boxing, tennis,
and running. Moreover, recent advances in sensor and de-
vice technology have spurred the creation of new exergames,
which range from transforming existing physical activities
into virtual games [3, 16, 24, 40, 51] to enabling remote so-
cial interaction among exercisers [33, 34, 35, 40].

While most previous work has focused on ground-based
exercise activities, there has recently been an immense in-
terest in examining various water activities. For instance, in
the Games4Health workshop at ACM CHI 2013 [9], various
gamification scenarios were explored. Pell and Mueller [44]
have prototyped Gravity well, an interactive underwater sys-
tem that enables exertion play under altered gravity condi-
tions. Dungeons and Swimmers [27] is a single-player game
where swimmers’ strokes are used as input for interacting
with virtual objects.

The goal of this study is to transform normal swimming
activity into an interactive multi-player game. Swimming is
a widely enjoyed sport for all, and offers a number of bene-
fits, such as increased cardiovascular endurance and reduced
risk of joint injuries. In the past, related swimming studies
have mainly been focused on assistive technologies, such as
record-keeping and computer-assisted training. For exam-
ple, SwimMaster [4] analyzes swimming motions by means
of several body-attached sensors, in order to provide feed-
back for swimming posture adjustment. Swimmoid [52] is
a mobile underwater robot that follows a swimmer to vi-
sually analyzing the swimmer’s posture and providing real-
time feedback. Davey et al. presented a system [11] that
visualizes motion data of swimmers for performance analy-
sis. Several ongoing research projects have investigated how
smartphones can be used to enable water activity sensing and
user interaction [27, 31]; however, these studies have not
provided any detailed information about the sensing mech-
anisms or the evaluation results obtained.

In this paper, we propose an interactive multi-player game
in which a group of swimmers coordinate themselves in or-
der to achieve the common goal of hunting a monster. How-
ever, interconnecting the swimmers in an inherently isolated
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environment need to overcome several key technical chal-
lenges, as well as human factor constraints. For interactive
game play, wireless data exchange among users and real-
time swimming stroke detection need to be supported. As-
suming that the smartphone is attached to the swimmer’s arm
with an armband (as it is generally the case for outdoor exer-
cises), the smartphone will be periodically immersed in wa-
ter. However, it has not been established which networking
technologies would work, or how well they would perform,
under such circumstances. There is a lack of literature focus-
ing on comparative performance analyses of various wireless
networking technologies in aquatic environments. Further-
more, previous studies on sensor-based swimming analysis
were limited since sensing techniques have mainly been de-
signed for the training of elite or semi-elite athletes. In such
cases, motion data, recorded using multiple body-worn mo-
tion sensors, are analyzed offline so that feedback can be pro-
vided [4, 11]. None of the earlier work examined real-time
stroke classification or the impact of skill differences on clas-
sification accuracy.

The challenges to transform swimming into a socially in-
teractive game also involve those with human factors and
design constraints. Importantly, the in-game multi-player in-
teraction should be carefully designed in a viable form with
highly limited visual communication, inability of spoken
communication, and reduced sensitivity of auditory commu-
nication. Through such careful considerations, we designed
MobyDick, a team-based game in which a huge underwater
monster, Leviathan, is hunted. As in popular multi-player
online games, multiple swimmers form a team and play
MobyDick collaboratively, attacking Leviathan, defending
themselves, and healing the wounded. To this end, Moby-
Dick features the unique mode of interaction by employing
team-wide audio-based broadcast of social awareness cues,
where each player is encouraged to individually devise au-
tonomous but highly strategic and collaborative game play.

In the design and evaluation of MobyDick, the key re-
search elements include 1) networking performance analysis
to understand the non-functional requirements of exergames;
2) real-time swimming activity detection to enable user inter-
actions with the game content (using swimming action as a
game controller); and 3) system implementation and a pre-
liminary user study under the autonomous multi-player in-
teraction mode. The key contributions of this paper can be
summarized as follows.

• We performed a comparative analysis of networking
performance (delay, packet loss, and reconnection) in
aquatic environments. We found that periodic blackouts
and high packet loss occur when WiFi is used. Swim-
ming strokes have a great impact on networking perfor-
mance on the whole. Overall, LTE provides fairly con-
sistent performance with a reasonable latency of 50ms
(suitable for an interactive game design), despite the
fact that it may experience bulk loss and disconnection.

• We built a real-time stroke detection module called
StrokeSense by leveraging multiple sensors in a smart-
phone, namely, an accelerometer, a gyroscope, and a
barometer. Unlike earlier sensing systems designed for
athlete training [4, 11], StrokeSense enables real-time
classification of four popular strokes. We concluded

that considering differences in individual swimming ca-
pability is critical for achieving high classification accu-
racy, and demonstrated that personalized model training
is preferable for our gaming scenario.

• We designed MobyDick and implemented a working
prototype by carefully considering earlier findings on
networking and stroke sensing, as well as the design
constraints of underwater human communication. In
particular, we demonstrated that certain technical chal-
lenges, such as temporary disconnection, can be over-
come with interaction design (for example, by changing
a player to a “stunned” state). We performed a prelim-
inary user study (n = 8). Our participants reported that
the proposed game was enjoyable, stroke sensing was
timely, mappings between stroke types and game ac-
tions were intuitive, and the broadcast of social aware-
ness cues provided a uniquely thrilling swimming ex-
perience.

2 Networking Performance in the Pool
We analyzed the networking characteristics in the swim-

ming pool and drew implications for designing interactive
systems. The environment is unique in that the smartphone
is periodically submerged in the water, at which times net-
work performance can degrade, and even worse, network
connection can be lost. In this section, we aim to answer
the following questions: 1) How do the different networking
technologies (WiFi, 3G, and LTE) perform when the smart-
phone is under water? 2) If the network is disconnected, how
long does it take to recover its connection? 3) Will there be
significant differences in networking performance for differ-
ent swimming strokes?
2.1 Experimental Setup

We measured the round trip time (RTT), packet loss rate,
and received signal strength (RSS) of WiFi, 3G, and LTE. We
used constant bit rate traffic in which a packet was scheduled
to be sent in 50 ms. The size of a packet was set to 128 bytes,
which is a common packet size observed in online interac-
tive games [14]. After sending a packet, a submerged node
waited for an ACK packet of the same size, i.e., simulating
periodic game state exchanges between a client and a server.
A server was connected via the Internet, and a smartphone
client sent/received packets via WiFi or cellular links. In the
experiment, we used two waterproof smartphones: the Ca-
sio G’zOne Commando LTE and the Samsung Galaxy S4
Active. Both smartphones are advertised as being able to
sustain water immersion at 1 meter for 30 minutes.

A server was located at a laptop that was connected to
a wired network, with a CPU of 2.5 GHz and memory of
8 GB. For WiFi, we used ipTIME’s A2004Plus access point,
which supports 802.11b/g/n/ac and has two antennas for each
bandwidth, i.e., 2.4 Ghz and 5 Ghz. Furthermore, we con-
sidered four protocols for WiFi: 802.11g (2.4 GHz), 802.11n
(2.4 GHz), 802.11a/n (5 GHz), and 802.11ac (5 GHz), with
two different AP’s transmission power settings (100% and
50%). Since the Casio G’zOne Commando did not support
5 GHz operations, we used Galaxy S4 Active for WiFi mea-
surements. For cellular network experiments (3G and LTE),
we used two major cellular operators in Korea, namely LG
U+, and KT Olleh. Casio G’zOne Commando was used for
LG U+, and Galaxy S4 Active was used for KT Olleh.
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Figure 1: Measurement configuration

We measured the RSS values at the smartphones in dBm.
RSS reports are dependent on the characteristics of wire-
less communication methods. In WiFi, Android periodically
reports RSS values. In Wideband Code Division Multiple
Access (WCDMA), Android reports Common Pilot Chan-
nel (CPICH)’s Received Signal Code Power (RSCP) (dBm),
measuring the power level the pilot channel of a cell. In LTE,
Android reports Reference Signal Received Power (RSRP)
(dBm), measuring the average power of cell-specific refer-
ence signals that exist in all downlink sub-frames. For ease
of illustration, we simply call these metrics RSS.1

To understand performance changes according to differ-
ent water depths, we varied the depth from 5cm to 20cm in
5cm increments. This reflects the fact that a swimmer’s up-
per arm is typically immersed approximately 10-30 cm into
the water. We built an in-lab test bed to simulate a swim-
ming pool, using a large water container with a diameter of
100 cm and depth of 100 cm (see Figure 1). We used water
with a chlorine level similar to that of a real swimming pool,
as ionized particles of chlorine can affect wireless signal at-
tenuation [55].

We mounted a smartphone onto a wooden rod, which was
used to place the phone at a specific depth under water. Since
touch sensing does not work under water, we programmed
the logging software to automatically start its transmission
when the smartphone’s pressure level was greater than a
given threshold level for 2 seconds. A stream of 2000 con-
sistent bit rate (CBR) packets was sent for each trial, and we
repeated this measurement for 10 times for each experimen-
tal condition. We also performed a field trial in a real swim-
ming pool with four 25 m lanes. A participant wore a smart-
phone armband on the upper arm (as shown in Figure 1) and
performed four stroke types, namely freestyle, backstroke,
breaststroke, and butterfly. The participant swam 100 meters
of each stroke.
2.2 Measurement Results
2.2.1 RTT/RSS/Packet Loss Rate Results

We observed that the performance of wireless communi-
cation was severely degraded by the water depth. Wireless

1In WCDMA and LTE, actual RSS calculation should consider the car-
rier bandwidth; e.g., in LTE, RSRP should be multiplied by the number of
sub-carriers.

channel conditions became worse as a device was immersed
deeper. Accordingly, the packet loss rate and the variance of
RTT values increased. WiFi had the lowest RTT (less than
10 ms), whereas cellular networks had much larger RTT val-
ues than WiFi (LTE: 50 ms, 3G: 160 ms), which is in line
with the previous measurement studies [19]. The RTT of
LTE was much shorter than that of 3G, as it uses millisecond-
level scheduling. However, LTE had larger latency values
than WiFi, which is possibly due to the multi-hop nature of
IP data delivery in cellular network architecture [26].

In WiFi measurements, the packet loss rate and the RTT
values were not affected when a smartphone was slightly
submerged under water (5 cm). There was no packet loss
except the case with 802.11g (50% TX power, a depth of
5 cm) that had 1% packet loss. The mean RTT values were
ranged from 5 ms to 8 ms (in both Air and 5 cm under wa-
ter). 802.11g and 802.11n lowered the data rates to cope with
degraded channel conditions (median rates of 11 Mbps and
39 Mbps, respectively). However, we observed notable per-
formance degradation at a depth of 10 cm. Furthermore, con-
nectivity was completely lost at a depth of 15 cm. The loss
rates went up to 10%, although the data rates were adjusted
to 1 Mbps (802.11g) and 13 Mbps (802.11n)—802.11n oc-
casionally set the rate to 1 Mbps, but the median rate was
13 Mbps. Also, lowering TX power in 802.11n had sig-
nificant impact on connectivity since 802.11n with 50% TX
power lost its connectivity at a depth of 10 cm. We hypoth-
esized that these performance differences were mainly due
to rate adaption algorithms that vary widely across differ-
ent protocols and vendors [43]. While the results are not
shown due to space limit, 802.11n/ac at 5GHz did not work
at all underwater. In the air measurement, the observed data
rates at 5GHz were significantly higher than those at 2.4 Ghz
(802.11ac: 433 Mbps, 802.11n: 150 Mbps), and yet, they
immediately lost connectivity when they were submerged
under water. As explained later in the paper, this is because
higher frequency signals are more susceptible to absorption.

In LTE measurements, no significant difference was ob-
served in the air; i.e., the mean RTT values of KT and LG
U+ were 49.9 ms and 50.2 ms, respectively. However, we
found significant RTT differences under water. KT did not
experience any packet loss till a depth of 10 cm, but at a
depth of 15 cm, it had 63% packet loss. Its connection was
completely lost at a depth of 20 cm. In contrast, LG U+ had
around 5% packet loss at a depth of both 5 cm and 10 cm, but
the loss rate increased to 50% and 66% at a depth of 15 cm
and 20 cm, respectively. KT had consistently lower RTT
values than LG U+; KT maintained the mean RTT values
around 60 ms, whereas the mean RTT values of LG U+ sub-
stantially increased, ranging from 50.2 ms (air) and 170.1 ms
(5 cm) to 329.3 ms (15 cm) and 2026.0 ms (20 cm). Also,
KT had consistently higher RSS values than LG U+. Such
differences may be due to the locations of base stations, and
we performed additional in-air measurements in four differ-
ent sites, all located within one kilo-meter from the original
experiment site. Under the sites considered, we found that
KT had consistently higher RSS values (with the RSS differ-
ences ranging from 2 dBm to 9 dBm) and lower RTT values
(with the RTT differences ranging from 4 ms to 7 ms). When
we measured the RSS values at a parking lot of the build-
ing where we had conducted our experiment, the mean RSS
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Figure 2: Round trip time (RTT) measurement results
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Figure 3: Packet loss rate (PLR) measurement results
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Figure 4: Received signal strength (RSS) measurement results

values of KT and LG U+ were increased to -73.2 dBm and
-78.3 dBm, respectively. Those RSS values were substan-
tially greater than those inside the building (approximately
20 dBm). Although significant differences in in-air RTT val-
ues were not observed, we expect that network performance
under water will be improved outdoors due to better RSS
values.

Compared to LTE, 3G Evolved High-Speed Packet Ac-
cess (HSPA+) did not work well under water, as it failed
to sustain connectivity when a device was immersed deeper
than 5 cm. There are several possible explanations for this
observation. Firstly, LTE typically uses lower frequency
bands than 3G HSPA+ (LTE: 800 Mhz vs. 3G: 2 Ghz), and
thus, LTE’s water absorption coefficient is smaller. Accord-

ing to Beer-Lambert’s law, the intensity of a radio wave is ex-
ponentially attenuated along its traversing distance, and the
absorption coefficient is dependent on the frequency of the
radio wave; that is, the higher the frequency, the higher the
absorption coefficient [55]. Secondly, LTE uses multiple an-
tennas and its physical modulation is based on Orthogonal
Frequency-division Multiple Access (OFDMA). Whereas
3G’s WCDMA spreads a signal into a wide band, LTE’s up-
link uses narrower frequency bands for transmission, and the
use of multiple antennas makes communications more reli-
able and robust. Thirdly, LTE has more robust automatic
repeat-request (ARQ) schemes for reliable data delivery (one
at the Medium Access Control (MAC) layer, and another at
the Radio Link Control (RLC) layer) [26]. While the me-
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Figure 5: RTT traces of LTE (LG U+) at two different water
levels

dian values of LTE were not very large, we observed RTTs
with values greater than 500 ms in certain trials, particularly
when a phone was immersed into water more than 10 cm
deep. We manually investigated the RTT and link state traces
to find the root cause of this large latency. In Figure 5, we
present two plots: 5 cm and 15 cm cases. In both cases, we
found that there were sudden spikes in RTT, and then RTT
gradually decreased over time. These spikes were immedi-
ately followed by a bulk packet loss, ranging from only a few
packets to hundreds of packets.

In our experiments, we used UDP packet streams that will
be buffered at the UDP transport layer and the LTE link layer.
When the channel conditions are excellent, scheduled pack-
ets are delivered immediately. However, when the channel
conditions worsen (due to signal attenuation and destructive
interferences), LTE’s link layer will take significantly longer
for packet (re-)transmissions. As illustrated earlier, LTE has
the dual layers of ARQ [26]. LTE can have eight outstanding
link layer packets, each of which is scheduled in a 1 ms sub-
frame. The size of a subframe can be up to tens of kilobytes,
depending on the channel bandwidth. When the channel con-
dition becomes very poor, there are many retransmissions,
and in the meanwhile, a large number of packets will be
backlogged. These packets will then reach their maximum
transmission limits and eventually be dropped, thus leading
to bulk packet loss. Moreover, since an LTE base station
typically uses subframe-level link scheduling, under the poor
channel conditions, it may allocate subframes to those nodes
with good channel conditions, which makes more packets to
be backlogged. In practice, each operator may use differ-
ent scheduling policies, although proportional fairness algo-
rithms are common.
2.2.2 Network Reconnection Results

When a connection is lost, a wireless client attempts to
re-establish its wireless connectivity. In the case of swim-
ming games, a node suffers from poor channel conditions,
which may lead to network disconnection. Analyzing net-
work reconnection patterns can greatly assist game design-
ers and developers with solving network disconnection prob-
lems. Here, we investigate the latency of network connectiv-
ity being re-established in WiFi and LTE links.

WiFi reconnection. Reconnection was found to take a
long time. The current implementation of 802.11 states that
WiFi reconnection follows a series of steps: i.e., AP scan,
association, and DHCP. Our analysis of the Android ker-
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Figure 6: Reconnection time between LTE network
providers (KT, LG)

nel source code revealed that AP scan is scheduled for ev-
ery 15 seconds. This means that when disconnection takes
place, a scanning event will happen after up to 15 seconds.
If the scan results contain a preferred WiFi AP, a client au-
tomatically attempts to reconnect to that AP. Our measure-
ment results showed that scan, association, and DHCP took
1080.0 ms, 141.1 ms, and 1892 ms, respectively, on aver-
age. Here, the major sources of delay were AP scan in-
terval (15 s) and DHCP (1.8 s). For fast reconnection, we
can handle these two delay sources as follows: whenever
disconnection takes place while swimming, we can immedi-
ately reconnect to the previously associated AP, by reusing a
previously assigned IP address. This method can be imple-
mented by modifying a dynamically loadable module (called
a wpa supplicant), which handles WiFi operations in An-
droid. In our implementation, the modified WiFi client per-
formed scanning immediately after disconnection (instead of
waiting for 15 s), and DHCP was omitted by reusing a pre-
viously assigned IP address. This patch enabled us to reduce
reconnection latency to below 1 s in Android.

LTE reconnection. We reported the measurement results
for the LTE reconnection latency. We immersed a smart-
phone into the water (20 cm deep) and waited until it lost
network connectivity. The time taken for disconnection to
occur varied widely; on average, it was 10–30 s. Upon dis-
connection, we took the phone out of the water (mimick-
ing swimming strokes). In our measurements, we logged the
sensor readings from a barometer to detect when the smart-
phone client emerged from the water, as there were signifi-
cant pressure level changes at this point. In our experiment,
the average amount of time spent taking the phone out of
the water was 1.76 s (SD = 0.25). We found that a new IP
address was always assigned after reconnection; in our mea-
surement software, we re-initialized the underlying transport
sockets whenever a connection was re-established. In Fig-
ure 6, we have plotted reconnection time, which is the inter-
val between the time of lifting and the time of successfully
exchanging a packet. There were significant differences be-
tween network providers in terms of the reconnection time.
The mean reconnection latency of LG U+ was 3.2 s (SD =
1.2), whereas that of KT was 12.3 s (SD 1.0). The maxi-
mum reconnection latencies of LG U+ and KT were given
as 7.9 s and 14.1 s, respectively. Our data revealed that LG
U+ immediately recovered LTE connectivity, whereas KT al-
ways re-connected to 3G networks (first Universal Mobile
Telecommunication System (UMTS), then HSPA+) and con-
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Figure 7: RTT CDF of WiFi and LTE (LG U+)

tinued to maintain 3G connectivity throughout the current
session (without switching to LTE). If there were no packet
exchanges in KT (after a device was back in the air), how-
ever, it then switched back to LTE networks.
2.2.3 Field Trial Results

We measured the RTT values in a real swimming sce-
nario. Our goal was to determine whether the different
swimming strokes showed significant performance varia-
tions, as they have different levels of water immersion. Fig-
ure 7 shows the cumulative distribution of RTT values (LG
U+ LTE with Casio G’zOne Commando and 802.11g with
Galaxy S4 Active). We found that RTT values were largely
influenced by stroke types. In the breaststroke and butter-
fly, the upper arms are typically submerged more deeply
than the other strokes. The results showed that those strokes
had higher RTT values and lower signal strength. As in the
labaratory experiment, LTE did not have any notable packet
loss (typically less than 1% or none) due to its robust re-
transmission mechanisms. In contrast, 802.11g had much
higher loss rates: freestyle (.30), backstroke (.34), butterfly
(.51), and breaststroke (.73). Furthermore, 802.11g’s RTT
values were significantly increased: freestyle (M: 353.3 ms,
SD: 458.8), backstroke (M: 640.9 ms, SD: 568.3), butterfly
(M: 110.1 ms, SD: 212.2), and breaststroke (M: 1600.0 ms,
SD: 1596.3). When compared to RTT distribution of LTE,
the high packet loss rate of WiFi made considerable influ-
ence on the overall RTT distribution. In our measurements,
we did not explore personal characteristics on networking
performance (e.g., skill level and stroke habits), but we ex-
pect that such characteristics may have significant impact on
overall performance.
2.3 Discussion: Game Design Implications

We studied the networking performance of popular wire-
less technologies, namely WiFi, 3G, and LTE in the labora-
tory, as well as in actual swimming scenarios. Our results
confirm that water immersion has a significant effect on end-
to-end latency. We found that LTE was more robust than the
other wireless networking technologies, such as WiFi and
3G, under the conditions we considered. Although WiFi had
much shorter RTT values (typically less than 10 ms), our
field trials showed that it suffered from periodic blackouts
and high packet loss rates. Water immersion patterns differed
widely across different stroke types while swimming, which
contributed to the RTT variations. Despite the robustness of
LTE links, when poor channel conditions were prolonged,
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Figure 8: StrokeSense’s data processing sequence

there could be a bulk packet loss; however, the likelihood of
such incidents occurring was much less than with WiFi, as
confirmed in the field trials. When network disconnections
happen, we found that it took considerable amount of time
for re-establishing connectivity.

In the game design, we should carefully consider end-to-
end latency, reliable transport, and network connectivity is-
sues when designing game content and implementing inter-
device communications. For example, the RTT constraints
will help the designers to understand the degree of interactiv-
ity that a given networking technology can provide and will
guide them to design game content accordingly. While typi-
cal data exchanges are done in UDP for game development,
some important game states (e.g. health states) should be re-
liably delivered to the participants. The data transfer layer of
the game client/server should consider packet loss patterns.
Furthermore, in swimming scenarios, connectivity loss may
happen occasionally, which is quite rare in in-air networks.
Likewise, the designer should consider how to handle such a
long period of connectivity loss within a game.

3 Swimming Stroke Recognition
In this section, we begin with an overview and the require-

ments of our swimming action recognition module. We then
explain the kinematics of swimming strokes to illustrate our
real-time stroke recognition algorithms. Furthermore, we
outline the architecture of StrokeSense, the proposed swim-
ming style and timing recognition system, and we elaborate
on the detailed algorithms, i.e., stroke type classification and
stroke timing detection.

3.1 Overview: StrokeSense
StrokeSense recognizes two types of swimming action in-

formation, namely swimming style and stroke timing. When
a game begins, sensor data from the onboard accelerome-
ter, gyroscope, and barometer are segmented into a window
of 2 seconds. Taking existing work on activity classifica-
tion and transport mode detection [5, 46] into account, we
used a small window size for the timely recognition of stroke
events, so that the classification results could readily be used
for user interaction during game play. StrokeSense then clas-
sifies the current stroke type every 0.5 seconds, using calcu-
lated features from the segmented three-axis accelerometer
and gyroscope data. At the same time, a swimmer’s arm pull
action is detected by means of peak detection technique, us-
ing barometer signals. When an arm pull action is detected,
StrokeSense reports the recently classified swimming style
and the timing of the arm pull occurrence to the game logic.
The overall processing sequence is shown in Figure 8.

Taking multi-party communication and real-time game
interaction, StrokeSense is designed to satisfy the following
two requirements.
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• A user’s smartphone is secured on the upper arm using a
waterproof armband, in order to enable multi-user col-
laboration via wireless network. There could be other
positions such as the back, abdomen, and wrist. The
back/abdomen is unsuitable since it is completely un-
der water in certain stroke types: the back is under wa-
ter during backstroke, while the abdomen is under water
during the other stroke types. The wrist are repeatedly
emerge from the water with any strokes; however, head-
set wires should be tightened along the arm, in order not
to interfere with swimming strokes. Therefore, in our
prototype, we chose the upper arm for placement of the
smartphone on the candidates.

• StrokeSense should provide highly accurate recognition
of the four stroke types and real-time stroke timing de-
tection, since stroke types and timing are used as the
game inputs. Prior studies limited to off-line sensor
data processing for stroke type recognition [22, 31, 48].
Furthermore, none of these studies considered the up-
per arm as the smartphone location. StrokeSense com-
plements the prior studies in that we detail real-time
algorithms, report comprehensive evaluation results,
and demonstrate real implementation in a multi-player
game [22, 27, 31, 48]. The key challenge would be 1)
exploring various smartphone sensors, and finding a set
of appropriate features and classification models which
best discriminate stroke types, and 2) designing a robust
algorithm for stroke-timing detection to provide suffi-
cient interactivity.

3.2 Swimming Kinematics
We considered four popular strokes, each of which de-

fines a particular swimming style, namely, freestyle (front
crawl), breaststroke, butterfly, and backstroke (back crawl).
These strokes involve rhythmic movements of major body
parts, i.e., the torso, arms, legs, hands, feet, and head. Casual
swimmers typically complete laps using various stroke types
to meet their exercise needs. They perform a series of strokes
followed by turning at the end of the poll, thus repeatedly al-
ternating between the stroke period and the turning period
by changing directions.

We now briefly explain the kinematics of stroke types to
illustrate our stroke recognition algorithms. Basically, each
stroke can be divided into a sequence of phases, and gener-
ally begins with an arm pulling activity (see Figure 9). In
freestyle and backstroke, a left arm stroke is followed by a
right arm stroke. A left arm stroke, for example, consists of
two phases: left pull and right recovery, and left push and
right recovery. A butterfly stroke starts with arm pulling and
then pushing with leg kicking. This is followed by the arm
recovery and flying phases. Similarly, in a breaststroke, an
arm pulling phase is followed by an elbow gathering phase.
After the arm recovery and leg flexion phases, the leg kicking
and gliding phases are repeated. In the case of turns, there are
several styles, such as open and flip turns, but they all typi-
cally involve the following phase sequence: turning/rotation,
pushing, gliding, underwater kicking, and pull-out.
3.3 Sensor Selection and Data Collection

We first explored which sensors are used for data collec-
tion. As in the previous studies, we used motion sensors such
as an accelerometer and a gyroscope [22, 27, 31, 48, 50].

Figure 9: Illustration of stroke phase sequences. Arm pulling
is common in all four strokes.

Furthermore, we considered a barometer to measure ambient
pressure, which consists of the hydrostatic pressure with the
weight of the water column and the atmospheric pressure on
the free surface. The ambient pressure significantly changes
according to the depth of the water, compared to the height
in the air. For example, the change in the ambient pressure
of 1 hPa requires the change in depth of only 0.01 m under
water; this change can be achieved by altering the height of
7.9 m in the air. Because sensing error of the barometer are
small (less than 0.2 hPa) [36], it can be used as a valuable in-
formation source for activity recognition underwater. How-
ever, we found that the ambient pressure is not appropriate
for stroke classification due to its dynamics; i.e., the pressure
value changes significantly under different contexts such as
water density, body motion, weather/atmospheric conditions
and time-of-day [53]. Even if we were to use the relative dif-
ferences of pressure between above and under the water, the
dynamics must be accurately captured in the pre-processing
step, which may be error-prone. Nonetheless, we later show
that the barometer can provide useful information for stroke-
timing detection due to the key properties of ambient pres-
sure, i.e., highly periodic signals (synchronized with each
stroke) with consistent patterns across different stroke types
and swimmers.

For data collection, we employed the CASIO G’zOne
CA-201L, a rugged Android smartphone with OS version
4.0.3. The smartphone supported LTE mobile network and
included IPX5/X8 water resistance as well as various sen-
sors such as an accelerometer, a gyroscope, a compass and a
barometer.

We recruited 11 participants (1 female and 10 males), who
were between 19 and 26 years old from a campus swim-
ming club. The swimming pool used for the experiments
had four lanes of 25 m in length, and a depth ranging from
1.3 m to 1.7 m. Participants were asked to place the smart-
phone on their upper arm using an armband and to swim two
round trips for each stroke type, i.e., eight round trips in to-
tal. While they swam, we collected 3-axis accelerometer,
3-axis gyroscope, and barometer data, as well as recording
video clips for ground truth. After data collection, we used
the recorded video clips to carefully annotate activity tags
for the following movements: no movement, turn, freestyle,
butterfly, backstroke, and breaststroke.
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Table 1: Features used in swimming style classification
Measurement Features

AccelX, AccelY, AccelZ, AccelMag, Min, Max,
GyroX, GyroY, GyroZ, GyroMag Mean, Variance

Table 2: Selected features from CFS and their information
gain (IG) scores

Feature IG score Feature IG score
accely mean 1.508 gyroy min 0.699
accely max 0.922 accely variance 0.634
gyrox mean 0.886 accely min 0.632
gyrox min 0.857 accelmag variance 0.571
gyroy max 0.778 gyromag variance 0.543
accelz min 0.739 gyroy mean 0.482
gyrox max 0.722 accelz mean 0.321
accelx min 0.721 accelx mean 0.159

3.4 Stroke Type Classification
3.4.1 Preprocessing and Feature Calculation

StrokeSense classified the four stroke types by using 3-
axis accelerometer and gyroscope data. The sampling fre-
quency of the accelerometer and gyroscope data was 100 Hz,
obtained by selecting SENSOR DELAY FASTEST setting
in the Android SensorManager class. To suppress high-
frequency noises, sensor data was smoothed by averaging
the five most recent samples. They were then divided into
2-second windows, with a slide of 0.5 seconds, so that two
consecutive windows had an overlap of 1.5 seconds. We de-
cided the length of a window by considering the normal pe-
riod of stroke repetitions in swimming. In most cases, the
time window contains one full repetition of a stroke for all
swimming styles.

In addition to the 3-axial sensor data in each case, we
used the magnitude by calculating the root-mean-square of
the values from all three axes. Each of these four types of
data, i.e., X, Y, Z, and magnitude, was used to calculate fea-
tures such as minimum, maximum, mean, and variance from
2-second window. In total, we extracted 32 features from the
two sensors (see Table 1).
3.4.2 Feature Selection

In order to remove irrelevant or redundant features, we
ran a Correlation Feature Selection (CFS) algorithm for fea-
ture selection by using the Weka Machine Learning Toolkit
3.7 [17]. CFS determines a subset of features with the high-
est predictive power, while reducing redundancy among the
features themselves [15, 56]. We extracted a set of 16 fea-
tures from the initial 32s by using the CFS algorithm, and
calculated information gain for each, which is a measure-
ment for estimating the feature’s discriminative quality [21]
(see Table 2. Furthermore, in order to minimize potential
over-fitting issues, we attempted to reduce the number of
features carefully, while maintaining classification accuracy,
i.e., the rate of correct predictions made by the model over a
data set. We evaluated the accuracy of reduced feature sets
with the top 4, top 8, and top 12 features in terms of the
information gain values.
3.4.3 Classification Models and Evaluation

We considered the following well-known classification al-
gorithms for stroke type classification: the Decision Tree
(DT), Naive Bayes (NB), and Support Vector Machine
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Figure 10: Accuracies of stroke type classification against
the number of features

(SVM). Readers can find more details about these algorithms
in Witten et al. [54]. For DT, the C4.5 algorithm was used.
For the SVM, we used linear and radial basis function (RBF)
kernels for building models.

We first trained each classification model using the top
4, top 8, top 12, top 16, and all 32 features from all of
the users’ data, and validated the performance using 10-fold
cross-validation. As shown in Figure 10, in the case of the
top 4 features, all classifiers except for the SVM with the
linear kernel showed accuracies of over 94%. The cases
with the top 12, top 16 and all 32 features showed accura-
cies of over 96%. The SVM with the linear kernel showed
the greatest increase in accuracy, as the number of features
increased. Its accuracy was under 92% for the top 4 fea-
tures, but it achieved the best performance, which was ap-
proximately 98%, among the classifiers with all 32 features.
We conjectured that the this was due to over-fitting, so there
may be a potential challenge in actual applications, which
necessitates further studies.

The results show that our system is as effective as, and
in some cases outperforms, those of previous methods of
swimming style recognition. In [48], a quadratic classifier
using a wrist-worn accelerometer achieved 89.8% accuracy,
and one using an upper back-worn accelerometer showed an
accuracy of 95.3%. We conjecture that the reasons for the
higher accuracy of our results is the use of a gyroscope sen-
sor. It is known that a gyroscope is more effective than an
accelerometer in monitoring body movements, as most body
movements involve joint rotations [41]. For the following
evaluations, we used the SVM with the linear kernel as the
classification model, based on its code portability and com-
putation efficiency.
3.4.4 User Variance

Since user differences have been taken into account in
previous studies on activity classification, it is logical to ex-
amine the issue in the context of swimming. As with other
human physical activities, swimming involves various move-
ments of almost all of the muscles and joints in the human
body, which means that there is great potential for user dif-
ferences in actual situations. Therefore, we investigated the
differences in swimming motions among users by using a
similar approach to that of [46]. We built two model cate-
gories: user-specific models and leave-one-user-out models.
For the user-specific models, we used one user’s data at a
time for training and testing. Each model built was tested by
10-fold cross-validation. For the leave-one-user-out models,
the classifier was trained with the data of all participants ex-
cept for one, and tested with the data of the participant who
was not in the training dataset.

As shown in Table 3, user-specific models showed an
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Table 3: Accuracy comparison between user-specific and
leave-one-user-out models. (Values are in %)

Participant User-specific Leave-one-user-out Diff.
P1 98.51 94.67 -3.84
P2 98.36 97.41 -0.95
P3 98.65 96.82 -1.83
P4 99.1 98.08 -1.02
P5 97.53 90.89 -6.64
P6 98.5 86.93 -11.57
P7 97.75 96.87 -0.88
P8 90.22 87.31 -2.91
P9 99.61 91.7 -7.91

P10 96.09 88.54 -7.55
P11 97.97 95.27 -2.7
Avg. 97.48 93.14 -4.35

average classification accuracy of 97.48%. For the leave-
one-user-out models, the average accuracy was 93.14%, and
the minimum per-participant accuracy was 86.93%. We fur-
thermore analyzed the confusion matrices of the participants
whose data showed relatively low accuracies, namely, P5,
P6, P9, and P10. We observed two classes of the confusion
patterns: confusion between butterfly and freestyle (P5, P6)
and between backstroke and breaststroke (P9, P10). We con-
jectured that the reason for the confusions was the similarity
of arm movements in the swimming styles; for example, but-
terfly and freestyle sometimes showed similar crawling arm
movements.
3.4.5 Differences between Skilled Swimmers and

Novices
We conducted a pilot test with four additional participants

in order to verify the performance of the best classification
model. The four participants (4 male) were university stu-
dents who were capable of performing all four stroke types,
and their age ranged from 26 to 36. The participants occa-
sionally swam, but none of them regularly swam on a weekly
basis. This means their swimming skill was expected to be
lower when compared to the casual swimmers with regular
training. We collected their swimming motion data in a sim-
ilar manner as shown in Section 3.3, and we classified stroke
types using the best classification model. Surprisingly, the
accuracy of the models was very low, at times even under
50%.

We investigated the potential causes of the accuracy
degradation. We first examined whether our models were
over-fitted to the training dataset. Since feature selection can
reduce the possibility of over-fitting, we tested our models
with fewer features, but this did not improve the accuracy.

We then examined the confusion matrices. Our model
classified freestyle and backstroke well; however, breast-
strokes and butterfly showed two different confusion pat-
terns: failure to distinguish freestyle from butterfly and back-
stroke from breaststroke in one group, and failure to distin-
guish backstroke from both butterfly and breaststroke in an-
other. At this point, we realized that the classification accu-
racy may be dependent on the difficulty of swimming styles,
as freestyle and backstroke are generally easier to perform
well than breaststroke and butterfly. We collected the train-
ing data from a campus swimming club, and our interviews
with the club members informed us that they usually par-
ticipated in swimming drills several times a week. While
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Figure 11: Differences of motion sensor signal between less
trained casual swimmers and highly trained amateurs during
butterfly

Table 4: Accuracy of pilot test using a highly trained amateur
model and a user-specific model

Participant Highly trained amateur User-specific
A.P1 69% 100%
A.P2 50% 99%
A.P3 48% 95%
A.P4 53% 98%

club members’ skill levels were rather diverse (particularly
among our participants), their swimming skills were rela-
tively high, and motion patterns tended to be fairly consistent
to one another, due to the regular swimming drills. However,
the additional participants swam as a hobby and thus can be
regarded as less skilled swimmers than the club members.

To confirm our intuition, which is the classification accu-
racy may be dependent on the difficulty of swimming styles,
we manually examined the motion dataset (i.e., the accelera-
tion and gyroscope samples) in order to determine why such
classification errors occurred. After inspecting the dataset,
we found that the patterns of the acceleration and rotation
curves appeared somewhat different to those of the training
dataset (see Figure 11). In the figure, the red-dotted circles
represent the difference in butterfly motion, specifically in
dragging the arms. While swimmers are dragging up their
arms, the arms of highly trained amateurs rotate more; that
is approximately 90 degrees, to the front, than those of less
skilled swimmers. While the original training data appeared
to be highly consistent across different users, the dataset
from the pilot study did not clearly exhibit such patterns.

Table 4 shows the classification results of the less trained
casual swimmers using the model based on 11 highly trained
amateurs, as well as the user-specific models, which use the
same swimmer’s data for training and testing. From the re-
sults, it appears to be possible to apply a user-independent
classification model for highly trained amateurs, but not for
less trained casual swimmers. Therefore, we surmised that
user-specific models can cover larger swimmer groups of
swimmers, including less trained casual swimmers. Assum-
ing that a user’s skill does not significantly change in a short
time, collecting a dataset and building models can be occa-
sionally done (say once in a few months). To lower swim-
mers’ burden for data collection, an semi-automatic collec-
tion method using an audio guide would be useful; e.g. a
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Figure 12: Description of stroke timing detection, (a) pull
action of butterfly (b) example of barometer signals

mobile application tells a user to collect sensor data by per-
forming one lap for each stroke—this level of manual data
collection will not be burdensome for casual swimmers. An
alternative would be to employ a hybrid technique, where a
user-independent model is initially used, and individual user
data is combined via adaptive learning.
3.5 Stroke Timing Detection
3.5.1 Robustness of the Barometer Signals

StrokeSense detects stroke timings in real time by ana-
lyzing peaks in barometer signals as well as their values and
temporal sequences, and reports recently classified strokes,
with stroke timing, to the game logic. We employed barom-
eter signals because they are: 1) highly periodic along with
every stroke, and 2) highly robust against stroke type and
swimmer-specific differences.

Figure 12(b) clearly shows the periodic barometer signal
during swimming. For every single stroke, the swimmer’s
arm completes a circle, drawing a semicircle in the air and
the other semicircle under water. Such periodic surficial tran-
sitions create clear periodic cycles in barometer signals. As
mentioned in Section 3.3, diving by every centimeter depth
increases the barometer output by 1 hPa. We found that in
most cases the local maxima of the barometer signal corre-
sponded to the moments when the swimmer was pulling the
water strongly at the middle point of the underwater semicir-
cle. Interestingly, this is when the swimmers exert a strong
muscular force on their arm, so that we can leverage this as a
highly intuitive timing to provide auditory feedback for each
stroke.

Also, barometer signals yield very little differences be-
tween stroke types when compared to motion sensors such
as the accelerometer and the gyroscope. As shown in Fig-
ure 12(b), the major reason for this robustness is that the
signals are closely related to the water depth, and detailed
motions do not lead to significant changes in the signals.
Thus, regardless of the current stroke type of a swimmer, it is
possible to apply the same stroke-timing detection method.
This method is also robust against personal differences in
swimming motion; for example, the angle of the arms and
acceleration rates. It is worth noting that stroke timing de-
tection methods based on motion sensors [48] require spe-
cific heuristics for each stroke type, thereby requiring prior
knowledge of the current stroke types. In this case, if the
stroke type classification fails, the motion-based timing de-
tection also fails.
3.5.2 Timing Detection Algorithm Design

Barometer data were first smoothed by averaging the
most recent five samples to suppress high-frequency noises.
In our experimental device, CA-201L, with the SEN-

Table 5: Stroke-timing detection result (TP: True Positive,
FP: False Positive, TN: True Negative) for each swimming
styles

Swimming Style Ground Truth TP FP TN
Freestyle 328 324 4 -

Backstroke 346 341 5 1
Breaststroke 435 378 55 11

Butterfly 359 353 6 -

SOR DELAY FASTEST setting in the Android SensorMan-
ager class, barometer signals were sampled at 33 Hz, which
is fast enough to provide rapid action detection. From con-
secutive smoothed signals, local maximum and minimum
peaks were found, and every significant local maximum peak
was reported as a stroke timing, as shown in Figure 12(b).
The significance was determined by establishing whether the
value difference between the recent local maximum and min-
imum peaks was above a certain threshold (i.e., the pressure
threshold). Furthermore, we ignored other significant peaks
for a certain amount of time (i.e., the time threshold) if previ-
ously significant peaks were detected. This method is based
on the intuition that it takes a certain amount of time to com-
plete each stroke. We empirically set the pressure threshold
to 2.5 hPa and the time threshold to 1 seconds, which yielded
a sufficient detection performance for playing the game. In
particular, the pressure threshold of 2.5 hPa was large enough
that we could ignore the 0.2 hPa error mentioned in the prior
work [36]. To the best of our knowledge, this was one of
the earliest attempts that employed a barometer for motion
detection.
3.5.3 Timing Detection Algorithm Evaluation

We evaluated the performance of the proposed stroke-
timing detection method by using the pre-collected dataset
described in Section 3.3. We used the manually ground-
tagged stroke-timing data obtained from videos. As shown
in Table 5, the detection results are comparable with the
state-of-the-art stroke counter described in [48]. Again, it
should be noted that StrokeSense uses one common stroke-
timing detection algorithm, whereas [48] relies on multiple
swimming-style-specific timing detection algorithms. In the
game experience study, we also used the module for extract-
ing stroke timing to give participants immediate feedback
and to utilize the timing information as a meaningful game
input.
4 MobyDick: Game Design

We designed MobyDick taking into account key human
factors and technical challenges when transforming swim-
ming activities into game play. To put it briefly, Moby-
Dick is a team-based hunting game against a huge underwa-
ter monster, Leviathan. As with popular multi-player online
games, multiple swimmers form a team and play MobyDick
collaboratively, attacking Leviathan, dodging the attack of
Leviathan, and healing the wounded. Below, we outline the
game modalities and design.
4.1 Swimmer-to-Game Interaction Modalities

Game inputs. Swimming is a full-body exercise requir-
ing highly coordinated and continuous motions of all four
limbs. Therefore, swimming allows for only very small de-
grees of freedom when creating game inputs within the ex-
isting activity, and common strategies adopted in ground-

10



based exergames are inapplicable. Dynamically changing
paces [35, 40] is not as responsive as on the ground and may
unbalance the swimmer. There are few free body parts to use
during swimming, as with punching while running [3]. As a
result, we focused on the intrinsic stroke activities of swim-
ming. We utilized two types of swimming action information
as game inputs: stroke timing and swimming style (freestyle,
breaststroke, backstroke, and butterfly). MobyDick senses
stroke activities by means of the smartphone mounted on the
swimmer’s upper arm with an anti-friction armband. Other
body locations (e.g. the back and wrist) were ruled out due to
technical challenges (wireless connectivity) and swimmers’
discomfort (wired earphones).

Game outputs. We identified auditory output to be an
appropriate choice for a smartphone-based swimming game,
as we could simply use waterproof wired earphones. Note
that alternative modalities, such as visual ones, would re-
quire special devices like display-embedded goggles. We
built a type of an audio-only game [57], which are unlike
typical video games that use audio merely to provide addi-
tional information [39]. MobyDick continuously updates the
game progress, team members’ status, and interaction events
through background music, narration, and sound icons.
4.2 Game Design

Currently, MobyDick is designed to support four swim-
mers fighting together against Leviathan. Each stroke
type corresponds to a distinct action category in the game:
freestyle is for attack, breaststroke is for dodging, and back-
stroke is for healing, while butterfly is for critical attack due
to the higher level of mastery required for this stroke. Each
stroke constitutes executing a single action of the category
corresponding to the particular stroke type. To increase user
interactivity, we map each stroke with its own sound icon
(or “earcon”); i.e., two attack earcons for freestyle and but-
terfly, one dodging earcon for breaststroke, and one healing
earcon for backstroke. A player’s stroke events are broadcast
in the background so that players have a general awareness
of other players’ presence (the volume of the sound from
other players is lower than a user’s own sound). Furthermore,
there is an in-game narrator who continually describes game
progress, team members’ statuses, and interaction events, for
example, health point (HP) status, as well as who is currently
attacked by Leviathan. Unlike existing exergames that typi-
cally used verbal communication to facilitate social interac-
tion, such as Jogging over a distance [35] and ExerLink [40],
MobyDick employs various social awareness cues, such as
the narrative of the virtual avatar interactions and the stroke
earcons of players.

Game flow. One round of the game lasts for three min-
utes, a length of time that was chosen considering the av-
erage casual swimmers’ stamina; that is, how long they are
able to keep swimming for at one time. For each 30-second
turn, Leviathan randomly chooses a swimmer and breathes
fire at the swimmer in a constant cycle. While the victim
is swimming breaststroke to dodge the attack of the mon-
ster, the other swimmers are free to attack Leviathan by us-
ing freestyle or butterfly. To evade the fire breaths, the vic-
tim should synchronize breaststroke cycles with the firing
cycles in order to be under the surface at the very moment
that the fire is breathed out; otherwise, the victim’s health
points were deducted. When the victims have “died”, that is

their health points have reached zero or lower, they can re-
vive themselves by swimming backstroke for a certain num-
ber of strokes. The other non-victim players may participate
in helping the dead player to revive him/her more quickly,
by swimming backstroke together. The team wins if all
of Leviathan’s health points are depleted within 3 minutes.
They lose if either the time is up or everyone is “dead”.

Multi-player collaboration with social awareness cues.
MobyDick features the unique mode of asymmetric multi-
player communication for collaborative game play, which is
different from those in two-way verbal communications be-
tween players in collaborative exercise games [40] and non-
verbal communications in 3D virtual environments [30]. In
MobyDick, each swimmer is given no means of explicit out-
bound communication, either verbal or nonverbal. The only
information available to the game participants is the team-
wide audio broadcast, delivering the actions and status of
Leviathan and each swimmer (designated by a unique call
sign, namely, Alpha, Bravo, Charlie, or Delta)—this audio
broadcast works as social awareness cues [13]. When lis-
tening to the events and progress along the game play, each
swimmer is expected to perform strategic actions based on
their own decision. For example, a swimmer, say Delta, is
under the concentrated attack from Leviathan, having her life
at stake. Having heard of this status, the swimmer, Alpha,
may make a strategic decision on his own. He can continue
freestyle to deplete the slightly remaining Leviathan’s health
points, or alternatively switch to backstroke to keep Delta
alive as she is the most proficient butterfly swimmer and thus,
is the most important attacker of the entire team. Due to lack
of explicit outbound communication, we expected that such
silent and autonomous teamwork can alternatively provide
social fun, and players will be able to devise better strate-
gies as they figure out each other’s play style and swimming
competence.

Latency-aware game design. As illustrated in Section 3,
users may face network connectivity loss and be unable to
exchange any status update messages, which are critical for
interactive game play. We therefore devised several design
choices to yield user experiences that are less sensitive to
connectivity loss and long latency issues.

Firstly, we deliberately hid the accurate number of re-
maining health points of Leviathan and other swimmers, and
represented them only in quartiles, for example: “Leviathan
has less than 75% H.P.!” This technique decreases the fre-
quency of received status update messages from others and
increases players’ tension and immersion as in some video
games [1]. Secondly, a MobyDick client locally computes
one’s own status change, e.g., own death or revival, and im-
mediately notifies the swimmer of it, and remotely synchro-
nizes the server (as is the case in most interactive games).
It would be annoying for the swimmer to notice latency in
their own obvious status changes. Thirdly, a swimmer might
temporarily lose connection that is not restored immediately.
We observed that such an incident is not highly likely, but
may occur during breaststroke or butterfly. In order to keep
players in the game in spite of disconnection, their Moby-
Dick clients tells them that they have been “stunned” and
recommends that they use freestyle or backstroke for rapid
recovery.
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5 Preliminary Evaluation
We conducted the experiments on MobyDick with a

group of swimmers in an actual swimming pool. In the user
study, we investigated the efficacy of our game design me-
chanics and socially enriched swimming experiences.

5.1 MobyDick Implementation
The MobyDick implementation includes the following

modules: StrokeSense, game logic, and communication. We
implemented the StrokeSense module in Android (v4.0.3
API 15) using an SVM library called liblinear-1.94. For per-
sonalized model building, a new user initially follows an au-
dio guide whereby they are asked to swim a certain stroke
for a given lap.

The game logic module manages the overall game flow
through the game handler, and user interactions through the
interaction manager. The game handler receives user input
from StrokeSense and tracks the current game status, i.e., at-
tacking, dodging, Leviathan’s status. It also implements the
details in overall game flows. Whenever the interaction man-
ager receives status changes, it delivers aural information,
namely game instruction, one’s own input, and others’ in-
put, to the user. It also provides the user interfaces for game
manipulation (i.e., start/stop games). This includes disabling
screen touching events while users are swimming, as water
is sensed by the capacitive screen. A client’s current sta-
tus message is reported to the server every 100 ms; and the
server broadcasts state changes to all the group members.

The communication module manages message ex-
changes. Since MobyDick requires the timely delivery of
small control packets, it uses the UDP transport protocol,
which is typically used in online game design. For each
client-server pair, the communication module implements
reliable UDP packet transmission schemes. Depending on
the importance of the control packets, we divided the state
messages into low and high priority ones. High-priority mes-
sages are used to report critical status changes such as the
death of Leviathan/player or the end of a game, whereas low-
priority ones are used to report other player activities, such
as attack and healing. To achieve reliable transmission, if
a node fails to receive an ACK in 50ms, a message will be
retransmitted. Low-priority messages expire after two sec-
onds, while high-priority messages do not have a time limit
at which they expire. It monitors wireless network connec-
tivity: when previously lost connectivity is detected, it in-
forms the game logic of such an event. Also, it keeps track
of a client’s IP address to handle IP address change after re-
connection.

5.2 User Study Design
We recruited eight participants from online communities,

with the major criteria being: 1) the participants must have
had more than one year of swimming experience, 2) they
must swim more than three times a week, and 3) they must
be capable of performing all four stroke types. Table 6 lists
the participants’ demographic information. We conducted
the study in a 25-meter, five-lane swimming pool at the lo-
cal university gym. The participants were divided into two
four-member teams. Each team played two rounds of games,
with 10 minutes of intermission in between. Each lane was
exclusively used by a single swimmer at a time. For exit in-
terviews, we conducted focus group interviews followed by

Table 6: List of participants

Team ID Age Gender Experience
P1 23 F 2 years

1 P2 20 F 4 years
P3 22 M 3 years
P4 23 M 5 years
P5 20 M 1 years

2 P6 20 M 1 years
P7 24 M 5 years
P8 22 M 2 years

1.5-hour one-on-one interviews directly after the games. The
video and audio of all the interviews were recorded. Two
researchers transcribed and coded the interviews. We now
discuss the major themes and findings of the study.
5.3 Findings

Dissociation from intrinsic swimming activity. All of
the participants reported that the swimming game was enjoy-
able. Specifically, we observed that most of the participants
experienced certain degrees of dissociation from the activity
of swimming. P1 stated the following: “(When swimming
without the game) usually it’s kind of boring. (...) My mind
wanders away but it often gets me out of balance. (...) [Play-
ing the game] definitely took such feelings away from me.”

Literature reports that one’s dissociative state effectively
reduces one’s perceived exertion [45] and leads to a mental
disconnection from painful sensory inputs [32]. However,
one participant (P6) commented that paying excessive atten-
tion to the game resulted in a higher level of exertion than
usual experiences: “I used to pace myself to keep it mild, but
this time it was just way faster.”

Perceiving timely game responses. We found that six
of the participants enjoyed the immediate auditory feedback
received from the game. In particular, P2 liked the exact
timing: “I enjoyed the sound of clashing swords; I could
hear them right at the moment I pull the water. (...) I really
feel like my stroke is wielding the sword.” The participants
said that they could hear the sounds loudly and clearly. This
may be attributed to our design choice of setting the sound
timing not to be at the moment that swimmers’ arms hit the
surface, but rather when they pull the water, thus preventing
a water splash noise.

Keeping track of game status updates. MobyDick de-
livers extensive game-related information through aural mes-
sages. We found that, when beginning a game, the swimmers
could keep track of most information, such as game progress,
the remaining health points of themselves and Leviathan,
other swimmers’ statuses, etc. However, towards the end
of a game, the participants tended to be exhausted and not
have a sufficient cognitive span to keep track of others’ ac-
tivities. P5 recalled: “(At the last part) I couldn’t listen to
what others are doing. Just I keep hitting [Leviathan].”

Intuitive behavioral metaphor. The participants liked
the mappings between stroke types and in-game action. P7
stated: “It makes good sense to me. (...) When I freestyle
or butterfly, it seems like hitting the water. (...) Backstroke
seems like lying on the water and taking some rest.”

Socially enriched swimming experience. Even though
MobyDick does not change anything in the sense that the
swimmers cannot speak or express themselves at all to the
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other team members, we found that the unique mode of col-
laboration in MobyDick may create new feelings of bond
and team spirit among swimmers, e.g., real-time interaction
and sympathy with each other. P7 commented: “It cheers
me up to hear that [Alpha and Bravo] are attacking when
I am attacking too. I feel we are the same team indeed”.
Also, playing the game often changed the participants’ usual
swimming patterns. “Leviathan was nearly dead, but every-
one but me was gone and healing themselves. So I did a lot of
butterfly. (...) It was really unusual for me. It’s so hard and I
don’t do that much while swimming alone.” Note that a pre-
vious work reported that exercise-based games may result in
higher level of exercise intensity [42], and MobyDick newly
showed a potential to promote exercisers to do a certain style
of workout (e.g., butterfly).

Autonomous and dynamic team-play with social
awareness cues. As expected earlier in the game design,
we found that the players dynamically change their tactics
by listening to the team-wide audio broadcast and making
an individual decision on what would be best for each other.
One participant commented: “[Bravo] isn’t good at back-
stroke. When he’s dead, I did backstroke together to get
him back ASAP.” Note that previous on-line game studies re-
ported that there are simple forms of collaboration between
strangers or friends without explicit inter-player communi-
cation [37]. However, we found that the current design of
MobyDick has a potential to facilitate highly strategic col-
laboration between players, even without explicit communi-
cation channel between players.

6 Related Work
Our work expands on earlier studies on exergame design,

wireless networking performance evaluation, and sensor-
based swimming analysis. In the following sections, we re-
view each of these themes in detail.

6.1 Exergame Review
Wii Fit and Kinect Sports are the leading gaming con-

soles for stimulating exercise activities, for example, boxing,
tennis, and running. While these gaming consoles provide
an excellent opportunity for enjoying such activities indoors,
this does not usually provide enough exercise intensity. In re-
cent years, as sensor and device technology have advanced,
creating new kinds of exergames has been an active area of
research. Moreover, strong scientific evidence on the exer-
cise benefits of exergames has been provided [18]. Typical
exergame design involves augmenting or visualizing existing
sports activities. One way of doing this is to revise exist-
ing exercise equipment or develop new devices for physical
activities that can be used as game input, for example, an
arm ergometer [16], an interactive treadmill [3], a spirome-
ter [25], a tangible ball [24], and playful gadgets [8, 10, 29].
Exergame Fitness Co. provides several types of exergame
controllers, including game cycles and interactive floor and
wall systems [2]. Allowing for the remote participation of
exercise activities that leverage social support and influence
has been another widely used mechanism for exergame de-
sign. Mueller et al. recently developed a set of exergames
known as “sports over distance”, which use players’ physical
actions directly for remote sport play, for example, “Jogging
Over a Distance,” “Remote Impact”, and “Table Tennis for
Three” [33, 34, 35]. Sharing heart rates allows remote ex-

ercise participants to exchange their physical intensity lev-
els [12, 35, 38, 51]. Park et al. [40] proposed an exergam-
ing platform called ExerLink that allows remotely connected
participants to use multiple heterogeneous exercise devices
for game play. Our main contribution is to gamify swimming
activities and to design/evaluate an interactive game that con-
siders multi-user coordination. Readers can find more infor-
mation about recent advances in exergames, and their design
principles, in [7, 49].

6.2 Wireless Networking in the Pool
LTE performance measurement has become a topic that

is of great interest to the research community. Huang et al.
performed a comprehensive measurement study on LTE net-
works and showed that LTE’s downlink/uplink throughput
is much higher than that of 3G. Their LTE network model-
ing revealed that LTE-related parameter selection, e.g., tail
power, had a significant effect on energy consumption [19].
LTE displays significantly lower RTTs than those of 3G net-
works [20], but researchers found that there are various inef-
ficiencies in TCP compared to LTE, such as undesired slow
start, and called for further research into developing LTE-
friendly transport protocols. Our work supplements these
studies as we considered rather extreme networking envi-
ronments, i.e., that of a phone being immersed under wa-
ter. We performed a comparative study on WiFi, 3G, and
LTE networks in laboratory and swimming pool scenarios.
Given that recent smartphones have begun to include water-
proofing features (for example, the Galaxy S5 Active), and
waterproof smartphone cases are commonly used in the wa-
ter theme parks (for example, for taking photos). Our mea-
surement results provide valuable insights into novel appli-
cation design for water activities, such as photo uploading,
audio/video streaming, and interactive games.

Previous studies on underwater sensor networks have ex-
amined the use of radio communications under water [28,
47], although the majority of studies have focused on us-
ing acoustic data transmission. Lloret et al. experimented
with wireless communication between two submerged wire-
less nodes and showed that significant packet loss (more than
30%) occurred when the nodes were approximately 15cm
apart. Our experimental results regarding communication
between a submerged node and a node in the air are con-
sistent with these results. Jiang et al. studied the effect of the
frequency band on underwater RF signal propagation. They
found that propagation loss increases significantly in high-
frequency bands (above 100 MHz) [23]. Sandra et al. an-
alyzed the performance differences between different WiFi
channels [28]. Our work differs from these studies in that
our experimental condition involves wireless communica-
tions between a node in the air and a node in the water.
We conducted a comparative study on three popular wire-
less networking technologies, namely WiFi, 3G, and LTE,
by systematically analyzing delay, packet loss, and network
reconnection, as well as conducting a supplementary mea-
surement study in a real swimming scenario.

6.3 Sensor-based Swimming Analysis
Performance analysis in swimming has mostly been based

on offline, manual processing of recorded images in order to
derive quantitative and qualitative measures of performance.
Researchers in sports science and human kinematics have re-
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cently examined how on-body motion sensors can be used
as an alternative to image analysis, providing valuable in-
sights into automatic recognition. James et al. analyzed the
acceleration data of elite swimmers using a back-mounted
accelerometer [22]. Similarly, Slawson et al. showed that
acceleration data can provide useful information for perfor-
mance analysis [50]. As the first system of its kind, the aim
of SwimMaster was to provide a fine-grained assessment of
swimming by extracting swimming parameters such as ve-
locity, arm strokes, body balance, and body rotation [4]. To
enable fine-grained monitoring, SwimMaster uses three mo-
tion sensors: one wrist sensor and two lower/upper back sen-
sors. The major limitation of this system is that it only sup-
ports offline data analysis and does not recognize different
swimming styles other than freestyle. Along the same line
of research, Siirtolar et al. used two body-worn sensors, one
on the wrist and one on the back, for the automatic classi-
fication of strokes, and showed that accurate classification
is possible with a back-mounted motion sensor [48]. While
this study considered three swimming styles, it was largely
based on offline machine learning and did not provide any
insights into real-time detection and inter-personal skill dif-
ferences. Recently, Marshall [31] and Lee [27] demonstrated
that smartphones can be used as a platform for supporting
stroke sensing and real-time feedback, but they did not pro-
vide any detailed algorithms in their study.

Our work significantly extends earlier studies in that: 1)
we used off-the-shelf smartphones mounted on the upper
arm, where motion data is much noisier than in other lo-
cations, 2) we proposed real-time activity detection algo-
rithms that can accurately detect four popular stroke, and 3)
we showed that individual skill differences have a signifi-
cant effect on recognition performance, particularly among
recreational swimmers, as well as the fact that personalized
machine learning can significantly improve recognition ac-
curacy.

7 Discussion
We present the practical implications of our main findings

and discuss the limitations of this work.

7.1 Implications
Our preliminary experiences of MobyDick resulted in

several practical design implications and also provided in-
sights into practical mobile software design in aquatic envi-
ronments.

As mentioned by our participants, MobyDick’s system
of sharing user information has a major limitation in that
users tend to disregard others’ information when they be-
come tired. One way of mitigating this problem is to support
pair-wise collaboration and competition in the game’s con-
tent. If a user is paired with another user and asked to col-
laborate, it is expected that users may feel less burdened as
they do not need to track all the other users.

Exercise intensity should be carefully coordinated in the
game logic. In certain cases, our participants had to per-
form a series of strokes that require significant physical ef-
fort, which could lead to physical injury or burnout. Since
it is possible to monitor a swimmer’s heartbeat using a spe-
cial headset device, it is possible to incorporate heart rate
information into the game design; in turn, heart rate infor-
mation can easily be translated into exercise intensity [6].

This would allow the game logic to automatically adapt to a
swimmer’s changing conditions.

Our results on networking performance in an aquatic en-
vironment provide a valuable insight into various system de-
signs. We identified certain unique patterns in different wire-
less network technologies, for example, periodic blackouts
with WiFi and bulk loss or long latency in LTE. Although
we did not thoroughly evaluate TCP performance, we em-
pirically observed that transmission often fails, which means
a very low throughput. Since the depth of the water is related
to networking performance, it is possible to use barometric
sensing to estimate channel conditions and schedule packet
transmissions.

We mainly used Casio’s rugged smartphones in our exper-
iments. Two smartphones were damaged during the exper-
iments, due to several reasons. The rubber isolators some-
times become loose, possibly as a result of large bodily
movements. Moreover, the wires of waterproof headsets
may interfere with swimming strokes, which then pull out
the headset. Given that such events may occur during vari-
ous aquatic activities, the rugged phone design should take
this fact into account.

7.2 Limitations
Our networking performance measurement was limited to

two handsets and two operators. Given that the network pa-
rameter configurations and policy settings of cellular opera-
tors vary widely, the generalizability of this work is limited.
Nonetheless, the results obtained in the air are, to an extent,
consistent with the measurement results for the US opera-
tors, and we expect that similar behaviors may be observed
in other operators’ networks.

For activity recognition, we tested the models with the
dataset obtained from only 11 participants, due to the diffi-
culty of hiring individuals who were capable of completing
the experiments. Moreover, it was possible that our model
training could exhibit gender bias. To evaluate whether this
was the case, in one experiment we left the one female par-
ticipant out and trained/tested the model. However, we found
that there was still a very high level of accuracy, indicat-
ing that gender bias may not exist. While we need to test
our systems with a greater number of female participants,
we hypothesize that skill is more important than gender in
obtaining the desired results. In our dataset, skilled users
tended to show similar motion patterns, whereas less skilled
users could show less patterned motion behavior. Our per-
sonalized models also need to be tested with more people to
validate their accuracy across different individuals.

Our preliminary user study included only a small number
of participants (n=8). After several iterations of the game de-
sign, we will conduct an experiment with five to ten groups
of three to four users each, and draw more certain conclu-
sions from both qualitative and quantitative data analysis.
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