

Business Process Management
with JBoss jBPM

A Practical Guide for Business Analysts

Develop business process models for implementation in
a business process management system

Matt Cumberlidge

 BIRMINGHAM - MUMBAI

Business Process Management with JBoss jBPM
A Practical Guide for Business Analysts

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2007

Production Reference: 1190707

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847192-36-3

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author
Matt Cumberlidge

Reviewers
Diego Naya Lazo
Dr. David Franklin
Sebastien Michea

Senior Acquisition Editor
David Barnes

Development Editor
Nikhil Bangera

Technical Editor
Ajay S

Project Manager
Abhijeet Deobhakta

Editorial Manager
Dipali Chittar

Project Coordinator
Sagara Naik

Indexer
Bhushan Pangaonkar

Proofreader
Chris Smith

Production Coordinator
Manjiri Nadkarni

Cover Designer
Shantanu Zagade

About the Author

Matt Cumberlidge is a business analyst working for a world leading FTSE 100
provider of information-driven services and solutions based in Oxford, UK. In this
role, Matt has undertaken a very wide range of projects, but the common theme
running throughout is that of business process. Over the last year or so Matt has
extended his core capabilities in business process analysis and re-engineering into
the realm of business process management and in particular an investigation of the
JBoss jBPM implementation. Matt is delighted to be able to share his experiences and
ideas about this exciting technology with a wider audience through the publication
of this book.

I'd like to thank my wife, Cathy, for understanding why I wasn't
always available to do my share of the housework while I was
writing this book and for feeding the cats, who would otherwise
surely have died of hunger. I'd like to thank Phil Wilkins from
SeeWhy for going way beyond the call of duty in helping me. I'd
like to thank my publishers, Packt, and in particular Dave Barnes for
his encouragement. Lastly, I'd like to thank and pay tribute to the
contributors to the JBoss jBPM community who have built a fantastic
product that it was fun for me to write about.

 About the Reviewers

Diego Naya Lazo is a Chief Enterprise Architect living in Buenos Aires, Argentina.
He currently works for Argentina's biggest healthcare provider and has more than 10
years of experience in the IT industry. He participated in several projects as a hands-
on software architect and performed the technical lead role in many companies. His
interest in computer programming began with his desire to create the most vivid 3D
animations as a graphic designer at the age of 15.

Dr David Franklin is an experienced hands-on software architect with more than
20 years experience with leading-edge companies and technologies.

Sebastien Michea is a J2EE software architect at Manaty (www.manaty.net).

After a PhD in Mathematical Physics at Université de Bourgogne (Dijon, France),
he studied Quantum Statistical systems in Yonsei university (Seoul). Programming
with Java since its first version, he joined Cap Gemini Telecom in Paris as a Java
developer. He then worked at PSU (State College, USA) as a Lecturer and Researcher
in the Computer Science and Mathematics department and simultaneously
developed a trading system based on non-linear correlations.

In 2006 he founded Manaty, an open-source IT company which is closer to a
freelancer community than a traditional company that create software using cutting-
edge technologies like EJB3, Flex, and.NET.

His main areas of interest are software design, science, linguistic, and cooking.

Table of contents
Preface� 1
Chapter 1: Introduction� 5

The BPM approach to software development � 6
Evolution of software development methodologies� 6
The emergence of key technologies� 9
Meanwhile—management theory� 10

What is a business process and why do we want to manage it?� 10
Business process improvement and re-engineering� 11

From this convergence, BPM emerges� 11
Business process management: a definition� 12

Key benefits of BPM� 12
Typical business scenarios ripe for BPM� 14

How this book works� 14
The solution we'll build� 15
Introducing our suggested project lifecycle� 15
Introducing our example business scenario� 16
Introducing our example BPM suite� 16

JBoss jBPM� 17
JBoss� 18
SeeWhy business intelligence platform� 19

Summary� 20
Chapter 2: Understanding the target process� 21

Setting up the project� 22
Introducing our example business scenario� 23
Project initiation document� 24
Scope the target process� 25

Table of contents

[ii]

Put together the project team� 29
Identify project sponsors� 30
Project office� 30
Identify process owners and subject matter experts� 31

Kick-off meeting� 34
Analyze the process� 34

Map the workflow� 35
Example� 36

Identify roles and responsibilities� 38
Activity flow diagram� 38
RACI matrix� 42

Put metrics alongside the process� 44
Example� 45

Identify quick wins� 48
Example� 49

Sign off to be process� 52
Summary� 52

Chapter 3: Develop the process in JBoss jBPM� 53
Introduction� 53

The JBoss jBPM architecture� 54
Installation� 54

Install Java� 55
Install the JBoss jBPM engine and the JBoss application server� 57
Install the JBoss jBPM designer� 59
Set up shortcuts� 66
Touring the designer's user interface� 66

Package explorer� 66
Editor area� 67
Properties explorer� 72
Outline view� 72

JBoss jBPM concepts� 73
jBPM process definition language—jPDL� 73

Nodes� 74
Transitions� 76
Actions� 76
Swimlanes� 76
Process variables� 77
Process state � 77
Super state� 77

Building our example process� 77
Add our swimlanes� 80
Adding our nodes� 81
Export for sign-off� 95

Summary� 98

Table of contents

[iii]

Chapter 4: The prototype user interface� 99
Build the prototype� 99

Develop the prototype user interface� 100
Set up our users� 106
Deploy the process and user interface� 114

Investigating the web console interface� 116
End users� 119
Managers� 122

Adapt the web console� 124
Sign off for the proof of concept� 125

Summary� 126
Chapter 5: Iterate the prototype� 127

Set up for the proof of concept� 127
Set up the team� 127
Set expectations� 128
Plan the proof-of-concept program� 129
Capture requirements� 129
Make jBPM available on a server� 130
Run the proof of concept� 132

Iterate the system� 132
Process changes� 132

Task prioritization� 133
Integration with other systems� 134

Obtain sign-off� 140
Summary� 141

Chapter 6: Proof-of-concept to implementation� 143
Preparation for implementation� 144

Judging readiness� 144
Implementation plan� 144
Customizing the web console� 146
Swapping the database back end� 149

Install the database server� 149
Install the database tables� 150
Import the data� 154
Set up a JNDI data source� 155
Install the MySQL driver� 155
Amend the JBoss configuration� 155
Amend the hibernate configuration� 157

Monitoring the process� 158
Process management� 159
Process metrics analysis� 159
Process forecasting� 160

Table of contents

[iv]

Example process reporting suite� 160
Integrating the SeeWhy business intelligence platform� 160

Go-live� 182
Summary� 183

Chapter 7: Ongoing process improvement� 185
Project assessment� 185

Project post mortem� 186
Evaluate project versus success criteria� 186
Determine the real ROI of the system� 188
Obtain project sign-off� 189

Process analysis and improvement� 189
Track process metrics� 190
Change request processes� 190

Business process changes� 192
jBPM changes� 192

Business process documentation� 192
What kind of documentation?� 193

Using a wiki� 193
Ideas for further development� 195

Breaking up the process into phases using superstates� 195
Abstracting into a process hierarchy� 197
Building a process-driven enterprise� 197
Automate business rules processing� 198
Replace the user information database� 200
Document management� 201

Summary� 202
Epilogue� 202

Index� 203

Preface
This book shows business analysts how to model business processes in JBoss jBPM
and use these models to generate a fully-functioning workflow application. It shows
how business analysts can use the tools to build a solution without the need for
Java coding expertise. It also introduces more advanced functionality that can be
implemented by Java developers in partnership with the Business Analyst.

This book takes a practical approach, with step-by-step instructions for business
process management, model creation, and implementation. It uses a typical BPM
project lifecycle case study to explore and explain the process in a realistic situation.

What this book covers
Chapter 1 discusses the background from which BPM has emerged, and how BPM fits
into the wider scheme of enterprise application development. We define what BPM
means for us, and look at the business scenarios where BPM is the right solution.
Also, we introduce our suggested BPM project lifecycle, and see the tools that we'll
put together as our open source-based BPM suite.

Chapter 2 covers all the major tools in the process analyst's kit bag, with a view to
creating a deep understanding of the process we are seeking to systematize in
our BPMS.

Chapter 3 covers the software installations—�� Java, the JBoss application server, the
jBPM engine, and the jBPM Designer. Also, we take a look at the fundamental
concepts that underpin JBoss jBPM�� ��� and put these concepts into practice by building
our first process definition for our proof-of-concept system.

Chapter 4 covers building the user interface that our proof-of-concept testers will use
to interact with the process definition that we built in the previous chapter.

Preface

[�]

Chapter 5 covers putting the jBPM system on a server so our proof-of-concept testers
can bash their test data into it and give us feedback on what they think. Also, how
we can allow managers to prioritize tasks by design and on the fly. Most complicated
of all, we see how our system can be integrated with other applications, both in
house and external.

Chapter 6 looks at how we judge when we are ready to start planning to go live and
also covers the essentials we need to consider when building an implementation
plan. We show how the web console can be customized according to your own
branding and we see how we can swap the default jBPM database for a more robust,
enterprise-ready database server. We will also integrate and put to use the SeeWhy
Business Activity Monitoring solution.

Chapter 7 covers how to assess our project and perform process analysis and ongoing
improvement. We also put together business process documentation, and present
ideas for further development of our BPM system.

What you need for this book
You will need access to an installation of the JBoss jBPM engine and the JBoss
application server, along with the JBoss jBPM designer. There is a walk-through on
how to install them in Chapter 3 of this book.

JBoss jBPM requires a working installation of the latest version of Java and a Java
utility called Ant. Details about how to download, install, and configure them are
given in Chapter 3 of this book.

You'll also need access to a MySQL installation in order to do some of the more
complex pieces

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "We can
include other contexts through the use of the include directive."

Preface

[�]

A block of code will be set as follows:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

 <task name="Hold auditions" swimlane="Talent scout" priority="1">
 <controller>
 <variable name="audDate" access="read,write,required"
 mapped-name="Audition

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[�]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to
use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction
Business Process Management is one of the hottest topics in the fast-moving world
of business analysis and enterprise application development. Yet, it is curiously
difficult to pin down as a defined field of work. You don't see job listings for "Process
Developer" and there are few, if any, official courses that you can take in Business
Process Management.

The answer to this conundrum lies in the almost accidental way in which BPM
has come about, and in the speed with which the technology marketing machine
swings into action these days: usually before the technology is properly understood.
Business Process Management is at the start of the "hype curve" and it will be some
time before its key concepts become common currency among enterprise managers.

We will try to cut through this hype and the resultant barriers to adoption by
presenting a practical step-by-step approach to the successful implementation
of business process management. We won't spend a great deal of time on theory
in this book; instead we will concentrate on building something of value to your
business. Having said that, we won't simply throw together any old business process
management system, we will advocate a project lifecycle approach, so that we
implement business process management in the right way.

So what is Business Process Management anyway? Well, hopefully you are coming
to this book with some idea of the answer to that question. However, Business
Process Management, or BPM as we shall call it henceforth, means different things
to different people. Each person's definition probably has some element that falls in
the intersection of a Venn diagram of definitions, at the centre of which is the truth.
One of the first things we have to do is to define what BPM means for us, so that we
may set expectations about what will be achieved by reading and implementing the
suggestions in this book.

Introduction

[�]

This introductory chapter will lay the ground work for the rest of the book. In it, we
shall cover:

The business process management approach to developing software
What a business process is and why you want to manage it
Typical business scenarios ripe for BPM
How this book will work:

The solution we'll build
Our suggested project lifecycle
Our example business scenario
Our example BPM suite

The BPM approach to software
development
Business Process Management is the natural evolution and convergence of several
powerful forces within the fields of software development methodology, enterprise
application technology, and management theory. These underlying forces have all
matured and converged at the right time for a productive fusion, which we know as
business process management.

Evolution of software development
methodologies
Traditional software development methodologies owe much to their engineering
roots. The waterfall approach to software development was designed with the idea
that building a piece of software is like building a bridge: the better your design
and blueprint, the sturdier the end result. In reality, this approach falls very far
short of perfection.

Developing enterprise application software is about delivering value to a business,
and the business expresses that value as a set of business requirements. The problem
with the waterfall approach, and the difference from bridge construction, is that
unlike the laws of physics and the construction properties of metal and concrete,
business requirements are subject to change. Businesses cannot afford to stay
still: if they don't adapt to the marketplace then they will not survive. So business
requirements are necessarily a shifting target.

•

•

•

•

°

°

°

°

Chapter 1

[�]

Unfortunately, this is not the only problem with the traditional software
development methodologies. There is also the problem of business requirements
"dissonance". This is where the layers of end users, analysts, and developers create
a chain of Chinese whispers, resulting in software that fails to resemble the original
requirement. Each link in the chain puts its own interpretation on the requirement,
until the end result is horribly different from what the business originally needed.
This requirements dissonance can easily be visualized:

True
requirement

Interpretation Final
software

Developer

Interpretation Interpretation Interpretation

End user Business Analyst

In recent years, the traditional waterfall approach to software development has been
superseded by other, more adaptable methodologies. These methodologies attempt
to break down the requirements dissonance by taking out the middle man as much
as possible, and by creating prototypes early on, and then iterating them towards
the final version. This allows for an iterative approach to software development, far
removed from the "build a bridge" traditional approach:

True
requirement

Developer

Interpretation

Iterated
prototype

End user

InterpretationInterpretation

Comparison

The most prominent of these newer development methodologies is Agile. On
the right project, there is no doubt that Agile development can deliver valuable
software more successfully, and more quickly, than the waterfall approach.

Introduction

[�]

Nevertheless, Agile development and its ilk do have serious drawbacks and
limitations. The first and most obvious limitation is that the Agile development
methodology does away with the Business Analyst. This is an important drawback,
because often the BA's interpretation of the requirements is more logical and more
far-sighted than that of the end user who specifies the original requirement. This
can mean that the developer can be led up blind alleys by an end user who doesn't
have the necessary perspective.

There is also the problem that although we are removing some layers of
interpretation, the layer of interpretation that we are leaving in place is the one that
causes the most significant dissonance: the developer still has to interpret what the
end user means.

This can mean that time is unnecessarily wasted on honing a prototype that starts off
a long way from what the business needs. Indeed, some Agile developments have
turned into one extremely long prototyping process, with an end result never being
reached. This is an expensive way to develop software.

So what is the ideal, and where is Business Process Management in relation to
this? For some idealists, the best situation would be one where the business users
can build the software tools they need for themselves, without having to rely
on developers or analysts. Unfortunately, although programming languages
are becoming simpler all the time, we are still light years away from them
being abstracted enough for an end user to build their own software. Software
development is still hard.

Nevertheless, BPM does go some way towards this ideal, and given the right
scenario, it can successfully deliver valuable software in extremely short time scales.
In a similar fashion to Agile, BPM relies on cutting out the middle man as much as
possible, only this time the emphasis is on a strong partnership between the end user
and the BA working on iterations towards the final software:

Modeled
requirement

True
requirement

Interpretation End
software

Interpretation
Software

generation

End user Business Analyst

Comparison Modeling

Chapter 1

[�]

The reinstatement of the Business Analyst has several advantages:

Firstly, the BA is skilled in the interpretation of requirements, and so their
business process models are likely to be close to the original requirement.
Secondly, a BA's models are far easier for an end user to understand than
code or even prototype software, allowing for closer collaboration and
faster development.
Thirdly, the BA has the long term view and business skills to steer the end
user's expression of their requirements in the most beneficial direction.
Last, and by no means least, models can usually be produced much more
quickly than working software. As the working software produced by a
BPM system is initially generated from the BA's process model, this is an
extraordinarily fast method of software development.

Don't be tempted to think that this means developers are no longer required,
however. The reality of BPM development is that it makes the working relationship
between end user, BA, and developer much more symbiotic and productive, but
does not make any of those roles redundant. BPM is a partnership approach to
software development; on one hand between the end user and the BA, and on the
other between the BA and the developer. The skills of a developer are very much
still required to take a BPM system all the way to implementation. Where a business
process calls for the integration of other systems, that integration work will almost
certainly involve an interface built by a developer. And while the software that is
generated by the BPM suite is good, it does still require some development to make
it properly fit for purpose.

It would be foolhardy to suggest that the BPM approach is the right one in every
software development scenario, but it is a formidable new challenger to other
development methodologies. Later on in this chapter, we'll consider some of the
scenarios where a BPM approach is the most appropriate.

The emergence of key technologies
Workflow software has been around since the early 90s, if not before. These systems
were most often used in document management scenarios, where a document (for
example, an insurance claim form) was passed between different departments as
work was done on it. This worked well because the workflow system only had
to maintain a pointer to the document in order to pass it down the process chain.
Where things got more difficult was when the workflow system met other,
task-specific systems.

•

•

•

•

Introduction

[10]

Most mature processes involve the coordination of several systems. For example,
we might have one system to record our insurance claim, another to work out
what payment is due on the claim, and yet another to make the payment to the end
customer. Before the advent of internet technologies, and specifically XML, it would
have been a mammoth and fearsomely complicated task to integrate and tie together
these task-specific systems and their proprietary programming languages and data
formats within the context of a process. This was quite often attempted, however,
and the result was usually a development and maintenance nightmare. More code
ended up being written to handle the interfaces than was actually needed to process
the work.

Thankfully, XML emerged from the internet revolution as a simple way for systems
to talk to each other without them having to know about each other's proprietary
data formats. Many task-specific systems now implement XML web services, making
the task of integrating them into a process relatively simple.

As a result, business process management can certainly be viewed as a repackaging
of the workflow software that was available in the 90s, but the reality is that those
old tools could never have delivered the same value as BPM, because the technology
landscape has fundamentally changed in the interim.

Meanwhile—management theory
The third leg of the tripod that has raised BPM up to its prominent position is the
focus on process in management theory since the 1980s.

What is a business process and why do we want to
manage it?
What do we mean by "business process"? We typically mean a collection of business
activities that takes one or more kinds of input and creates an output that is of value
to the business. It is the focus by management theorists on the elements of this
definition that has led us to BPM. This quotation from W. Edwards Deming, founder
of the quality movement, is illuminating:

"If you can't describe what you are doing as a process, you don't know what
you're doing."

Any business process improvement project is an attempt to answer the fundamental
question of "How do we organize our activities so that we can minimize inputs,
maximize outputs, and maximize value?".

Chapter 1

[11]

Business process improvement and re-engineering
There are several strands of management theory that are built around this
fundamental question, and there are some striking examples where these theories
have been effectively put into practice. Think of Jack Welch, who turned General
Electric from a struggling manufacturing company to a highly profitable service-
based company. Amongst other initiatives, this successful transformation can be
attributed to radical business process re-engineering, and adoption of Six Sigma
quality practices. Think too of Michael Dell, whose company of the same name
changed the playing field of PC making and retail through a relentless focus on
process improvement and ruthless process efficiency.

In business process re-engineering and improvement thinking, processes are
viewed as organizational building blocks with as much (if not more) significance as
functional areas and geographic territories. Business process re-engineering emerged
in the 1980s with the idea that sometimes radical redesign and reorganization of
these process building blocks was necessary to lower costs and increase the quality
of service, and that IT was the key enabler for that radical change. The trouble with
this radical approach is that it is too difficult to achieve in the real world. Mature
organizations often simply cannot wipe the slate clean, and re-organize themselves
without the instinctive memory of past processes and procedure creeping back in.
Ultimately, business process re-engineering initiatives came to be viewed as nothing
more than a cover up for downsizing efforts.

Business process improvement initiatives have been more successful, although
they have been hampered by the lack of a comprehensive solution. Good-quality
process design would be let down by sketchy IT support that couldn't be adapted. A
business process would be designed around system constraints rather than systems
doing exactly what the process required.

Nevertheless, many of the elements of business process improvement have proven
to be useful and have not been discarded. Business process modeling has certainly
increased businesses' ability to understand their operations and to make rational
decisions about how best to organize their activities. Also, the definition and
measurement of process metrics have given concrete, meaningful, and achievable
targets for managers to work towards. The business is now more involved than ever
before in the specification and delivery of IT programs.

From this convergence, BPM emerges
BPM is the final piece of the puzzle that allows business process initiatives to be fully
successful. BPM espouses the incremental approach of business process improvement,
but the IT delivery phase is supported by custom-designed tools that reduce the effect
of requirements dissonance by allowing the delivery to be driven by the business.

Introduction

[12]

In its simplest form, workflow software is generated from the process maps that
are modeled by the Business Analyst. This workflow software is then the end user's
"front end" to the process, and it controls the execution of the process in the live
environment. Other software is then used to report on the operation of the process
within the workflow software, allowing for dashboarding of key performance
indicators. These dashboards can in turn be used to drive ongoing process
improvement decisions.

Business process management isn't just one piece of software or one analysis
technique: it is a suite of software, a framework of analysis techniques, and a defined
project lifecycle. The Business Analyst, with their unique perspective on both
business and technology, are in the happy position of having the right relationships
and the right skill set to drive BPM initiatives in the enterprise.

Business process management: a definition
So now that we understand the background to BPM, it's about time we attempted
a definition:

Business Process Management involves the graphical modeling of a
business process, from which workflow software can be generated, which
in turn will control the live operation of the process, interacting with both
humans and other applications. Further software measures the execution
of the process in the live environment in order to permit ongoing analysis
and iterative improvements.

Key benefits of BPM
The buzzwords and hype that are currently circulating around BPM are presenting
serious barriers to adoption. What's needed is a clear expression of the benefits of
BPM. BPM delivers efficiency, control, and agility to the business that implements
it in the right way. These three key areas of promised benefit can be further broken
down as:

Increases in productivity and effectiveness—a BPM system's task list makes
sure that everyone is always working on the highest priority item, speeding
the process along.
Increased process compliance and governance—users of a BPM system have
no choice but to follow the process that the system is built on.
A more agile business that can change and adapt more quickly—because a
BPM system is driven by a process model rather than by pure code, generally
it is easier to effect system change, and therefore business change.

•

•

•

Chapter 1

[13]

Increased ability to scale best practices across a changing organization—
once defined and built, a BPM system doesn't care if it has 10 or 100 users.
Organizations that try to scale out a ten-man operation to a 100 person one
often run into difficulties because the process becomes so difficult to control
without software support.
Improved communication, cooperation, coordination, handoffs—BPM
systems are all about moving work from one team to another, reducing the
need for teams to be skilled in communication and cooperation.
Improved resource utilization—resources that aren't pulling their weight are
very visible to management because everything that happens in the process
can be reported on.
Improved visibility of process pipeline—managers can easily report on
everything that is in the course of being processed.
More accurate operational forecasts—because managers have such good
visibility of their process pipeline, they can more easily plan their operations.
Greater process throughput—a well-oiled process running at maximum
efficiency means that it will produce more of whatever the process is
designed to produce.
Higher quality output—because process compliance is assured, and because
the process was designed in line with best practice, it stands to reason that
the output of that process will be of high quality.
Shorter process cycle times—with everybody who is involved in the process
working at maximum efficiency, the total time it takes to run the process
from start to finish will be reduced.
Minimized cost of inputs—because the process that underpins the BPM
system has been defined and because the BPM system leads the process
actors through that process, there is a reduced need for high quality, high
cost staff to ensure the process runs smoothly.
Lower total process cost—the reduction in cycle time, the improvement in
quality, and the minimized cost of inputs ensure that the total cost of running
the process is reduced.
Faster new hire ramp-up—all new hires need to do is follow what the BPM
system tells them to do.

More satisfied customers—the BPM system ensures customers get a higher
quality good or service more quickly, and more consistently than they
would otherwise.

•

•

•

•

•

•

•

•

•

•

•

•

Introduction

[14]

Typical business scenarios ripe for BPM
Another barrier to adoption of BPM is a lack of understanding of the problems
that BPM is designed to solve. Despite the persuasive benefits listed above, we
must be clear from the beginning that BPM isn't the right solution in every
circumstance. The following scenarios are good indicators of when BPM might
be an appropriate solution:

People don't comply with a defined process.
The pipeline of work is unpredictable despite consistent customer demand.
The actors in the process don't have meaningful targets for how much or how
fast they need to process.
Processes are carried out by disparate teams.
Elements of the process have been outsourced.
A business's reliance on a particular process has grown very quickly and best
practice has not been adopted properly.
Task-specific systems are not coordinated, causing breakdowns in the
process chain.

Similarly, there are clearly situations where BPM is not appropriate:

BPM is not appropriate for task-specific, procedural requirements: for
example, calculating tax on an invoice.
The business is so small that controlling the process would impose a
disproportionate burden on its operation.

How this book works
This book is a full toolkit for someone who wants to implement BPM in the right
way. This toolkit is particularly aimed at Business Analysts, although Project
Managers, IT managers, developers, and even business people can expect to find
useful tools and techniques in here. We will present the project framework, analysis
techniques, and templates, BPM technology and example deliverables that you need
to successfully bring a BPM solution into your organization.

The book itself is structured to reflect the project lifecycle that we advocate. Each
chapter represents a phase in the project. Each chapter will talk through the theory
involved in that phase, explain the techniques or the technology, and then show you
how it is done with an example. Every chapter has specific deliverables that fit in
with the respective project phase, and these deliverables will be worked through in

•

•

•

•

•

•

•

•

•

Chapter 1

[15]

the example. Templates for the deliverables and the working example can be found
in the download for this book.

The solution we'll build
As we go through the project phases, we will put together our example BPM system.
The process that we will manage will be a realistic scenario and the solution could
be used in real life. The BPM system we'll build will be stand alone, without proper
interfaces to other systems, although we will simulate an interface, so we show
how it can be done. The solution could certainly be developed much further, and
in the final chapter we'll see some pointers for how this could be done, but even
without further development, the solution is fully working and useful. The most
important thing is that we go through the project steps so that the solution we build
is functional and effective.

Introducing our suggested project lifecycle
The book, and our suggested project lifecycle, is divided into six distinct phases:

Understand the target process—to start off, we need to scope our target
process, put together our project team, and then set about analyzing the
process and building our first model for business sign off.
Develop the process—now that we have our process model, we need to
install our BPM suite and build our model within it.
Prototype the process workflow user interface—once we've developed the
process model in the BPM suite, we can generate a prototype user interface in
order to run a proof of concept with our users.
Iterate the workflow prototype—our proof of concept will turn up numerous
process changes and user interface requirements that we need to capture,
prioritize, and implement.
Pilot and implement the workflow—we can now run a full-scale user
acceptance test, and develop our key performance indicators that we'll track
in the last phase. We can then put our process live.
Ongoing process improvement—now that the process is in the live
environment, we can monitor its execution and investigate opportunities for
further improvement.

•

•

•

•

•

•

Introduction

[16]

Introducing our example business scenario
Any business process can be modeled, but some processes are more suited to
business process management than others. For our worked example, the process
we will use will be drawn from the music recording industry: "Produce music
products". As we'll see, this process fulfils many of the criteria we defined above for
a business scenario that is apt for a BPM solution. It also gives us the opportunity to
demonstrate all the capabilities of our BPM suite, so that you can adapt the solution
for your own processes.

Introducing our example BPM suite
There are many BPM vendors in the marketplace at the moment, and many of them
offer the full suite of tools that we are looking for. One option is to bring in a vendor
straightaway, but given the barriers to adoption that we've discussed in this chapter,
it is likely that a BPM project will have to prove that the concept is valid and the
solution can achieve a return on investment before a vendor is engaged.

Fortunately, there are some open-source tools available to us that will, at least,
allow us to prove the concept for minimal investment, and in fact are certainly
good enough to provide a solution that is comparable to the best that the vendors
have to offer. For our BPM suite we need a graphical process modeler, a workflow
user interface generation tool, a workflow application server, and a process metric
reporting tool. All of the following tools are free to download and use.

Chapter 1

[17]

JBoss jBPM
The first element in our open-source BPM suite is the jBPM development
environment provided by JBoss. This Integrated Development Environment, or
IDE, is based on another open-source tool, Eclipse, which is widely used for Java
development. The JBoss jBPM IDE gives us not only our graphical process modeler,
but can also generate the workflow user interface for us. Here is a screenshot
showing the user interface of the IDE:

Introduction

[18]

JBoss
The next element in our BPM suite is the JBoss Application Server, which is used
to serve our workflow application to our end users. This workflow application is
effectively a website, which the end users use to complete and record their process
tasks. This is how it looks:

Chapter 1

[19]

SeeWhy business intelligence platform
Finally, once we have our process in operation, we need to measure its execution.
Our final tool in our BPM suite is therefore the SeeWhy Business Intelligence
reporting toolset. SeeWhy is administered and configured over the Web using a
browser-based console called the Desktop:

Introduction

[20]

The second element of the SeeWhy platform is the Navigator, which is where our
users will actually view the reports created by the platform. Here is a screenshot of
the SeeWhy Navigator showing some business process metric reporting in action:

Summary
In this introductory chapter, we've set the scene for the rest of the book. We've
discussed the background from which BPM has emerged, and we've seen how BPM
fits into the wider scheme of enterprise application development. We've defined
what BPM means for us, and we've looked at the business scenarios where BPM is
the right solution. We have introduced our suggested BPM project lifecycle, and
we've seen the tools that we'll put together as our open-source-based BPM suite.

Now, we need to make a start on our project, and have a look at our example
business process.

Understanding the target
process

The last chapter has given us a bit of background to business process management
and it is now time for us to dive right in and get our project up and running. The
project outline described in this book is intended to deliver a BPM system that is
fully functional and usable in the live environment, although there will be many
opportunities left for further development of the end product. The point of our
project is to prove that the BPM concept can deliver value to our organization, so that
management will agree to further investment and proper development of the system.

Given that our objective is of a limited nature, it makes sense for our project to
deliver as quickly as possible. Nevertheless, in our haste we should not sacrifice
proper project documentation and methodology, for without an audit trail, the
concept will remain unproven. While this book isn't about project management
methodology, we will at least describe how to initiate the project in a controlled
manner, as it can be so vital to the successful outcome.

This chapter will also introduce our example business scenario, walking through
the initiation phase of the project, where we'll define the success criteria and build
our project team. We will then set about our initial investigation and analysis, until
we build our first off-line model of the current situation. We will then apply some
analysis techniques and produce a 'To Be' model of our target process, which our
stakeholders can sign off as being a true reflection of their requirements.

Understanding the target process

[22]

By the end of this chapter, we will have considered the following deliverables that
should be produced during this phase of the project:

Project initiation document
As Is:

Flowchart
Activity flow diagram
RACI matrix
Process metrics analysis

To Be:
Activity flow diagram
RACI matrix
Implementation plan

This list of deliverables is loosely based on a combination of PRINCE project
management methodology, along with business process re-engineering
methodologies. Experience has shown that this is the right set of deliverables for
a BPM project. Some of the deliverables may ring bells for you, some you may not
have heard of; never fear! All will become clear.

Templates and worked examples for each of these deliverables can be found in the
download for this chapter.

Setting up the project
It is very tempting at the outset of an exciting new project to just jump in straight
away and start the analysis work, or even just start building. It is very worthwhile,
however, to spend some time setting up the project properly first, so that everyone
involved in the project understands:

Exactly what we plan to do
Why we are doing it
How we plan to get there
Who will do what
When we are planning to do it

A cliché that is often bandied around on technology projects is the axiom "People,
process, and technology". Typically, an IT project is good at addressing the process
and technology bits, but all too often, the people element gets left behind as an
afterthought for training and the nebulous area of "change management". The people
element of the project needs to be considered at the very beginning, and concrete
actions taken throughout to ensure everyone is buying into the project.

•

•
°

°
°
°

•
°
°
°

•
•
•
•
•

Chapter 2

[23]

The very first thing that we can do to ensure we are taking our people with us, is
set out our aims and plans in a project initiation document, and give everyone a
chance to discuss these in a kick-off meeting. In this section, we will discuss the
main subject headings in a project initiation document or "PID", which will in turn
form the agenda for a kick-off meeting involving all the project stakeholders. Before
this, however, let's introduce our example business scenario, which will serve as the
source material for our example PID.

Introducing our example business scenario
We have been contacted by Mr. Sven Gali, CEO of Bland Records Inc., to try to
help him turn around his struggling record label business. Bland Records has 200
employees and a turnover of $50 million, although in recent years profitability has
declined sharply, until last years' profit and loss account showed a $1 million loss.
This loss was made despite regular chart success and no change in production
methods. Poor Mr. Gali is tearing his hair out in frustration.

Bland Records' speciality is in finding talentless, yet attractive youths, assembling
them into bands of four or five, partnering the readymade band with a songwriter
and some real musicians, who finish off the product with an addictive set of tunes.
The end product is released on an unsuspecting public who promptly shoot the band
to number one in the charts.

Bland Records is made up of four divisions: A&R, Production, Sales and Marketing,
and Finance. The company is responsible for finding new artists, producing
the albums, and then promoting them in the marketplace. Bland outsources the
manufacturing of the CDs and relies on its relationships with its channel partners for
warehousing and distribution to the end consumer.

Mr Gali has a tried and tested process that has never failed to achieve success in the
charts. However, he has two main problems. Firstly, he has found that it is hard to
predict his pipeline of new bands coming through, meaning that quite often one
Bland Records band ends up competing with another in the charts, stopping both
from achieving their full potential. Secondly, whereas five years ago Bland Records
was the only record label in the industry with the foresight to manufacture bands in
this way, now there are other competitors in the market, and these competitors have
found ways to bring out new bands more quickly.

Indeed, Bland Records' main competitors, Sausage Factory and Packt Records, are
able to get a new band into the charts within four months of holding initial auditions:
unfortunately, it takes Bland Records six months. Mr. Gali is desperate to match the
speed of execution of his competitors, without sacrificing quality of the end product.

Bland Records have retained our services to streamline their process, allow them to
better coordinate their suppliers, and gain visibility of their pipeline.

Understanding the target process

[24]

Project initiation document
It is extremely wise to start a BPM project by creating a Project Initiation Document,
and making sure the project sponsor signs it off. Having some level of project
governance in place is beneficial not only for the health of the project, but also for
the peace of mind of the client business. Project governance doesn't guarantee that
a project will be well run, but it does at least show that some thought has gone into
how the project will proceed.

The project initiation document defines all major aspects of the project and forms,
the basis for its management, and the assessment of overall success. There are two
primary uses for the document:

To ensure that the project has a sound basis before there is any
major commitment

To act as a base document against which the project and its stakeholders can
assess progress, change management issues, and ongoing viability questions

The very first action we must take is to identify our project objective. If we do
not know what we are setting out to achieve right at the very start, then we stand
absolutely no chance of delivering a successful project: how would we know we've
been successful? We simply need to write down a brief description of the purpose of
the project: a summary of what it aims to achieve and how. Clearly, the main objective
of a BPM project is to implement a business process management system, although
we would probably include some discussion of the wider business objective.

We must then identify the specific success criteria by which our project will be
judged, and against which the project will eventually be signed off. Success criteria
must be measurable, so that we can judge the success or failure of our project, as well
as be able to tell when the project is complete. We should also include details of how
these success criteria will be signed off, and by whom. The favorite acronym of project
managers the world over is SMART, and our success criteria must certainly conform
to this by being Specific, Measurable, Achievable, Realistic, and Time-bound.

We should also include a high-level project plan, so that we can set expectations
for when the project will achieve its results. This plan should only include the
major milestones, as a more detailed project plan should be prepared and tracked
separately. Finally, we should specify how we will report on project progress:
what, how often, and to whom. This wraps up the first half of our project initiation
document. Let's take a look at how we might fill out these items of the PID for our
example business scenario.

•

•

Chapter 2

[25]

Example
Based on our initial discussions with Mr Gali, and the other executives of Bland
Records, we are able to draft the following as a start to our project initiation document:

Project objective�: streamline the process as much as possible, and then implement a
business process management system �� allowing Bland Records to better coordinate
their people and suppliers, and gain visibility of their pipeline.

Success criteria�:

The process time from first audition to album release is reduced from 6
months to 4.
Pipeline can be forecasted and controlled, so that competing products from
Bland Records are not released on the market at exactly the same time.
The above success criteria will be assessed 6 months after implementation of
the project, in order to allow the changes to take effect.

High level project plan�:

Project phase Duration Start End
Project initiation 5 days 18 December 2006 22 December 2006
Understand the process 9 days 25 December 2006 04 January 2007
Develop the process in the BPMS 11 days 05 January 2007 19 January 2007
Prototype workflow user interface 26 days 22 January 2007 26 February 2007
Iterate the prototype 26 days 27 February 2007 03 April 2007
Pilot the system 15 days 04 April 2007 24 April 2007
Implementation 20 days 25 April 2007 22 May 2007
Wrap up 5 days 23 May 2007 29 May 2007
Post project assessment 10 days 01 November 2007 14 November 2007

Scope the target process
The next heading of the project initiation document is "Scope". This can sometimes be
challenging to fill in at the very start of a project, when you haven't actually yet done
the analysis work that will allow you to answer the question. Still, it is possible to set
rough boundaries, and indeed, it is normally worthwhile spending some time with
the project sponsors and principal stakeholders to do a bit of background analysis
to understand the organization. Generally, this up-front analysis work will pay
dividends further down the line, as it will prevent the project from trying to tackle
too much, or from choosing the wrong target altogether.

•

•

•

Understanding the target process

[26]

The first step is to decompose the organization into its processes. Typically, the
business will see its organization as a grouping of functional silos, for example:
Finance or Fulfilment. They probably won't immediately understand that what we
are trying to achieve is an understanding of the business as a set of processes that cut
across functional lines. Process is a way of thinking, as well as an analysis technique,
and the BA will normally have to imbue some of this process methodology into the
sponsor in order to be able to answer the scope question. One rule of thumb, which
generally works well, is to describe the business as verb and noun pairs, along the
lines of "Do something", for example: "Sell product". This helps to avoid thinking
along purely functional lines.

For our purposes, we can define a business process as: "A collection of linked
activities that consume inputs, add value, and produce an output of value to an
internal or external customer". A diagram like the following can help impart the key
definition of a business process to our project sponsors:

Activity 1 Activity 2 Activity 3 Activity 4 Activity 5

Input

Output

Activity 6

Generally, an organization can be represented as a process hierarchy, made up of
5 to 12 top-level business processes, each of which may have 3 to 12 sub-processes.
Sometimes, those sub-processes can be further sub-divided into sub-sub-processes,
but generally, these can be better described as "activities", which are the smallest unit
of sub-process that we'd want to describe. For the purposes of answering our scope
question, we would certainly not go beyond the sub-process level.

Chapter 2

[27]

Through talking with our stakeholders and using our knowledge of organizations in
general, we should try to build up a business process hierarchy diagram that looks
something like this:

Business
process

Sub-process Sub-process Sub-process

Business
process

Business
process

Business
process

Value chain
(major line of

business)

Once this is done, we need to specify which portions of the hierarchy we are going
to target for our BPM implementation. In looking for the target process for our BPM
implementation, we may actually end up selecting several processes, which when
stuck end-to-end make up a core process string that we will seek to systematize. The
processes must be consecutive in the end-to-end flow though, for otherwise, we will
end up trying to build two completely separate BPM systems.

Typically, the most gains to be made from a BPM implementation are to be found by
targeting the top level of the process hierarchy, as those processes will involve the most
handoffs that can be smoothed and, as a superset, are likely to have the greatest impact
in the organization. That is not to say that we should avoid the sub-process level, only
that the benefits will typically be less significant. However, looking further down
beyond the sub-process level would surely be a stratum of granularity too far.

In order to find our target process or processes, we need to investigate which have
the most impact in this organization, which add the most value for the end customer,
which are the most expensive to operate, and which have the most perceived
problems. Once we've decided on our target, we should document this as the project
scope in our PID: an amended process hierarchy diagram usually does this job very
well. Let's see this as a worked example.

Understanding the target process

[28]

Example
From our discussions with Mr Gali and Bland's executive team, we have managed to
work out that Bland has seven core processes:

1.	 Understand the market
2.	 Produce music products
3.	 Coordinate manufacture
4.	 Distribute music products
5.	 Manage finance
6.	 Manage operations
7.	 Manage legal issues

Mr Gali already told us that his main business problems are speed to market and
control over the pipeline. We know that Bland Records don't have any problems
with understanding their market because they consistently achieve chart success,
and the last three processes wouldn't seem to impact on the business problems in
question. So, given the nature of the business problems, it makes sense for us to
focus in on the "Produce music products", "Coordinate manufacture", and "Distribute
music products" processes. We therefore, concentrated our background analysis time
with Mr. Gali and the other executives on these three processes, breaking them down
to the sub-process level to amplify our understanding.

Having got this far, it became clear from our analysis discussions that the most
problematic process is "Produce music products", so it was decided to make this
the scope for our project. Perhaps future projects could build out from this starting
point and address the "Coordinate manufacture" and "Distribute music products"
processes, but it is sensible to keep scope manageable for this initial project. Having
made this decision, we can pin down our project scope diagrammatically, and insert
it straight into our PID:

Chapter 2

[29]

Coordinate
manufacture

Source
materials

Manufacture
media

Control
quality

Ship
product

Distribute
music products

Manage
finance

Manage
operations

Manage
legal issues

Stock music
product

Sell music
product

Fulfill Orders

Accept returns

Perform
customer
service

Understand
the market

Produce music
products

Form band

Find
musicians

Write song

Arrange
music

Shoot video

Put together the project team
Now that we have defined the scope that our BPM project is expected to address, we
can easily identify the people to involve in our project team. We must specify this list
of people in our PID, and invite them all to our kick-off meeting, so that everyone
knows they will be expected to participate in the project.

Coming back to the old IT project cliché of "people, process, technology", we are
extremely unlikely to succeed in getting people to buy into the project, if they are
not involved from the very start. So, it really pays dividends to consider the make-
up of the project team right at the very beginning, and to include everyone who
might be impacted by the project in any way. If we don't do this, then no matter how
great a BPM system we build, adoption of the new tool will be low because it will be
perceived as being foisted on the user community.

The first members of our project team that we need to consider are our project sponsors.

Understanding the target process

[30]

Identify project sponsors
While the choice of every project team member is important, it cannot be
emphasized enough how important it is to get the sponsor right. We need at
least one and no more than three project sponsors, whose main responsibility
it is to make resources available to the project: both human and financial. They
must therefore, be of the correct level in the organization to be able to make such
resourcing and budgetary decisions.

The sponsors will also set the strategic goals for the project and provide the
ultimate sign-off that the project is complete. Any more than three sponsors will
compromise decision making in the project and lead to unnecessary delays: the
ideal is a single sponsor.

Project office
Now, we come to the people who will be accountable for actually delivering the
project. We need to decide who will be the Project Manager, and who will be the
Business Analyst. In practice, it may well be that these two roles are performed by
the same person, but it is sometimes better to divide and conquer. Separating the
roles can allow the Business Analyst to focus on the analysis work, instead of being
distracted by budgeting and resourcing concerns. Generally, a specialist project
manager won't have the analysis skills necessary for a BPM implementation.

The final member of the project office is the development resources that will be
available to the project. There are choices to be made when filling this vacancy: for
instance, do we outsource to a specialist development company, probably offshore,
or do we leverage in-house resources, which would give us better long term
support? Whichever choice we make, we are looking for a developer or developers
who have J2EE knowledge, particularly around web technologies: it is quite unlikely
we'll be able to find someone with JBoss JBPM knowledge because the product
is quite niche. If we plan to integrate other systems then we need someone with
interface experience, preferably web services.

Example
In our PID for Bland Records, we define our project office, including their roles
and responsibilities.

Role Responsibilities Named individual
Project Sponsor Responsible for the business case and for

ensuring the project continues to deliver the
business case throughout the project lifecycle.

Sven Gali

Chapter 2

[31]

Role Responsibilities Named individual
Project Manager All project management tasks within the

project; resource management, planning, and
delivery of a fit-for-purpose solution.
- Financial control of the project.
- Stakeholders' single point of contact.

- Issue/risk management, resolution, and
escalation

Peter Manager

Business Analyst Responsible for performing the analysis
activities, which will deliver the project.

Matthew Cumberlidge

Developer Customizing the user interface.
Interfacing to other systems.

Dave Loper

Identify process owners and subject matter experts
Next, we need to do some stakeholder analysis on our target processes to identify the
owners of the processes, and subject matter experts who can tell us about the low-
level detail of the current process.

In normal project management methodology, stakeholder analysis would be
concerned with identifying not only those people who are involved in the process,
but also those indirectly affected by it, or those who might be able influence it.
For our purposes, however, we are seeking to determine all those functional roles,
departments, or organizations that take part in or are directly affected by the
operation of the process. All of these stakeholders will be process roles, and will
eventually correspond to the swimlanes on our process maps.

The process owners and subject matter experts can be difficult to identify early on
in the project, and often some of them will only emerge during the course of the
analysis, but initial discussions with the project sponsors will usually turn up a
list of the primary actor organizations in the process. These may include external
organizations, as well as internal departments, and both should be involved in
the project, if at all feasible: if not, then an internal resource close to the external
organization should be identified to represent the external organization. The groups
we identify at the start of the project will probably be subject to change as we go
deeper into the analysis phases, but it is important that we do our best to be as
accurate as we can at the start.

Understanding the target process

[32]

The primary actor organizations should be able to nominate a proposed process
owner or owners from among themselves. We are looking for one to three people
for process ownership. Process owners are empowered to decide on changes to the
process. If more than three people are nominated as process owner, then we need to
go one level up in the organization hierarchy, as we probably haven't got people who
can make a multilateral decision. We will be looking to these people to help us with
managing any organization change needed when we eventually implement our BPM
system, so it is important that these people have the clout to make these organization
changes happen, if they are needed.

Some further discussions about the operation of the process with the proposed
process owners should enable us to build up a diagram of all the other organizations
involved. We can then ask those organizations to nominate subject matter experts
who can represent their interests and speak on their behalf in the project.

These subject matter experts, or SMEs, must have hands-on knowledge of the
process. Generally, management-level people won't be able to talk to the level
of detail we need, while at the lowest level the people might not have the cross-
functional perspective required to understand their role in the process. Typically, we
are looking for the sort of people who we might categorize as "super users".

The SMEs may well feel a level of suspicion about the project that will need to be
dispelled. IT and process projects can sometimes be used as an excuse for headcount
reduction, so it is important the SMEs recognize that the project is not designed to
put them out of a job, but is in fact there to make their job easier. The SMEs must also
realize that there is no "wrong answer": management won't be reading the outcomes
of the workshops they are involved in, to ascertain whether or not they are sticking
to current policies and procedures.

It is vital that the SME group we put together is truly representative. We must not
only cover all the process roles, but we must also involve all geographic varieties of
that process role. Process projects often fail because an assumption is made that a
global process is performed in exactly the same way in every geographic location it
is operated. It is extremely rare for there to be no geographic variances. Indeed, the
alignment of global process operation is one of the principal benefits of a BPM system.

The SMEs have a very important role to play: not only will they provide the project
with the vast majority of the process information that will form the basis of the BPM
design; they will also act as advocates of the project within their user community, as
well as eventually being key user acceptance testing resources. These responsibilities
must be clear in the PID, and those identified should sign off the PID to say they
accept those responsibilities. The selection and retention of good SMEs is the fulcrum
around which a successful BPM project revolves.

Let's see how we will define our project team for our example business scenario.

Chapter 2

[33]

Example
We decided to use a mind map to brainstorm those involved in our target business
processes. Working with Mr Gali and his management team, we have been able to
put together the following:

Legal advisor

Band member

Video production

Musician

Talent scout

Song writer

Artist development

Record producer

Artist

After discussions with each of the stakeholders, we have been able to define the
process owner, and build up a list of subject matter experts. The head of Production
was identified for sole ownership of the "Produce music products" process, as they
had the organizational clout and reach to be able to make decisions for that process.

Each organization that was identified as a stakeholder nominated at least one SME
to represent its interests. The named process owners and SMEs were listed in the
Project Resources table of the PID, as follows:

Process Role Named individual(s)

Produce music products

Process Owner

Simone Cowell - Head of Production

SMEs

Bob Jones — Talent scout
Dave Jones — Songwriter
Albert Jones ����������������� —���������������� Record producer
Kevin Jones ��������������� —�������������� Legal advisor
Marjorie Jones ������������� —������������ Band member
Susie Jones ���������� —��������� Musician
Graham Jones �������������������� —������������������� Artist development
Robert Jones ������������������ —����������������� Video production
Lindsay Jones �������� —������� Artist

Understanding the target process

[34]

The PID also defined the responsibilities that these people had within the project:

Process owner: once the process is defined, the process owner acts as sign-off
authority for ongoing changes to the process. The process owners also manage
any organization changes needed by the project implementation.
Subject matter experts: they provide����������������������������������� the project with detailed process
information that will form the basis of the BPM design; they must act as
advocates of the project within their user community, they will be key user
acceptance testing resources.

Kick-off meeting
Now that we have written down who is going to be involved in the project, and what
we expect them to do, we just need to get them to agree to it. The ideal way to get
this sign-off is to hold a kick-off meeting in which the project initiation document is
reviewed in detail, the named individuals agree in person to their responsibilities
and to make themselves available, and the PID is placed under change control.

The kick-off meeting is critical for making sure that the team is aligned to the task:
there's that "people" element again. It is also a great way to start building a bit of
team spirit, and for getting everyone to realize that this project will require their
active participation.

We can now get on with the interesting part of the project, analyzing the processes
and building our models.

Analyze the process
We must now put our project team to work. The analysis phase of our project will
roughly follow the five step process made famous by Dr Michael Hammer, that is to say:

Identify and understand processes
Share processes
Measure and reward against process performance
Improve processes where necessary
Appoint a process owner

As you can see, we have already made a start on some of these activities, but the
analysis phase will really deepen our understanding of the business processes. The
key to success will be in communicating the "As Is" situation with crystal clarity to
all the stakeholders, so that everyone has the same shared understanding. Only then
will we be able to design the "To Be". The first step on this road is to very simply
map out the sequence of activities.

•

•

•
•
•
•
•

Chapter 2

[35]

Map the workflow
Mapping out the workflow as a flowchart model is a fantastic participatory exercise
that works best in a workshop environment. The technique is low tech but extremely
effective: we stick big sheets of brown paper up on the wall, and use Post-it notes to
represent the activities in the flow.

Typically, the BA will steer the debate about which activity goes where in the
workflow, and will ask questions to ensure all the steps are mapped, but it should be
the SMEs themselves, who write down the activity names and stick the Post-it notes
on the brown paper. This makes the exercise very involving, and the iterative nature
of the task means that the end result is usually quite accurate.

Flowchart diagrams are made up of only two elements: activities and decision
points. Activities should be mapped using one size and color of Post-it, and decision
points with Post-its of a different color and size. The key is to define the sequence of
activities, and to identify those points where the flow can go two ways, depending
on the circumstances.

There are only a few simple rules to govern how the workflow should be mapped
using the flowchart technique:

Write the activity name on the Post-it note in as few words as possible.
Write decision points as clear questions to which the answer is either yes or no.
Don't get too hung up on exceptions first time through—go for the "happy
path" first off, and make that go straight across (or down, depending on
which way you are mapping).
Make it clear that once a Post-it note has been put on the map, it isn't
anchored there forever; they can be moved around to get the sequence right.
The total workflow may take some time to achieve, so keep things moving.
Don't start doing the "To Be": avoid the temptation to begin making
workflow improvements while you are doing the exercise!
Encourage everyone to join in—don't let anyone be quiet.

This exercise would normally be the first two or three hours of an all-day workshop.
Once everyone is happy that the sequence is correct, they can probably break for
lunch, and while they are eating their sandwiches, we as the BA can write up the
flowchart in our process mapping tool. When they come back from lunch, we can
present the written up version back to the group, make any small amendments that
might be necessary, and ask for their agreement and sign-off.

•

•

•

•

•

•

•

Understanding the target process

[36]

Notation and Process Mapping Tools

The golden rule of process mapping is to always choose the simplest form
of modeling that can communicate the required information.
Different analysts will have different views about which form of notation
is best: from the very simple to the gothically complicated. We should
always remember that our key objective, at this stage of the project, is that
the model should enable communication between the BA and the business
people, so that a shared understanding of the process is developed.
If the SMEs can't understand the model that is being presented to them,
then they certainly won't be in a position to sign it off as being a true
representation of their business. Hence, all we need are some form of
activity boxes, decision diamonds, and later on, some swimlanes: anything
else will just confuse.
Later on, when the communication target of our model shifts from the
business to the developer, we may need to use some more complex
notation that can convey a greater level of detail. The key is to choose the
right notation at the right point in the project.
When it comes to process mapping tools, there is plenty of good software
available. Microsoft Visio is a pretty good tool for mapping processes, and
as it is widely available, we provide Visio process map templates in the
download for this chapter. Another recent contender that you might want
to consider is Gliffy (http://www.gliffy.com), which is effectively an
online version of Visio.
Whichever tool you choose, make sure it can support the level of simplicity
that we need at this stage. Certainly, don't be tempted to start modeling
directly into JBoss JBPM: while it is a great toolset for building a BPM
model, it is not yet a business-friendly process communication tool.

Example
On 3rd March 2007, a workshop was held in a meeting room at Bland Records
headquarters, to which all the SMEs and process owners identified in the project
initiation document were invited. The workshop was led by the project BA, and in
the morning session they had a raucous yet productive session where they mapped
the target processes as a flowchart. The following diagram is the written-up and
signed-off flowchart that was produced during the session to represent the "Produce
music products" process:

Chapter 2

[37]

Process owner: Simon Cowell, Head of Production
Prepared: 3rd March 2007
Version: 1.0

Contract
supporting
musicians

Yes

No

Write Songs

Songs
are good

Book recording
studio

Record vocals

Record backing
tracks

Record backing
vocals

Mix tracks

Shoot video

Edit video

Hold auditions

Select band
members

Contract band
members

Contract
acceptable?

Name band

Give band
vocal tution

Style band

Start Process

Give band
dance lessons

Find supporting
musicians

Yes

No

Design cover
artwork

Yes

No

Draft credits

Review credits
and cover
artwork

Compile album
and DVD

Credits
and artwork

OK?

End Process

a

a

b

b

Understanding the target process

[38]

The flowchart was presented back to the workshop attendees during the day, and all
present were able to sign off that the model was an accurate representation of their
business process.

Identify roles and responsibilities
Now that we have the activities and the key decision points mapped out, we need to
investigate the handoffs that occur between departments and organizations, as we go
through the process. A great way to represent this visually is through the use of the
Activity Flow diagram, which is more or less the same as a flowchart only with the
addition of swimlanes to show who does what.

Activity flow diagram
Assuming that we have used the first half of our all-day workshop to map out the
flowchart as above, the second half of the day can be put to use building the activity
flow diagram. This will usually come together pretty quickly, as we have already
done the hard work of defining the sequence of activities.

Working from the brown paper and Post-its flowchart we defined in the morning,
we now need to identify which role is responsible for doing each activity. Note the
use of the word "role", not "person" or "organization". Several people or numerous
organizations could potentially fulfil the same role in the process, so it is the role that
we need to define. Indeed, sometimes it will be tempting to assign one activity to
multiple roles. This should be avoided for this modeling technique: a single activity
should map to a single role. If this doesn't seem possible, then consider whether the
activity should actually be split out into multiple activities.

The best way to practically assign the role to the activity is to write the role on the
bottom of each Post-it note. Once we have gone all the way along the process flow
doing this, we will have built up a master list of every role that is an actor in the
process we are mapping. This master list now turns into our swimlanes.

Draw a swimlane on the brown paper in the same direction as the process flow
for each of the roles you have identified. It is generally considered best practice
to start with the role that is most external to the company at one end, for example
"Customers", and to represent any "Systems" involved in the process, as their own
swimlane at the other end of the spectrum.

Chapter 2

[39]

Once we have all the swimlanes drawn out, we need to move the Post-it note from
its current position into the appropriate swimlane, taking care to preserve the
sequence of steps. At this point, it is probably helpful to draw arrows between the
activities to make the sequence completely clear. Once complete, the team can break
for coffee while the BA writes up the activity flow diagram in their process mapping
tool of choice. Depending on how practised we are with these tools, this might take
overnight; and it shouldn't be rushed for the sake of having it complete before the
workshop ends. The important thing is to review the activity flow diagram, be it on
the brown paper or the computer model, during the session when the SMEs come
back from coffee to make sure it is accurate and no further amendments are required.

When the "As Is" process documentation is written up and complete, we should
publish the formal documentation to a central location, and ask the SMEs
to coordinate a review of the activity flow diagram within their wider user
community to make sure any remaining kinks are ironed out, and to set a common
language for future process discussions. One great way to publish these process
maps is via an intranet: and indeed Visio can export maps in web page format to
make this a bit easier.

Once all feedback has been taken into account, we need to ask for and make sure we
receive written sign-off from every SME, and subsequently every Process Owner.

The great thing about doing this analysis work is that the model we have built is
useful straightaway outside of the project: it can form the basis for training activities
and can be very useful for providing context to new members of staff.

Example
The following activity flow diagram was created from the flowchart depicting the
"Produce music products" process that was previously built during the workshop on
3rd March 2007. Going through this mapping exercise can often turn up more process
actors than we previously knew about. This is quite normal, but we should take care
to include the new people in our project team from now on.

Understanding the target process

[40]

Ta
le

nt
sc

ou
t

Le
ga

l
ad

vi
so

r
B

an
d

m
em

be
r

R
ec

or
d

pr
od

uc
er

Ar
tis

t
de

ve
lo

pm
en

t

H
ol

d
au

di
tio

ns

S
el

ec
t

ba
nd

m
em

be
rs

S
ta

rt
 P

ro
ce

ss

P
ro

ce
ss

 N
am

e:
 P

ro
du

ce
 m

us
ic

 p
ro

du
ct

s
Pr

oc
es

s
ow

ne
r:

 S
im

on
 C

ow
el

l,
H

ea
d

of
 P

ro
du

ct
io

n
Pr

ep
ar

ed
: 3

rd
 M

ar
ch

 2
00

7
Ve

rs
io

n:
 1

.0

S
on

gw
rit

er
M

us
ic

ia
n

Vi
de

o
Pr

od
uc

tio
n

Ye
s

C
on

tr
ac

t
ba

nd
m

em
be

rs
N

am
e

ba
nd

O
rg

an
iz

e
vo

ca
l t

ut
io

n

S
ty

le
 b

an
d

O
rg

an
iz

e
da

nc
e

le
ss

on
s

Fi
nd

 s
up

po
rt

in
g

m
us

ic
ia

ns
C

on
tr

ac
t

su
pp

or
tin

g
m

us
ic

ia
ns

W
rit

e
S

on
gs

S
on

gs
ar

e
go

od

B
oo

k
re

co
rd

in
g

st
ud

io
R

ec
or

d
ba

ck
in

g
tr

ac
ks

N
o

Ye
s

N
o

R
ec

or
d

vo
ca

ls
R

ec
or

d
ba

ck
in

g
vo

ca
ls

C
on

tr
ac

t
ac

ce
pt

ab
le

?

M
ix

 t
ra

ck
s

Ar
tis

t

a

S
ho

ot
 v

id
eo

Chapter 2

[41]

Ta
le

nt
sc

ou
t

Le
ga

l
ad

vi
so

r
B

an
d

m
em

be
r

R
ec

or
d

pr
od

uc
er

Ar
tis

t
de

ve
lo

pm
en

t
S

on
gw

rit
er

M
us

ic
ia

n
Vi

de
o

Pr
od

uc
tio

n

Ed
it

vi
de

o

En
d

Pr
oc

es
s

a

R
ev

ie
w

 c
re

di
ts

an
d

co
ve

r
ar

tw
or

k

C
om

pi
le

 a
lb

um
an

d
D

VD

C
re

di
ts

an
d

ar
tw

or
k

O
K?

D
ra

ft
cr

ed
its

Ye
s

N
o

Ar
tis

t

D
es

ig
n

co
ve

r
ar

tw
or

k

Understanding the target process

[42]

The finalized Visio diagram can be found in the download for this chapter. The
process maps were published on Bland's intranet, and a week-long review was held
within the user community led by the SMEs and process owners. At the end of the
week, both the SMEs and process owners were able to sign off the process models as
fit for purpose.

RACI matrix
Now that we have our signed off and published flowcharts and activity flow
diagrams representing the "As Is" situation, we need to amplify our understanding
of the process so that we can start moving towards the "To Be". One step along the
road to the "To Be", one which can really come in useful later on when we build our
BPM model, is to create an RACI matrix. This is another of those techniques designed
to address the "people" element of the project, as it will eliminate ambiguities and
ensure that everyone enters the debate about who does what.

RACI stands for Responsible, Accountable, Consulted, and Informed. The matrix
has the activity steps we've identified down one axis, and the roles across the other
axis. We then put either an "R", an "A", a "C", or an "I" into each cell of the resulting
grid to define in detail the responsibilities and information requirements of each role
at every step of the process. The end result is not only a great tool for training and
bringing in new staff, but it will also help us understand both our task assignment
rules and reporting requirements for our BPM system. Sometimes, the swimlane
approach of activity flow diagrams can be too constrictive to properly express these
subtle requirements, and the RACI matrix can help us get around this limitation and
strengthen our understanding.

The rules for putting in the appropriate letters are as follows:

Put accountability (A) and responsibility (R) at the level closest to the action
or knowledge.
There can only be one accountability (A) per activity.
Roles can combine both accountability and responsibility for activities.
Authority must accompany accountability.
Minimize the number of consults (C) and informs (I).
A for accountable means, "the buck stops here", and the role has ultimate
yes/no authority.
R for responsible means, "the person who actually does the activity".
Responsibility for an activity can be shared, if necessary.
C for consulted means, "kept in the loop", and implies two-way
communication prior to the activity.

•

•

•

•

•

•

•

•

Chapter 2

[43]

I for informed means, "kept in the picture", and implies one-way
communication after the activity.
Don't map decision points on the RACI matrix, only activities.

It is absolutely imperative that all SMEs take part in the discussions to decide the
assignment of responsibilities, and that everyone signs off: if not, then the agreement
will not stick. The signed off RACI matrix becomes a kind of contract, and when
combined with the process metrics we'll see later, it can form an informal or even a
formal Service Level Agreement.

Example
All the stakeholders we identified in our PID and in our subsequent process
discussions were brought together for a morning workshop at Bland Records'
headquarters to hammer out an agreement on roles and responsibilities. The
following RACI matrix was put together and signed off during this meeting,
and clearly identifies who should do what at each stage of the "Produce music
products" process:

•

•

Understanding the target process

[44]

Put metrics alongside the process
Now that we have the "who does what" part of a putative service level agreement,
it only remains for us to put some benchmarks in place against which those people
and organizations will be measured. The process metrics that we gather and estimate
here are the beginnings of our Key Performance Indicators, which will form the basis
of our reporting requirements for our BPM system later. As such, it is an invaluable
stage of the process analysis phase and should not be skipped.

We are trying to achieve two things with this stage of our process analysis. Firstly,
we are trying to analyze our process for value add, as this quite often turns up
opportunities for quick-win process changes that we can implement in our "To Be".
We are also trying to put a dollar cost against each of the activities we have mapped:
firstly, so that we know how much we are saving by implementing our "To Be" quick
win, but also for becoming the basis for our KPIs.

We start off with a simple spreadsheet that is similar to the one we used for our
RACI matrix: process roles down one axis and the activities along the other. Then,
for each activity in the process we evaluate:

The value added; one of either
Real value added—something the end customer would be
prepared to pay for
Business value added—something which is of value to the
business, but not really to the customer, for example legal
compliance, staff retention
Non value added—doesn't provide any benefit to either the
customer or the business

The touch time: the time that the process actor actually spends doing
the activity.
The cycle time: the time the process waits for the activity in question to be
done, from the initial request to the eventual delivery. This is generally
longer than the touch time as documents hang around in in-trays and so on.
The unit cost of each activity. This should include loaded rate wage costs,
equipment costs, and raw material costs to give a holistic view of the cost of
each activity in the process.

Once we have worked out the above, we can calculate the ratio of touch time to cycle
time, which indicates the amount of time a process devotes to doing useful work.
Research conducted by companies espousing the Lean methodology has shown that
in general, a well-run business should be looking for an overall ratio of between 3
and 10%. If your business has a ratio that is wildly different, it could be that your
process is not as efficient as it could be.

•

°

°

°

•

•

•

Chapter 2

[45]

We have to use stated assumptions about the per hour costs of different levels of
staff, loaded with a provision for the cost of standard equipment, taxes, power,
premises, pensions, and so on, in order to quantify how much it costs the business
for each cycle of the process. We can then extend this analysis to calculate how much
the business spends on this process per week, month, or year.

This is a truly wonderful piece of management information in and of itself, but when
paired with the ability to plan process changes and calculate the resultant savings
in cost per cycle, this is the forward-thinking manager's idea of nirvana. Of course,
it will get even better for our managers. For now, we can only base these metrics
on assumptions and estimates, but when we are capturing real-time data about
the operation of the process in our BPM system, we will have accurate and definite
numbers on which we can base future process decisions.

If necessary, we could use the metrics we've identified to draft service level
agreements. This can be particularly useful where activities have been outsourced
to third parties, although obtaining their agreement to the estimated metrics can be
hard to negotiate, particularly if the real operation of the process is hard to measure.
Our BPM system will help us with this when we have it implemented.

As all of this is difficult to understand without visualizing the result, let's see how we
can put together process metrics for our example business scenario.

Example
In discussion with Mr Gali and our stakeholders, we built up the process metrics
analysis table that follows. This analysis was enabled by the following assumptions
and estimates:

For the purposes of estimating cycle time, there are 24 hours in a day, 168 in a
week, 672 in a month, and 8064 in a year.
Open auditions are held 12 times per year and are held in a hired venue.
It generally takes a week to contract all members of a band.
Bland puts 12 bands together per year.
Stylizing the band costs money in clothes, cars, and tattoos.
The recording of the actual music happens very quickly: a matter of days.
Shooting a video requires the hiring of a set and equipment.
Hourly loaded wage rates are assumed to be:
Talent Scout — $125		 Legal Advisor — $187.50
Band Member — $62.50	 Record Producer — $187.50
Artist Development — $125	 Songwriter — $187.50
Musician — $125		 Video production — $187.50
Artist — $125

•

•
•
•
•
•
•
•

Understanding the target process

[46]

Chapter 2

[47]

As we can see, the process does show a healthy touch to cycle time ratio, and every
step does seem to add some sort of value. This is good news for Bland, although it
does mean that our opportunities for process improvement may be limited in the
short term. Let's see.

Understanding the target process

[48]

Identify quick wins
In terms of a business process management project, a "quick win" (or "rapid
implementation project" if you prefer!) is a process change that we can make to the "As Is"
process definition, ready for implementation with our BPM system as the "To Be". This is
not process re-engineering, which is a top-down, holistic, and cross-cutting exercise that
takes months of analysis and impact assessment to achieve. Rather, it is about looking
for simple process improvements that we can make without huge repercussions on the
overall organization. We are particularly looking to cut down on handoffs, make activities
happen in parallel, and ensure that each activity adds value in some way.

The following is a list of keywords that, if noticed in an activity name, should act as
a red flag for a Business Analyst looking for a quick win. These keywords generally
indicate that the activity is likely to not add much value to the overall process and it
may be possible to eliminate it entirely:

Checking • Copying•
Collating• Counting•
Preparing• Searching•
Accumulating• Reviewing•
Editing• Revising•
Checking• Approving•
Storing• Filing•
Retrieving• Moving•
Inspecting• Rework•

It should be noted that describing people's jobs as non-value-added can be
rather emotive. People will tend to do what is asked of them, and so they
can, through no fault of their own, work very hard at doing nothing of value
to the customer or the business. Hence, the discussion about value added is
generally best done with senior management rather than the SMEs.

Other red flags that we should look out for on our process map that might indicate
possible areas of process improvement:

Loops
Handoffs
Black holes
Unused data stores
Temporary data stores

•
•
•
•
•

Chapter 2

[49]

Overlapping processes
Processes with lots and lots of steps
Sequential steps that could be done in parallel
Repetition

We need to use the visual and factual tools that we have produced through the
course of this analysis phase to constantly ask the question "why". "Why are we
doing this?", "Why are we doing it this way and not another?", "Why are we doing
it and not an outsourcer?"; all these questions and more must be posed. It is worth
bearing in mind that this constant criticism can be threatening to those being
questioned, so it is important to prepare the audience for the barrage, and to employ
a degree of tact where necessary.

Where an opportunity for process improvement is spotted, we must first evaluate
the estimated cost savings of making the process improvement by using our process
metrics as a benchmark. Eventually, once we have decided that it makes sense to
change, we need to re-draw our activity flow diagrams and redraft our RACI matrix
to reflect our process improvements. This set of documents becomes the "To Be"
process, which the process owners will sign off and which will become the model
and form the basis of our BPM implementation.

Example
There are not many opportunities that we can spot up-front in our "Produce music
products" process, although there are a couple. Having looked at the sequence of
activities, it seems clear that there are several activities that can quite happily run
in parallel, and do not need to run consecutively. The following activities can be
changed in this way:

Write songs
Design cover artwork
Draft credits

According to our process metrics, changing these activities to run in parallel with
other activities means that we can shave 668 hours off our cycle time. So, we have
already enabled Bland Records to get their product to market 17% faster: Mr. Gali
will be pleased.

The following page shows our updated activity flow diagram: our RACI matrix
actually remains the same, because although the order of activities has changed, in
this instance, the roles and responsibilities have not.

•
•
•
•

•

•

•

Understanding the target process

[50]

Ta
le

nt
sc

ou
t

Le
ga

l
Ad

vi
so

r
B

an
d

m
em

be
r

R
ec

or
d

pr
od

uc
er

Ar
tis

t
de

ve
lo

pm
en

t

H
ol

d
au

di
tio

ns

S
el

ec
t

ba
nd

m
em

be
rs

S
ta

rt
 P

ro
ce

ss

P
ro

ce
ss

 N
am

e:
 P

ro
du

ce
 m

us
ic

 p
ro

du
ct

s
Pr

oc
es

s
ow

ne
r:

 S
im

on
 C

ow
el

l,
H

ea
d

of
 P

ro
du

ct
io

n
Pr

ep
ar

ed
: 3

rd
 M

ar
ch

 2
00

7
Ve

rs
io

n:
 1

.0

S
on

gw
rit

er
M

us
ic

ia
n

Vi
de

o
Pr

od
uc

tio
n

Ye
s

C
on

tr
ac

t
ba

nd
m

em
be

rs
N

am
e

ba
nd

S
ty

le
 b

an
d

O
rg

an
iz

e
da

nc
e

le
ss

on
s

W
rit

e
S

on
gs

N
o

C
on

tr
ac

t
ac

ce
pt

ab
le

?
O

rg
an

iz
e

vo
ca

l t
ut

io
n

N
o

Fi
nd

 s
up

po
rt

in
g

m
us

ic
ia

ns

S
on

gs
ar

e
go

od
Ye

s

C
on

tr
ac

t
su

pp
or

tin
g

m
us

ic
ia

ns

R
ec

or
d

ba
ck

in
g

tr
ac

ks
B

oo
k

re
co

rd
in

g
st

ud
io

R
ec

or
d

ba
ck

in
g

vo
ca

ls
R

ec
or

d
vo

ca
ls

M
ix

 t
ra

ck
s

Ar
tis

t

a

Chapter 2

[51]

Ta
le

nt
sc

ou
t

Le
ga

l
Ad

vi
so

r
B

an
d

m
em

be
r

R
ec

or
d

pr
od

uc
er

Ar
tis

t
de

ve
lo

pm
en

t
S

on
gw

rit
er

M
us

ic
ia

n
Vi

de
o

Pr
od

uc
tio

n

Ed
it

vi
de

o

En
d

Pr
oc

es
s

a

R
ev

ie
w

 c
re

di
ts

an
d

co
ve

r
ar

tw
or

k

C
om

pi
le

 a
lb

um
an

d
D

VD

C
re

di
ts

an
d

ar
tw

or
k

O
K?

D
ra

ft
cr

ed
its

Ye
s

N
o

S
ho

ot
 v

id
eo

Ar
tis

t

D
es

ig
n

co
ve

r
ar

tw
or

k

Understanding the target process

[52]

Sign off to be process
All that remains for this phase of the project is to publish the "To Be" activity flow
diagram and RACI matrix to the full stakeholder audience, using our network
of SMEs to communicate the planned changes. If the changes we are envisaging
are numerous or will have a significant impact, then it is good practice to put in
place a separate implementation plan. Generally, it would be sensible to plan this
implementation to coincide with the implementation of our BPM system, as it is
better to cause major upheaval once rather than twice.

Quite often, however, the quick wins are fairly small scale and there is no good
reason to put off implementation, so a date should be fixed and the process change
implemented as soon as possible.

With all this analysis behind us, we should now have an excellent understanding of
the process and we're ready to start building!

Summary
This has been a whistle-stop tour of process analysis and improvement techniques. We
have seen all the major tools in the process analyst's kit bag, with a view to creating a
deep understanding of the process we are seeking to systematize in our BPMS.

There is much more to this than we can squeeze in one chapter, and there are plenty
of sources for further information. For more detail and practical examples read
the incomparable Workflow Modeling: Tools for Process Improvement and Application
Development by Alec Sharp and Patrick McDermott (ISBN 978-1-58053-021-7), or The
Reengineering Revolution by Michael Hammer (ISBN 978-0-88730-736-2).

In this chapter, we have considered the following deliverables of this phase of our BPM
project, and we have seen worked examples of each where it has been appropriate:

Project initiation document
As Is:

Flowchart
Activity flow diagram
RACI matrix
Process metrics analysis

To Be:
Activity flow diagram
RACI matrix
Implementation plan

•
•

°

°
°
°

•
°
°
°

Develop the process
in JBoss jBPM

Introduction
This is where the hard work, but also the fun, really begins. We are going to get our
hands dirty with JBoss jBPM and start building a process. Before we can do that,
however, we need to get the toolset fully installed, and we also need to cover a few
points of theory. Don't worry; we won't waste too much time on theoretical musings,
as by far the best way to entrench understanding of a concept is to see it in action.
The second half of the chapter will see us putting the theory into practice and using
the tool to create our first process definition.

Compared to the previous chapter, the list of deliverables this time round is
strikingly short. Nevertheless, as you will soon be able to tell as we go along, the
length of the deliverables list is no indication of the required effort. By the end of this
chapter, we will have delivered:

Full working installation of the JBoss jBPM suite of tools
A first iteration of the process definition for our target business process

•

•

Develop the process in JBoss jBPM

[54]

The JBoss jBPM architecture
Before we begin the installation, if we see a visual representation of the software
architecture, it will help us understand the platform we are going to put together.
The following diagram shows how all the pieces fit together:

jBPM Web
Console

Deploys process
definition (jPDL)

End user’s computer

JBoss jBPM
engine

Database

Internet

Process
Designer

JBoss Application Server

The processes are developed in the process designer, and the resultant process
definition is deployed to the process database. The JBoss jBPM engine then interacts
with this process definition to respond to requests from the jBPM web console as the
end user uses the process application. The web console also stores the data it collects,
in the process database.

Now that we've seen a quick overview of the software architecture, let's press on and
get it all installed.

Installation
Installation is not particularly tricky, but there is quite a lot we need to do. We'll
walk through it in detail, as it is easy to miss out a required step in the installation.
The installation of Java products does generally involve a certain level of technical
expertise. This installation tutorial has been designed to be as user friendly as
possible, as it would be a shame if we got stuck at the first hurdle.

For the purposes of this installation tutorial, we will assume that your computer is
running Windows XP Service Pack 2. You can undoubtedly install all the necessary
pieces on other operating systems, but the instructions will probably vary from

Chapter 3

[55]

those presented here. If you find yourself in this situation, then you will find there
are plenty of operating system-specific tutorials and instructions available on the
Web in the JBoss documentation, readme files, and forums.

Here's what we need to do:

Install Java
Install the JBoss jBPM engine and the JBoss application server
Install the process designer

All of these products are subject to ongoing development, with new product releases
all the time. This tutorial will show you how to install what is available at the time
of writing, but it is likely that newer versions will have come out by the time this
book is published and you come to do an installation. Don't worry, it is unlikely the
installation steps will change, just the release numbers of the products you are trying
to install. Just use whatever is the latest available stable release and, if necessary,
adapt the tutorial instructions to cope with any filename changes that have occurred.

Install Java
The first piece of the puzzle that we need to install is Java. Specifically, we need
to install the latest version of what's called the "Java 2 Software Development Kit,
Standard Edition". To get this go to the following location:

http://java.sun.com/javase/downloads/index.jsp

Unfortunately, Sun Microsystems, the organization that develops the Java language,
are notoriously bad for re-organising their website and not forwarding on the old
links. If you have trouble locating the Java Software Development Kit, search the site
for "JDK"; you should be able to turn it up.

At the time of writing, the latest available version of the JDK on the above page
is JDK 5.0 Update 9. In the JDK 5.0 Update 9 section, click the Download link.
If this exact version is no longer available on this page, just download the latest
available version of the JDK, which usually appears at the top of the page, so you
ignore the "With Java EE", "With NetBeans", and other bundled versions. After
accepting the licence agreement, download the offline Windows version of the J2SE
Development Kit��.

Once the download is complete, run the executable file to start the installation.
You can accept all the defaults given to you by the installation program. Once the
installation is complete, we need to update a couple of settings on the computer so it
can interact with Java.

•

•

•

Develop the process in JBoss jBPM

[56]

Right-click on My Computer and select Properties from the context menu. On
the Advanced tab, click the Environment Variables button. Then, in the System
Variables box, double-click the Path variable. In the box that pops up, navigate to
the end of the Variable Value line, add a semicolon to the end, then add the path
to your JDK. This will be something like C:\Program Files\Java\jdk1.5.0_09\bin.
Here is a screenshot of how it should look:

Now we need to do a similar operation and add a JAVA_HOME variable. Again in the
System Variables box, click New. Give the new variable a name of JAVA_HOME, and
a value of the path to your JDK installation: probably something like C:\Program
Files\Java\jdk1.5.0_09. Note, in contrast with the Path variable above, this one
should not include the \bin at the end. Excellent, that's Java installed, and the
programs we are now going to install will be able to interact with the installation.

Chapter 3

[57]

Install the JBoss jBPM engine and the JBoss
application server
The JBoss jBPM engine is the set of code programs that run the business process
management system. The engine is deployed in the JBoss application server. An
application server can serve up any kind of application, from a website to an
enterprise application. In our case, we are using it to serve jBPM and later on our
web user interface.

Firstly, we need to download the file we need. To do this, go to: http://
sourceforge.net/projects/jbpm/ and click Download jBPM. In the Latest file
releases section at the top of the page, you will see a row devoted to jBPM jPDL 3:
this is the package that we need. Click Download. You will be presented with a list
of files that are available for download. At the time of writing the latest available
version is jbpm-jpdl-3.2.GA and that is what we will install. It makes sense for
you to download and install the same version so that you can work along with the
examples presented herein. There will be two files that you can download, one of
which will be the "suite": this is the one we need so download that. You will end up
with a ZIP file, which you should extract to a sensible location on your hard drive. I
have decided to extract mine to C:\MJC\Business Process Management\jBPM. You
should end up with a directory structure that looks something like the following:

Develop the process in JBoss jBPM

[58]

That should be all we need to do to install the jBPM engine and the application
server. Let's make sure the installation is working correctly. Go into the server
directory, and double-click the start.bat file. A command prompt will open up
and the application server will be started. Don't worry about the stream of text that
will be printed on the screen, just leave it running and start up your browser. Go to
http://localhost:8080/jbpm-console/ and you should get a screen displaying
something like the following, which is the example workflow application that is
bundled with jBPM:

If you've got this screen, then congratulations! You now have a fully-functioning
BPM system on your computer. If you haven't, then it could be that the version of
JBoss jBPM that you have installed doesn't have the web user interface at the same
location as I do in mine. Go to http://localhost:8080/ and see what you have
there. You should have something like the following, which is the default page
served by the JBoss application server:

Chapter 3

[59]

If you haven't even got this, then there is something seriously wrong with your
installation, and you should go back and start again.

Install the JBoss jBPM designer
The JBoss jBPM designer is actually a plugin for the Eclipse integrated development
environment (IDE). For those unfamiliar with the concept of an IDE, it really
amounts to a tool that programmers use to develop software, rather like how we as
Business Analysts use Visio or ARIS for developing our process maps.

An IDE normally has tools within it to help write and debug code. Eclipse is an open-
source IDE that has gained a great deal of traction in recent times, particularly in the
Java world, as it allows developers to write their own custom editors and debuggers
that extend the base IDE. This is exactly what JBoss has done for the jBPM designer:
written extra code for Eclipse to allow us to design and develop our processes in a
visual environment. The jBPM designer plugin is part of the jBPM package we have
already downloaded, but we need to download the Eclipse IDE separately.

Develop the process in JBoss jBPM

[60]

The first thing to do is to get Eclipse. Go to http://www.eclipse.org/downloads/
and download the 3.2.1 version of Eclipse. I downloaded the Eclipse SDK 3.2.1
Windows file, which comes as a ZIP file called eclipse-SDK-3.2.1-win32.zip.
This is quite a large file (120 MB) so it might take some time to download. Once it has
downloaded, copy the ZIP file to the designer directory of your jBPM installation.
There is no need to unzip the file at this point.

We now need to build the JBoss jBPM plugin into Eclipse, so that the two work
together. This is done with a little Java utility called Ant, which is used for building
Java projects. Go to http://ant.apache.org/bindownload.cgi and download the
latest release of the binary distribution of Ant. For me, this was version 1.7 and came
as a ZIP file. Once this has downloaded, extract the ZIP file to c:\Program Files\.
You will end up with a directory structure similar to the following:

Chapter 3

[61]

In order to use Ant, we need to tell our computer where to find it, in a similar way to
how we told our computer where to find Java, earlier. Right-click on My Computer,
select Properties, then go to the Advanced tab and click the Environment Variables
button. In the lower dialog, scroll down until you find the Path variable. Highlight
it and click Edit. A small dialog will pop up with the list of everything you currently
have on your system path. Scroll to the end of the list, add a semi-colon on to the last
entry if there isn't one already, then add in the path to the bin directory of your Ant
installation, for example C:\Program Files\apache-ant-1.7.0\bin. You should
have something like this:

Develop the process in JBoss jBPM

[62]

Click OK to save your entry. Now, in the same lower dialog, click the New button.
In the window that pops up, add a new variable called ANT_HOME, and give it a value
of the path to the top level of your Ant installation, for example C:\Program Files\
apache-ant-1.7.0\. You should have something like this:

Now we have our build tool installed, we just need to specify some configuration for
how Ant should go about building the jBPM designer plugin into Eclipse. To do this,
open the build.properties file that can be found in the designer directory of our
jBPM installation. The file will look something like this:

Chapter 3

[63]

the next property points to the eclipse zip file on your local
machine. the build script in this directory contains a target
to get eclipse and put it in this directory. in case you have it
in another location, update the property below.
eclipse.file.name=eclipse-SDK-3.2.1-win32.zip

Replace the eclipse.local.path with the uncomment version if you
want
to supply eclipse in this directory.
eclipse.local.path=.
eclipse.local.path=${user.home}/jbpm/repository/eclipse/sdk/3.2.1
eclipse.local.url=${eclipse.local.path}/${eclipse.file.name}

eclipse.remote.path=http://repository.jboss.com/eclipse/sdk/3.2.1
eclipse.remote.url=${eclipse.remote.path}/${eclipse.file.name}

All we need to do is tell Ant where to find the Eclipse ZIP file we downloaded and
put in the same designer directory. To do this, simply change the code in the file as
follows and then save the file:

the next property points to the eclipse zip file on your local
machine. the build script in this directory contains a target
to get eclipse and put it in this directory. in case you have it
in another location, update the property below.

eclipse.file.name=eclipse-SDK-3.2.1-win32.zip

Replace the eclipse.local.path with the uncomment version if you
want
to supply eclipse in this directory.
eclipse.local.path=.
#eclipse.local.path=${user.home}/jbpm/repository/eclipse/sdk/3.2.1
eclipse.local.url=${eclipse.local.path}/${eclipse.file.name}

eclipse.remote.path=http://repository.jboss.com/eclipse/sdk/3.2.1
eclipse.remote.url=${eclipse.remote.path}/${eclipse.file.name}

All we've done here is comment out the lines instructing the Ant tool to look in
various places for the Eclipse ZIP file, and uncomment the line telling it to look in
this directory. Once the file is saved, open up a command line (Start | Run | type in
"cmd" then click OK). Use the CD command to navigate to the designer directory of
you jBPM installation, then type in ant install. Assuming there are no errors, Ant
will look at the build.xml file, see that it has to integrate the JBoss jBPM plugin into
Eclipse and then go away and do the work for you.

Develop the process in JBoss jBPM

[64]

The command prompt will confirm when it has finished, like this:

Excellent: we have now installed our JBoss jBPM designer. If you go into the
designer directory, you will see a file called designer.bat. Double-click that file to
start up the Designer. You should be welcomed to Eclipse with a screen something
like the following:

Chapter 3

[65]

Click the Workbench icon that appears on that screen. Go to File | New | Other |
JBoss jBPM | Process Project. Give the project a name of Simple, and click Next.
On the next screen, you need to tell Eclipse where to find the jBPM runtime. Give the
runtime a name corresponding to the version of JBoss jBPM that you have installed,
then browse to the top-level directory of your installation, for example C:\MJC\
Business Process Management\jBPM\jbpm-jpdl-3.2.GA. Click Finish to create
the process project.

Once Eclipse has built the workspace, expand the project tree on the left
and navigate to the Simple | src\main\jpdl | simple folder. Double-click
the processdefinition.xml file that is contained in this folder. The visual
representation of a very simple process will be shown in the main window of the
Designer. This is created by the Designer when we create a new process project to
give us a head start on developing our process:

Wonderful, everything is working and our JBoss jBPM installation is complete.

Develop the process in JBoss jBPM

[66]

Set up shortcuts
There is one simple thing we can do that, believe me, will make our life easier.
Rather than having to remember where we installed jBPM, and then having to
navigate there and find the right file every time we want to start the server or boot
up the Designer, we should make some shortcuts. Navigate to the server directory
of your JBoss jBPM installation, and find the start.bat file. Right-click on the file
and select Send To | Desktop (create shortcut). Go to your desktop and rename
your new shortcut to something sensible like "Start JBoss server". Repeat the process
for the stop.bat file to make a "Stop JBoss server" shortcut, and once again for the
designer.bat file in the designer folder for a "jBPM Designer" shortcut. You can
also make a shortcut to the end-user web console by right-clicking on the desktop
and selecting New | Shortcut, then typing in http://localhost:8080/jbpm-
console/ for the location of the file to which the shortcut points, and calling the
shortcut "jBPM web console".

Touring the designer's user interface
At this point, it is worthwhile having a look around the Designer's screen to get
ourselves familiar with the tool. We'll see it all in action later of course, when we
start developing our example process, but it is worth having a little introduction to
the elements of the user interface, as they can be a little overwhelming at first.

Package explorer
The Package Explorer allows us to navigate through all the files that are associated
with our process project, by expanding the packages within which they are held.
For example, we have already seen the source files for the simple process with
which jBPM pre-populated our process project. The majority of the other files in the
Package Explorer are the Java elements of our process project: for the moment we
can safely ignore these.

Chapter 3

[67]

On the left of the screen you will see the Package Explorer:

Editor area
In the center of the screen is the editor area, where the real work happens. This editor
area is sub-divided into five main tabs: Diagram, Swimlanes, Deployment, Design,
and Source.

Develop the process in JBoss jBPM

[68]

Diagram
The Diagram view of the editor area is where we'll do the visual modeling of our
process. We'll spend most of our time here, dragging elements from the menu on the
left to build up the diagram in the middle:

Swimlanes
We will use this view to define the roles of everyone involved in our process:

Chapter 3

[69]

Deployment
The deployment tab is where we define our server configuration so that we can
deploy our process to the live environment:

Develop the process in JBoss jBPM

[70]

Design
The Design view allows us to browse underlying details of the elements of our
process without the distraction of the visual map or the XML code:

Source
Last but not least, we have the Source view, which shows us the XML code that is
the process definition that underpins the process diagram and design. This process
definition is what gets physically deployed to the server, and controls the process
in the web console. This view is particularly useful for a developer, as they can use
it to extend the process definition beyond what can be represented visually in the
Diagram view by the Business Analyst:

Chapter 3

[71]

What is interesting about this view is that it is constantly kept in sync with the
graphical version of the process in the Diagram view. We can see this in action. For
example, if we drag a "node" from the left of the Diagram view onto the diagram,
and then switch back to the Source view, we can see that there is a new XML element
to represent this new node:

Develop the process in JBoss jBPM

[72]

As I haven't connected this node up to anything, the XML is quite bare at this
point, but we'll see later how the XML is built up as we enrich the graphical model
with detail.

Properties explorer
The Properties Explorer at the bottom of the screen allows us to see what properties
have been defined for any element of our project that we highlight in the IDE. For
example, if we click on the arrow labeled "to_state" in the Simple process in the
Diagram view, we can see that there are three properties defined for this arrow
(properly called a "transition" as we'll see later):

Outline view
The Outline view displays an outline of the file that is currently open in the editor
area, and lists the main elements of the file's structure. The elements can be right-
clicked to add various instructions and properties:

Chapter 3

[73]

The Eclipse IDE is incredibly rich, and an entire book could be written about all the
other parts of the user interface. However, we shouldn't get too bogged down in
those details of Eclipse that aren't strictly relevant to the designing of processes, so
for now, we'll move on and leave it to the reader to explore.

JBoss jBPM concepts
JBoss jBPM is built around the concept of waiting. That may sound strange given that
software is usually about getting things done, but in this case there is a very good
reason for waiting. Real-life business processes cut across an organization, involve
numerous humans and multiple systems, and happen over a period of time. In regular
software, the code that makes up the system is normally built to "do all these tasks as
soon as possible". This wouldn't work for a business process, as the people who need
to take part in the process won't always want or be able to "do their task now".

The software needs some way of waiting, until the process actor is ready to do their
activity. Then once they have done their activity, the software needs to know what is
the next activity in the chain and then wait for the next process actor to get round to
doing their bit.

The orchestration of this sequence of "wait, work, wait, work" is handled by the JBoss
jBPM engine. The jBPM engine looks up our process definition and works out which
way it should direct us through the process. We know the "process definition" better
as our graphical process map.

jBPM process definition language—jPDL
At this point, we have to get some core terminology out of the way. We won't linger
too long over the definitions, as the best way to fix the terminology in the brain is to
see it used in context, which we'll do as we start building our process. Nevertheless,
we'll introduce the key terms and concepts here to get the ball rolling.

The visual process map that we have already seen in the Designer is an example
of what the JBoss jBPM project calls "Graph Oriented Programming". Instead of
programming our software in code, we are programming our software using a
visual process map: referred to as a "directed graph". This directed graph is also
defined in the XML representation of the process we saw in the Source view. The
graph plus the XML is a notation set, which is properly called jPDL, the "jBPM
Process Definition Language".

A process definition specified in jPDL is composed of "nodes", "transitions", and
"actions", which together describe how an "instance" of the process should traverse
the directed graph. During execution of the process, as the instance moves through

Develop the process in JBoss jBPM

[74]

the directed graph, it carries through a "token", which is a pointer to the node of the
graph at which the instance is currently waiting. A "signal" tells the token which
"transition" it should take from the node: signals specify which path to take through
the process.

Let's break this down a little bit with some more detail.

Nodes
A node in jPDL is modeled visually as a box, and hence looks very similar to the
activity box we are used to from our workflow and activity flow diagrams. The
concept of "nodes" does subtly differ from that of activities, however.

In designing jPDL, the jBPM team have logically separated the idea of waiting for the
result of an action from that of doing an action. They believe that the term "activity"
blurs the line between these two ideas, which causes problems when trying to
implement the logic behind a business process management system. For example,
both "Seek approval" and "Record approval" would be modeled as activities on an
activity flow diagram, but the former would be described as a "state" and the latter as
an "action" in jPDL: the state element represents the concept of waiting for the action
to happen, moving the graph to the next state.

"Node" is therefore synonymous with "state" in jPDL. "Actions" are bits of code that
can be added by a developer to tell the business process management system to
perform an action that needs to be done by the system: for example, recording the
approval of a holiday request in a database. Actions aren't mapped visually, but are
recorded in the XML view of the process definition. We'll cover actions a bit later.

There are different types of node, and they are used to accomplish different things.
Let's quickly go through them so we know how they are used.

Tasks
A task node represents a task that is to be performed by humans. If we model a task
node on our graph, it will result in a task being added to the task list of the person
assigned to that task, when the process is executed. The process instance will wait for
the person to complete that task and hand back the outcome of the task to the node.

State
A state node simply tells the process instance to wait, and in contrast to a task node,
it doesn't create a task in anybody's task list. A state node would normally be used to

Chapter 3

[75]

model the behavior of waiting for an external system to provide a response. This
would typically be done in combination with an Action, which we'll talk about soon.
The process instance will resume execution when a signal comes back from the
external system.

Forks and joins
We can model concurrent paths of execution in jPDL using forks and joins. For
example, the changes we made to our model to design our To Be process can be
modeled using forks and joins to represent the parallel running of activities. We use
a Fork to split the path of execution up, and then join it back together using a Join:
the process instance will wait at the Join until the parallel tasks on both sides are
completed. The instance can't move on until both chains of activities are finished. jBPM
creates multiple child tokens related to the parent token for each path of execution.

Decision
In modeling our process in jBPM, there are two distinct types of decision with which
we need to concern ourselves. Firstly, there is the case where the process definition
itself needs to make a decision, based on data at its disposal, and secondly, where a
decision made by a human or an external system is an input to the process definition.
Where the process definition itself will make the decision, we can use a decision
node in the model.

Where the outcome of the decision is simply input into the process definition at run
time, we should use a state node with multiple exiting transitions representing the
possible outcomes of the decision.

Develop the process in JBoss jBPM

[76]

Node
A node of type "node" is a special type. It allows a developer to write a custom-defined
node. Typically, this would be used when a developer needs to write some code to
make the system perform an action, but the logic in that code is particularly relevant to
the work of the Business Analyst, and they therefore want to see it represented on the
graph. If it isn't relevant, then the preferred route would be for the developer to write
the code as an Action, thus hiding the details from the visual graph.

Transitions
Transitions specify the route between nodes. Transitions can be named on the
graph, if we need to make them distinct and choose between them during process
execution, for example, if we are modeling two potential outcomes to a decision. If
the transitions aren't differentiated like this, then the process instance will just take
the first available transition.

Actions
Actions are aimed at developers. They allow a developer to add Java code to the
model that will be executed, as events are triggered in the process execution, for
example, entering or leaving a node. This means that we can include programming
logic in our model without having to represent it visually. The action is modeled in
the source of the process definition, but it doesn't show up on the graph. Typically,
actions are going to be used when we need to do something in an automated way
that doesn't strictly fall within the scope of the process definition, for example
writing some data to a database.

Swimlanes
Swimlanes represent process roles, and they are used to assign tasks to specific
people. This can either be one actor or a pooled group of actors, where one person
from within the pool will pick up the task. Unlike our activity flow diagram, they
aren't mapped visually in the process definition, but are added as technical details
behind the visual map.

Chapter 3

[77]

jBPM uses its own component to manage users, although in a real live environment,
this can be replaced by a plug into the company's own directory of users, for
example the Windows domain. Swimlanes can be modeled as users or groups,
depending on which makes the most sense in the context of the process. Sometimes,
tasks will always be assigned to an individual user, sometimes, they will be assigned
to a group and anyone in that group can pick up the task.

Process variables
Process variables are the contextual data that a process instance builds up during its
execution. Again, process variables are considered technical details and therefore
aren't modeled in the visual version of the process definition. In our business process
example scenario, we might have a variable called "bandName", which we would
need to maintain as context for the process whenever we run it. If we can't provide
our process actors with the band name when we ask them to do something, then
chances are that they won't be able to do it.

Process state
Process state is used when we need to model sub-processes that sit within a
higher-level process. This allows us to abstract our models and break down complex
models into more manageable chunks. We may well do this at some point with our
example business process as we have quite a large end-to-end workflow. This will
help us keep our model clean.

Super state
Super states are a way of modeling a group of nodes. Typically, we would use this
to group a set of nodes into a "phase" of the process. For example, we might specify
a group of nodes within our process model as the "manufacturing" phase of the
process. This will be a helpful categorization later, when we try to report on the
operation of our process.

Building our example process
It is finally time to put these concepts into practice: let's start building our example
process. We will go through building the "Produce music products" process in detail
in this chapter: for now, we will simply concentrate on getting the process into the
tool. We will worry about adding more interesting complexity at a later stage, once
we have the bare bones sorted out. We are at the proof-of-concept stage after all, so
there is little point in wasting time on nice to haves.

As a reminder of our To Be process, which we are going to build in the tool, let's
have a look at the activity flow diagram that we built in the previous chapter:

Develop the process in JBoss jBPM

[78]

Ta
le

nt
sc

ou
t

Le
ga

l
Ad

vi
so

r
B

an
d

m
em

be
r

R
ec

or
d

pr
od

uc
er

Ar
tis

t
de

ve
lo

pm
en

t

H
ol

d
au

di
tio

ns

S
el

ec
t

ba
nd

m
em

be
rs

S
ta

rt
 P

ro
ce

ss

P
ro

ce
ss

 N
am

e:
 P

ro
du

ce
 m

us
ic

 p
ro

du
ct

s
Pr

oc
es

s
O

w
ne

r:
 S

im
on

 C
ow

el
l,

H
ea

d
of

 P
ro

du
ct

io
n

Pr
ep

ar
ed

: 3
rd

 M
ar

ch
 2

00
7

Ve
rs

io
n:

 1
.0

S
on

gw
rit

er
M

us
ic

ia
n

Vi
de

o
Pr

od
uc

tio
n

Ye
s

C
on

tr
ac

t
ba

nd
m

em
be

rs
N

am
e

ba
nd

S
ty

le
 b

an
d

O
rg

an
iz

e
da

nc
e

le
ss

on
s

W
rit

e
S

on
gs

N
o

C
on

tr
ac

t
ac

ce
pt

ab
le

?
O

rg
an

iz
e

vo
ca

l t
ut

io
n

N
o

Fi
nd

 s
up

po
rt

in
g

m
us

ic
ia

ns

S
on

gs
ar

e
go

od
Ye

s

C
on

tr
ac

t
su

pp
or

tin
g

m
us

ic
ia

ns

R
ec

or
d

ba
ck

in
g

tr
ac

ks
B

oo
k

re
co

rd
in

g
st

ud
io

R
ec

or
d

ba
ck

in
g

vo
ca

ls
R

ec
or

d
vo

ca
ls

M
ix

 t
ra

ck
s

Ar
tis

t

a

Chapter 3

[79]

Ta
le

nt
sc

ou
t

Le
ga

l
Ad

vi
so

r
B

an
d

m
em

be
r

R
ec

or
d

pr
od

uc
er

Ar
tis

t
de

ve
lo

pm
en

t
S

on
gw

rit
er

M
us

ic
ia

n
Vi

de
o

Pr
od

uc
tio

n

Ed
it

vi
de

o

En
d

Pr
oc

es
s

a

R
ev

ie
w

 c
re

di
ts

an
d

co
ve

r
ar

tw
or

k

C
om

pi
le

 a
lb

um
an

d
D

VD

C
re

di
ts

an
d

ar
tw

or
k

O
K?

D
ra

ft
cr

ed
its

Ye
s

N
o

S
ho

ot
 v

id
eo

Ar
tis

t

D
es

ig
n

co
ve

r
ar

tw
or

k

Develop the process in JBoss jBPM

[80]

Open up the jBPM Designer, click File | New project, expand the JBoss jBPM node,
and select Process Project. We'll call the project "Bland Records". On the final screen
of the project creation wizard, pull down the drop-down box and select JBoss jBPM
3.2 as the core jBPM location. Click Finish. In the Package Explorer, navigate to the
src/main/jpdl folder, right-click on that folder and select New | Other, and then
Process Definition. Call your new process definition "Produce music products" then
click Finish. At this point, you can right-click on the "simple" process definition that
the system autogenerated for you and delete it.

Add our swimlanes
The very first thing that we should do is add our swimlanes, so that we can assign
tasks to people. Click the Swimlanes tab at the bottom of the main editor window.
Click Add to put in an empty swimlane. Choose an Assignment Type of Expression,
and then in the Assignment Details dialog add the expression group(talentScout).
Once we have assigned tasks to this swimlane, this expression will mean that anyone
who signs in and is recognized by the system as being in the group "Talent scout"
will be able to complete the task. Once this is done, repeat the steps for each of the
following, including the relevant assignment expression:

Legal adviser — group(Legal adviser)
Band member — group(Band member)
Record producer — group(Record producer)
Artist development — group(Artist development)
Songwriter — group(Songwriter)
Musician — group(Musician)
Video production — group(Video production)
Artist — group(Artist)

•

•

•

•

•

•

•

•

Chapter 3

[81]

You will end up with the Swimlanes window looking like this:

Adding our nodes
Coming back to our target process, the first few activities that we have defined
are these:

Talent
scout

Legal
Advisor

Band
member

Hold auditions

Select band
members

Start Process

Contract band
members

No

Contract
acceptable?

Develop the process in JBoss jBPM

[82]

Obviously, we need to start off with a Start node, so in the Diagrams view, click
Start node in the left-hand dialog, then click again in the center of the editor,
towards the top to drop the Start node into the process definition:

You can hold down the mouse button and drag the node into the exact position you
require, if you need to. The first activity we need to model is "Hold auditions", and
this is to be completed by the Talent Scout. Double-click the start node: this will open
up the Properties dialog for the node. Give the node a name of "Hold auditions" and
click OK.

Chapter 3

[83]

Now that we have our first node in place, we need to associate it with a task. The
task that we define here will correspond to what is actually seen by the end user
in the web console they use to interact with the process. In the Outline view on the
right-hand side, expand the tree view and right-click on the "Hold auditions" node.
Click Add Task and then double-click the new task to bring up its Properties dialog.
Give the new task a name of "Hold auditions":

Now let's add a process variable to this task: this will correspond to a field on the
task page in the web console, into which the end user will enter their data. We do
this by adding our variables into the task controller: this element of jBPM maps the
process variables that provide context for the process to the "task variables", which
is what the end user will actually see on screen. This allows us to give the process
variable a name that is easy to work with in code, but also give it a pseudonym that
is more user friendly. The end user will see the text of the task variable name in the
system at run time.

Develop the process in JBoss jBPM

[84]

In this instance, we probably don't expect much more from them than to input the
date and location of the audition. Click Controller in the left-hand menu of the
Properties dialog, then click Add. Change the name of the process variable you've
added to "audDate" by clicking in the Name column, then check the Read, Write,
and Required fields for the process variable by clicking in the relevant columns.
Finally, in the Mapped Name column give the new variable a task variable name of
"Audition date":

Repeat these steps to add another process variable called "audLocation", with a
pseudonym of "Audition location". It generally takes quite a few iterations to get
these process variables right, so don't worry if you find yourself going back, again
and again, to the task definition to add more variables. Now, we need to assign this
task to one of our swimlanes. Click the Assignment menu item in the left-hand pane,
then choose an assignment type of Swimlane. Choose the "Talent scout" swimlane
to assign them to this task, and then click OK to finish defining the task node.
Congratulations, you've defined your first task in the process!

Chapter 3

[85]

You will notice that we use a rather strange naming convention for our
process variables, mixing up letter case and running the words together.
We are employing the Java naming convention for our variables, as this
will make it easy for our developer to work with them when the time
comes. We simply start the first word with a lower case letter, then remove
spaces between the other words, with each subsequent word starting with a
capital letter. So for example, "My Hair Color" becomes "myHairColor".

The next activity we need to define is the "Select band members" activity. As this is a
task that is to be performed by a human, we will model this in jPDL as a task node.
Click Task Node in the left-hand dialog, and then click again underneath the start
node to drop the task node on the process definition. As before, double-click the new
node to rename it as "Select band members". If the text is too long for the task node
box, you can click the box then drag the handles to resize the box to fit the text. As
we did with the previous node, add a task of "Select band members", and assign it
to the "Talent Scout" swimlane. We are going to use our process variables to hold
the names of our band members. Bland records have a policy of creating bands of
minimum three and maximum six people. To reflect this business rule, we are going
to add six process variables: "bm1", "bm2", "bm3", "bm4", "bm5", and "bm6", each
with a pseudonym of "Band member x", where "x" is to be replaced with the relevant
number�� . We will make all of these process variables Read and Write, but only "bm1",
"bm2", and "bm3" will be required fields. The user can then leave 4, 5, and 6 blank if
they don't need them.

Develop the process in JBoss jBPM

[86]

Now, we need to add the transition to the process graph that will take us from the
"Hold auditions" node to the "Select band members" node. Click Transition in the
left-hand dialog, then click the "Hold auditions" node followed by the "Select band
members" node. The transition arrow will be added to the process definition:

We then add another task node and task called "Contract band members", assigning
it to the Legal adviser swimlane. We'll give it Read and Write process variables of
"bm1ContractSent" to "bm6ContractSent" (with pseudonyms of "Band member x
contract sent?"), with only 1, 2 and 3 being required in order to be consistent with the
previous node.

Now we come to our first decision on the activity flow diagram, "Contract
acceptable?". It is the band members themselves who are making this decision,
although it is important for us to note from a BPM perspective that they may not
actually be the ones who input the outcome of their decision into the system. In
fact, from a design point of view, it would probably make most sense for our trusty
legal adviser to gather the band members' responses to the contract and input the
outcome into the system. This is quite a common scenario when developing a BPM
system: quite often you don't want to give every possible process actor access to your
system, rather you maintain a core group of internal users, who sometimes record
the outcome of tasks done by other process actors outside of the system.

Chapter 3

[87]

The behavior that we therefore want to model here is for the legal adviser to be able
to record whether or not all our band members are happy with the contract. If they
are, then great, the process can proceed. If not, then we need to select some more
band members and try again. So we are going to model this as three nodes: one task
node where the legal adviser will input the decision of each of the band members, a
second task node where the Legal Adviser will check to see if any of these decisions
are a "No", in which case we'll go to a third node where a new band member can be
input and contracted. When we finally have a "Yes" for all of our band members,
we'll continue on to the next node. To do this, we define the following:

Node name Node type Task name Swimlane Process variables

Contract
response

Task node

Contract
response

Legal
adviser

bm1Agreed — R/W — Band
member 1 agreed?

bm2Agreed — R/W — Band
member 2 agreed?

bm3Agreed — R/W — Band
member 3 agreed?

bm4Agreed — R/W — Band
member 4 agreed?

bm5Agreed — R/W — Band
member 5 agreed?

bm6Agreed — R/W — Band
member 6 agreed?

All
contracts
agreed?

Task node

All
contracts
agreed?

Legal
adviser

bm1Agreed — R — Band member
1 agreed?

bm2Agreed — R — Band member
2 agreed?

bm3Agreed — R — Band member
3 agreed?

bm4Agreed — R — Band member
4 agreed?

bm5Agreed — R — Band member
5 agreed?

bm6Agreed — R — Band member
6 agreed?

Develop the process in JBoss jBPM

[88]

Node name Node type Task name Swimlane Process variables

Contract
new
member

Task node

Contract
new
member

Legal
adviser

bm1 — R/W/Req — Band
member 1

bm2 — R/W/Req — Band
member 2

bm3 — R/W/Req — Band
member 3

bm4 — R/W — Band member 4

bm5 — R/W — Band member 5

bm6 — R/W — Band member 6

bm1Agreed — R/W — Band
member 1 agreed?

bm2Agreed — R/W — Band
member 2 agreed?

bm3Agreed — R/W — Band
member 3 agreed?

bm4Agreed — R/W — Band
member 4 agreed?

bm5Agreed — R/W — Band
member 5 agreed?

bm6Agreed — R/W — Band
member 6 agreed?

Note that we make all the "bmx" �� process variables Read and Write, but in this
instance we don't make any of them required, as we don't know which of the band
members will not agree to the contract and hence which we'll need to replace. Note
also that we make the bmxAgreed variables in the "All contracts agreed?" node read-
only, as the Legal adviser is merely evaluating the data they have previously input in
this node.

We also need a transition going out sideways from "All contracts agreed?" to
"Contract new member", and this needs to be named "No", with a further unnamed
transition coming back from "Contract new member" into "All contracts agreed?".
Finally, we have another transition coming out of "All contracts agreed?", and
named "Yes" and going into the next node in the process, which we'll leave blank
for now. You name a transition by clicking on it and then typing the name into the
appropriate box in the Properties window at the bottom of the screen.

Chapter 3

[89]

Note that you can drag a transition arrow out to an angle to make it easier to
differentiate between incoming and outgoing transitions. When you've finished
doing all this your graph should look something like this:

That's it, we've finished modeling the decision. We have actually opted for quite a
simple way of implementing this decision point. jPDL does allow us to implement
decisions in more complex ways. For example, we could have implemented the
"All contracts agreed?" node as a decision node, then used some scripting to
automatically evaluate whether any of the bmxAgreed variables was set to "No".
Both methods are equally valid, but for the sake of simplicity we will try to use
our human process actors as much as possible, at least for the first iteration of our
process definition. Later on, when we are more comfortable with the system and
with working with process variables, we may re-work some of these decisions as
automated system-determined decision nodes.

Develop the process in JBoss jBPM

[90]

As you can see, defining a process for implementation in a BPM often
involves breaking down an activity into several constituent parts to
produce a logical flow that will make sense in the resulting user interface.
It is an important skill for the process designer to be able to visualize how
their model will work when it is deployed as the final user interface. Don't
worry too much though, it is practically impossible to get this right the
first time, and almost always some iteration will be required once the user
interface is deployed, and you can see how your well thought out model
actually turned out.

At this point, it is worthwhile taking a brief look at the XML we are building up in
the Source view:

<?xml version="1.0" encoding="UTF-8"?>

<process-definition
 xmlns="urn:jbpm.org:jpdl-3.2" name="Produce music products">

 <swimlane name="Talent scout">
 <assignment expression="group(talentScout)"></assignment>
 </swimlane>

 ...we've missed some out here for brevity...

 <start-state name="Hold auditions">

 <task name="Hold auditions" swimlane="Talent scout">
 <controller>
 <variable name="audDate" access="read,write,required"
mapped-name="Audition date"></variable>
 <variable name="audLocation" access="read,write,required"
mapped-name="Audition location"></variable>
 </controller>
 </task>
 <transition name="" to="Select band members"></transition>
 </start-state>
 <task-node name="Select band members">
 <task name="Select band members" swimlane="Talent scout">
 <controller>
 <variable name="bm1" access="read,write,required" mapped-
name="Band member 1"></variable>
 <variable name="bm2" access="read,write,required" mapped-
name="Band member 2"></variable>
 <variable name="bm3" access="read,write,required" mapped-
name="Band member 3"></variable>
 <variable name="bm4" mapped-name="Band member 4"></
variable>
 <variable name="bm5" mapped-name="Band member 5"></
variable>

Chapter 3

[91]

 <variable name="bm6" mapped-name="Band member 6"></
variable>
 </controller>
 </task>
 <transition name="" to="Contract band members"></transition>
 </task-node>

... and we've removed some here too ...

 <task-node name="All contracts agreed?">
 <task name="All contracts agreed?" swimlane="Legal adviser">
 <controller>
 <variable name="bm1Agreed" access="read" mapped-name="Band
member 1 agreed?"></variable>
 <variable name="bm2Agreed" access="read" mapped-name="Band
member 2 agreed?"></variable>
 <variable name="bm3Agreed" access="read" mapped-name="Band
member 3 agreed?"></variable>
 <variable name="bm4Agreed" access="read" mapped-name="Band
member 4 agreed?"></variable>
 <variable name="bm5Agreed" access="read" mapped-name="Band
member 5 agreed?"></variable>
 <variable name="bm6Agreed" access="read" mapped-name="Band
member 6 agreed?"></variable>
 </controller>
 </task>
 <transition name="No" to="Contract new member"></transition>
 <transition name="Yes" to="task1"></transition>
 </task-node>

... and here ...

 <transition name="" to="All contracts agreed?"></transition>
 </task-node>
 <task-node name="task1">
 </task-node>
</process-definition>

You can clearly see how the elements we have been mapping visually and in the
Properties dialog boxes are being translated to the XML source code. We don't need
to worry about this at all right now, but it is worthwhile starting to become familiar
with the syntax as we will be hooking into this code in later chapters.

The next two steps in our process, "Name band" and "Organize vocal tuition" are
straightforward, and as we've already seen how to build regular task nodes we won't
linger over the details. You can see how we've built them for yourself in the process
definition included in the download for this chapter. To install the process definition
from the download:

Develop the process in JBoss jBPM

[92]

1.	 Highlight the src/main/jpdl folder in the Package explorer.
2.	 Click File | Import.
3.	 In the resultant dialog, expand General and choose File System, then Next.
4.	 Browse to the directory where you have extracted the download for the

chapter. Highlight the Produce music products folder.
5.	 Check the boxes next to the all of the files that the Designer finds.
6.	 Click Finish.

After "Organize vocal tuition", however, is our first fork in the process. This is where
the changes we made to our To Be process mean that we are running two separate
streams of the process concurrently. The paths of execution split up here and come
back together at the "Contract supporting musicians" activity. Modeling this is pretty
easy in jPDL. We start off by dropping a Fork node onto our process definition map,
and joining it up to the previous node with a transition:

Chapter 3

[93]

From here on, we just bring out two transitions from the fork and model our
concurrent process paths as we usually would. Once all the nodes prior to "Contract
supporting musicians" are in there, we simply bring the paths back together with
two transitions coming into a Join node:

As you can see, we implemented another user decision task node for "Evaluate
songs" in place of the "Songs are good?" decision box on the activity flow diagram.
Other than that, the flow is very simple and there is nothing in there that we haven't
already seen.

We are now on the downhill slope for this process: we've already completed all the
more complex nodes. From here on in, the process is either very similar to what
we have already seen, or it is even simpler to implement. For example, most of the
remaining task nodes are implemented with a simple task plus a transition labeled
"Done". If you imagine this in the user interface, all the end user will see is a task
label of "do this task�" then a button saying "Done" that they can click alongside
the standard buttons of "Save" and "Cancel". We are therefore imagining that our
diligent end user will go away, do the task, and then record in the system that they
have completed what is asked of them, as well as perhaps recording a few details
about their task in process variables. Quite often, however, we will merely reflect
back to the end user the process variables that we have already captured as context
for their task, using the read-only process variables that we have already input.

Develop the process in JBoss jBPM

[94]

The end user can then select the "Done" transition to verify that they have completed
the task and the process can move on to the next node:

The rest of the process is very similar to what we've seen before. We do have another
fork and join, which we implement in exactly the same way as we did before. We
also do one more decision node, again implemented as a task node, where the
human user inputs the outcome of the decision to choose the transition that is taken:

Chapter 3

[95]

That really is all there is to it. Of course, we round off the process with an End node,
but every other element of the process definition is something we have already seen.
If you haven't already, take some time to import the process definition in the code
download for this chapter and have a look through the nodes and XML to familiarize
yourself with the structure.

Export for sign-off
So now we have completed our first iteration of the "Produce music products"
process definition, all that remains is for us to obtain sign-off on our work so far. This
is a simple matter of locating the processimage.jpg file and emailing it the sponsors
to ask for sign-off. If your installation has followed the instructions in this chapter,
then this can be found at the following location:

C:\MJC\Business Process Management\jBPM\jbpm-jpdl-3.2.GA\designer\
workspace\Bland Records\src\main\jpdl\Produce music products�\
processimage.jpg

Develop the process in JBoss jBPM

[96]

The final process map image file will look something like this:

Chapter 3

[97]

Once sign-off is obtained, we are now ready for the next stage, where we'll generate
and adapt the user interface to the process that we have built in this chapter.

Develop the process in JBoss jBPM

[98]

Summary
We have covered a great deal in this chapter, and we've come a long way. Let's just
recap what we have been doing:

We installed Java, the JBoss application server, the jBPM engine, and the
jBPM Designer.
We looked at the fundamental concepts that underpin JBoss jBPM.
We put these concepts into practice by building our first process definition
for our proof-of-concept system.

In the next chapter, we will take this to the next stage by taking a look at how the
process definition we have built will look in the web console user interface.

•

•

•

The Prototype user interface
It's all very well having a beautiful process definition, but this is "business process
management", not "business process definition". Having a process definition that
accurately reflects the way the business works is only half the story. In this chapter,
we'll add the majority of the remaining half. The final icing on the cake will be added
in the last few chapters.

In this chapter, we are going to build the end user part of our BPM system. We will
put together the user interface, which our proof-of-concept testers will use to interact
with the process definition that we created in the previous chapter. By the end of the
chapter, we will have obtained sign-off from our sponsors and the proof-of-concept
testers indicating that they are happy that this user interface is ready to test. In the
next chapter, we'll run our testing to prove that our BPM concept system will indeed
meet Bland Records' requirements and should be further developed.

In this chapter, we will look at the following:

Building web forms for the tasks we defined
Setting up our proof-of-concept users in the system
Deploying the process
The default jBPM web console interface
Adding some help text to the web console interface
Obtaining sign-off that the web console is ready to run the proof of concept

Build the prototype
With the process engine of our BPM system now in place, it's time to turn our
attention to the user interface that our users will interact with, as they execute the
process. We will make this available over the internet as a series of web screens that
the user can use like a regular website: the jBPM project refers to this as the "web
console". For the time being, we will build the web console on our local machine,
where we'll be able to play around with it until we are happy.

•

•
•
•
•
•

The prototype user interface

[100]

In the next chapter, we'll see how we can deploy it on a server, so our
proof-of-concept users can test the system properly.

The web console is a combination of task lists, which represent the queue of work
that a user or a group of users has to do, and task forms, which are the screens where
the user can actually complete the tasks that have been assigned to them. As we'll
see later in the chapter, the jBPM web console also comes with some other handy
utilities out of the box, although most of these are more useful for management and
administrators than end users.

Develop the prototype user interface
The first step is to build what jBPM terms the "task forms". These are the screens
where the user will do the work assigned to them, making an update to a process
variable or confirming they have done a piece of offline work, for example:

Chapter 4

[101]

We need to generate one of these task forms for every task node in our process. This
is quite a simple thing to do but, as there isn't a "generate all task forms" button, it
is rather time consuming. Still, it does give us the opportunity to ensure each task
form is correctly put together. The task forms use XHTML JavaServer Faces tags.
JavaServer Faces (JSF) is a Java-based web application framework that simplifies
the development of user interfaces for Java applications. For those who know some
HTML, the syntax for the Faces tags is not a million miles away. For our purposes,
we won't need to worry too much about the Faces elements, as we will limit our
interaction with them to a few simple amendments and additions. Nevertheless, for
those who are interested, there is a good tutorial on JavaServer Faces here:

http://www.exadel.com/tutorial/jsf/jsftutorial-kickstart.html

Anyway, on with our work. Start up the process Designer if you haven't already
got it open. Highlight the first task node in the process diagram, which is of course
our start node, "Hold auditions". In the Outline view, expand the tree until you find
the "Hold auditions" task (note you need the task element within the node, not the
node itself). Right-click and select Properties. In the left-hand menu, navigate to the
Advanced screen. On here, you will see a Generate Form... button; click it:

The prototype user interface

[102]

Once you've clicked to create the task form, the Designer will ask you to confirm the
variables that you've already defined in the process definition and which should be
collected on this task form. In our case, these are audDate and audLocation for the
"Hold auditions" task node:

As mentioned in the previous chapter, it will be the mapped names of "Audition
date" and "Audition location" that will actually be used in the web console, making
for a more user-friendly experience.

You will notice at the bottom of this dialog window that the Designer
automatically gives the task form file a name of task node name.xhtml, with
.xhtml being the filename extension used for XHTML JavaServer Faces files. We
should leave these settings as they are: the only time we'd need to change the
filename is if we have two nodes called the same thing. Click OK, then OK again,
to close the task node properties window and you will see in the Package Explorer
window that the new task form file has been added to our project, along with an
XML file called forms.xml:

Chapter 4

[103]

Double-click the Hold-auditions.xhtml file, so we can have a look at what's
been created for us. Something like the following code should open up in the main
editor window:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

<!-- the DOCTYPE means we are required to use html for a root element
-->
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:tf="http://jbpm.org/jsf/tf"
 xmlns:jbpm="http://jbpm.org/jsf">

 <ui:component>

 <jbpm:dataform>
 	
 <f:facet name="header">
 <h:outputText value="#{taskName}"/>
 </f:facet>

 <!-- TASKFORM ROWS -->

The prototype user interface

[104]

 <jbpm:datacell>
 <f:facet name="header">
 <h:outputText value="Audition date"/>
 </f:facet>
 <h:inputText value="#{var['audDate']}" />
 </jbpm:datacell>
 <jbpm:datacell>
 <f:facet name="header">
 <h:outputText value="Audition location"/>
 </f:facet>
 <h:inputText value="#{var['audLocation']}" />
 </jbpm:datacell>
 	 	
 <jbpm:datacell>
 <f:facet name="header">
 <h:outputText value="Actions"/>
 </f:facet>
 <!-- TASKFORM BUTTONS -->
 <tf:saveButton value="Save"/>
 <tf:cancelButton value="Cancel"/>
 <tf:transitionButton value="Save and Close"/>
 </jbpm:datacell>
	
 </jbpm:dataform>	

 </ui:component>

</html>

As you can see, this code really isn't massively different from HTML: it is certainly
pretty understandable to the uninitiated. Still, we don't actually have to worry
about its content in any respect: we can quite happily leave it completely alone.
Nevertheless, a bit later in this chapter, we will make a couple of edits to it, just to
tailor it to our needs somewhat.

While we're here, we may as well have a quick look at the forms.xml file:
double-click it to inspect it in the main editor window. The content in the Source
view will be something like this:

<?xml version="1.0" encoding="UTF-8"?>

<forms>
 <form task="Hold auditions" form="Hold-auditions.xhtml"/>
</forms>

As you can see, this file is extremely simple and all it does is list out all the task forms
that will be needed by the web console to execute the process definition. We will not
need to edit this file at all.

Chapter 4

[105]

Now comes the laborious bit: we must go into every task node that we have defined
and repeat the above task form creation process. There should be no need to change
any of the variables or file names, just accept the defaults that the Designer gives
you. Obviously, you don't create any task forms for fork or join nodes, only for task
nodes. When we've finished, we should have a long list of XHTML task form files in
our Package Explorer:

If you look at the XHTML code for a node where we have specified a name for a
transition from the node, there will be a task form button tag included that will be
called the same name as the transition. For example, in our Contract-supporting-
musicians.xhtml task form, we have the following buttons specified:

 <!-- TASKFORM BUTTONS -->
 <tf:saveButton value="Save"/>
 <tf:cancelButton value="Cancel"/>
 <tf:transitionButton transition="Done" value="Done"/>

The prototype user interface

[106]

The transitionButton is given a value of "Done", the same name as the transition
we specified, and will result in a button labeled "Done" showing up in the web
console for our users to click. So even though the user won't actually input any
process variables on this screen, they will move the process on by clicking the
appropriately-labeled "Done" button to confirm they have done the task offline
and the process can resume. Of course, this gets even more useful where we have
specified two transitions and the task form will therefore include two buttons for
the user to choose from. For example, the user will be able to choose between an
"Incorrect" and a "Correct" button on the "Review credits and cover artwork" task
form, because the Designer has automatically recognized that there are two leaving
transitions and created the necessary buttons with the following code:

 <!-- TASKFORM BUTTONS -->
 <tf:saveButton value="Save"/>
 <tf:cancelButton value="Cancel"/>
 <tf:transitionButton transition="Incorrect" value="Incorrect"/>
 <tf:transitionButton transition="Correct" value="Correct"/>

This is very clever stuff and goes to prove just how much jBPM is doing for us
without us having to get our hands dirty with code.

Set up our users
By default, jBPM is set up with a few test users who happen to be characters from
Sesame Street: Ernie, Grover, and so on. Unless we want to give our brave testers
a complex, we had better set them up with some proper usernames for the system.
Of course, these usernames have to have a correspondence with the swimlanes that
we used in the previous chapter to assign tasks. The relationship is one of "users"
belonging to "groups" and it is modeled in the database that underpins jBPM. The
behavior we are looking for is that when Jack Thompson, who is a Talent Scout, logs
into the web console, he should see tasks in his task list relating to "Hold auditions",
as he fulfils the swimlane criteria for that node in our process definition. We can
set up new users by copying in our group and user information to the pre-existing
database tables.

We don't need to set up every single user in the organization right now, only those
people who will be helping us out with testing our proof-of-concept system. We'll
need at least one user for each type of swimlane. We'll give our users suitable,
system-ready usernames, without any spaces or non-standard characters: this will
make the upgrade path to fully integrate with a Windows domain easier in the long
run. One consideration we do have to bear in mind: at run time, we won't know who
some of our users will be, as they are actually defined during process execution.
For example, we don't know who our band members are going to be until we've
held auditions and selected the band. We can get round this by simply creating
anonymous logins that whoever gets picked can use.

Chapter 4

[107]

For our purposes, we'll set up the following groups and users:

Talent scout — powellb
Legal adviser — rumpoleh
Band member — memberb
Record producer — dredr
Artist development — harrisr
Songwriter — lennonj
Musician — hendrixj
Video production — welleso
Artist — monetc
Administrator — admin
Manager — manager

In order to insert these users we need to get the database running. Start the JBoss
application server with the shortcut we created in the last chapter. Once the
application server has finished its start up routine, open up your web browser and
go to http://localhost:8080/jmx-console/:

•
•
•
•
•
•
•
•
•
•
•

The prototype user interface

[108]

This is the management console that comes with the JBoss application server, which
provides some utilities for managing it, including a simple database utility. We'll
use this database utility to make the changes that we need. The database used in the
default jBPM installation is called Hypersonic: it is a perfectly reasonable database
for testing out jBPM on our local machine, although, in a later chapter, we'll see
how we can swap it for a more robust database when we want to use our BPM
system in anger.

In the JMX Console, under the jboss heading you will see a link entitled
database=jbpmDB, service=Hypersonic: click this link. Scroll down the next page
until you get to a line called void startDatabaseManager(). Click the Invoke button
directly underneath. You will go to a new screen and after a few moments' delay the
HSQL Database Manager will start:

Chapter 4

[109]

On the left of the Database Manager, you can see the list of all the database tables
used by jBPM. The tables we are interested in are PUBLIC.JBPM_ID_GROUP,
PUBLIC.JBPM_ID_MEMBERSHIP, and PUBLIC.JBPM_ID_USER. If you want to
see the existing contents of these tables, you can type this simple bit of SQL into the
cursor window at the top and click Execute SQL:

SELECT * FROM PUBLIC.JBPM_ID_GROUP

This will bring back the list of groups that are already set up in jBPM. As you can
see there are five columns in the table: ID_, CLASS_, NAME_, TYPE_, and PARENT_.
We won't linger over the meaning of these columns; suffice it to say that the values
in these columns define the relationships between the database tables that manage
jBPM users. We need to add our own groups in, and again, we do this by running a
bit of SQL on the database. You can either type the following in yourself or copy and
paste in the code from the insert-groups.sql file that is in the code download for
this chapter:

/*First we add in the security roles*/
INSERT INTO PUBLIC.JBPM_ID_GROUP VALUES (301,'G','manager','security-
role',NULL)
INSERT INTO PUBLIC.JBPM_ID_GROUP VALUES (302,'G','participant','securi
ty-role',NULL)
INSERT INTO PUBLIC.JBPM_ID_GROUP VALUES (303,'G','administrator','secu
rity-role',NULL)

/*Then we add in the organisations*/
INSERT INTO PUBLIC.JBPM_ID_GROUP VALUES (201,'G','Talent scout','organ
isation',NULL)
INSERT INTO PUBLIC.JBPM_ID_GROUP VALUES (202,'G','Legal adviser','orga
nisation',NULL)
INSERT INTO PUBLIC.JBPM_ID_GROUP VALUES (203,'G','Band member','organ
isation',NULL)
INSERT INTO PUBLIC.JBPM_ID_GROUP VALUES (204,'G','Record producer','or
ganisation',NULL)
INSERT INTO PUBLIC.JBPM_ID_GROUP VALUES (205,'G','Artist development',
'organisation',NULL)
INSERT INTO PUBLIC.JBPM_ID_GROUP VALUES (206,'G','Songwriter','organi
sation',NULL)
INSERT INTO PUBLIC.JBPM_ID_GROUP VALUES (207,'G','Musician','organisa
tion',NULL)
INSERT INTO PUBLIC.JBPM_ID_GROUP VALUES (208,'G','Video production','o
rganisation',NULL)
INSERT INTO PUBLIC.JBPM_ID_GROUP VALUES (209,'G','Artist','organisati
on',NULL)
INSERT INTO PUBLIC.JBPM_ID_GROUP VALUES (210,'G','Administrator','orga
nisation',NULL)
INSERT INTO PUBLIC.JBPM_ID_GROUP VALUES (211,'G','Manager','organisat
ion',NULL)

The prototype user interface

[110]

After you click the Execute SQL button, the Database Manager should come back
with confirmation that the new groups have been added:

If you run the SELECT * FROM ��������������������PUBLIC.JBPM_ID_GROUP command again, you will
see that our new groups are now in the table:

Chapter 4

[111]

Now we need to do another insert for our new users:

INSERT INTO PUBLIC.JBPM_ID_USER VALUES (101,'U','powellb','powellb@
bland.com','powellb')
INSERT INTO PUBLIC.JBPM_ID_USER VALUES (102,'U','rumpoleh','rumpoleh@
bland.com','rumpoleh')
INSERT INTO PUBLIC.JBPM_ID_USER VALUES (103,'U','memberb','memberb@
bland.com','memberb')
INSERT INTO PUBLIC.JBPM_ID_USER VALUES (104,'U','dredr','dredr@bland.
com','dredr')
INSERT INTO PUBLIC.JBPM_ID_USER VALUES (105,'U','harrisr','harrisr@
bland.com','harrisr')

The prototype user interface

[112]

INSERT INTO PUBLIC.JBPM_ID_USER VALUES (106,'U','lennonj','lennonj@
bland.com','lennonj')
INSERT INTO PUBLIC.JBPM_ID_USER VALUES (107,'U','hendrixj','hendrixj@
bland.com','hendrixj')
INSERT INTO PUBLIC.JBPM_ID_USER VALUES (108,'U','welleso','welleso@
bland.com','welleso')
INSERT INTO PUBLIC.JBPM_ID_USER VALUES (109,'U','monetc','monetc@
bland.com','monetc')
INSERT INTO PUBLIC.JBPM_ID_USER VALUES (110,'U','admin','admin@bland.
com','admin')
INSERT INTO PUBLIC.JBPM_ID_USER VALUES (111,'U','manager','manager@
bland.com','manager')

Again, you can either type in the command yourself or use the insert-users.sql
file in the code download. Finally, we have to link our users to our groups through
the PUBLIC.JBPM_ID_MEMBERSHIP table. We need to define all our users with
a security role of "participant". In addition, our Administrator is given security
roles of both "administrator" and "manager", and our Manager has a security role
of "manager". We also need to assign each user to the swimlane groups that we
have just added to the database. We do this by adding in new rows to the PUBLIC.
JBPM_ID_MEMBERSHIP table, specifying the relationships between the rows in
the PUBLIC.JBPM_ID_USER and PUBLIC.JBPM_ID_GROUP tables. We link the
two tables' ID fields together: if you have deviated from the standard installation
in any way, you will have to edit the following SQL to get the relationships right as
specified above:

/*Then we make all our normal users participants*/
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'101
','302')
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'102
','302')
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'103
','302')
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'104
','302')
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'105
','302')
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'106
','302')
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'107
','302')
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'108
','302')

Chapter 4

[113]

INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'109
','302')

INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'110
','302')
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'111
','302')

/*Then we make the administrator an administrator*/
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'110
','303')

/*Then we make the manager and the administrator a manager*/
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'111
','301')
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'110
','301')

/*Finally we add all our users to their organisation groups*/
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'101
','201')
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'102
','202')
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'103
','203')
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'104
','204')
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'105
','205')
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'106
','206')
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'107
','207')
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'108
','208')
INSERT INTO PUBLIC.JBPM_ID_MEMBERSHIP VALUES (NULL,'M',NULL,NULL,'109
','209')

Phew, thankfully that's done, our proof-of-concept users are set up and ready to go.
We can now safely close the Database Manager.

The prototype user interface

[114]

Deploy the process and user interface
Let's now deploy our process definition and console task forms to the server, so we
can have a play around with them. First, start the application server again, if you
closed it after the database changes we just made. Next, in the Designer, switch to the
Deployment tab of the main editing window. You will be presented with a list of all
the files that are available for deployment to the application server:

Make sure that all of the files in the left-hand pane are checked: by default, the files
in the right-hand pane will be unchecked and we can leave it that way for now. In
later chapters, we'll see how to deploy Java classes and resources through the right-
hand pane. Scrolling down, we can see that we also have the opportunity here to
specify the URL of the application server to which we should deploy our files:

Chapter 4

[115]

It shouldn't be necessary to change the settings here, although, it is worthwhile
clicking the Test Connection button to make sure the Designer can connect to the
application server without any problems. If all is well, click the Deploy Process
Archive button to deploy our files to the application server. This is all we need to do
to put our process live.

One nice little feature of jBPM is that the engine is smart enough to keep track of
the versions of our process that we deploy, without us having to manually provide
version numbers or worry about overwriting previous versions of the process.
For example, if I open up the Database Manager again and look in the PUBLIC.
JBPM_PROCESSDEFINITION table at the versions of our "Produce music products"
process that I have deployed to the application server I can see eight versions:

Every time I click the Deploy Process Archive button, a new version of the "Produce
music products" process is added to the end of this table.

The prototype user interface

[116]

Investigating the web console interface
The jBPM web console is where our users will do their tasks, monitor the process,
and administer the running of the live process. The web console is developed and
maintained by the jBPM project team as an example of a web front-end to the jBPM
process engine. The intention is that the example web console can serve as the
starting point for jBPM users' own implementations of jBPM: it can be developed and
tailored to our exact needs. Of course, if you do make improvements and develop
the code base, you should submit your changes back to the jBPM community to help
make the project even better.

At the time of writing, the web console is under very active development for the
3.2 release of jBPM, and hence the version that you actually end up using may well
differ slightly from that presented in these pages. No matter, the concepts will
remain the same and it will only be aesthetic differences, if there are any.

Let's have a look at the web console. With the application server running, fire up
your browser and go to http://localhost:8080/jbpm-console/ where you will
be presented with the console login page:

Chapter 4

[117]

In the middle of the screen, there is a hard-coded table featuring the usernames
that are used with the default jBPM example process. We can ignore these and use
one of our own logins that we put into the database, previously. Log in with the
username and password of "powellb" and "powellb", to log in as our Talent scout.
Once we're logged in, we can see the various portions of the web console that we
can interact with, some of which are targeted at end users, some at managers, and
some at administrators:

Of course, in a live environment we'd probably want to change this a bit so that
end users don't get to see the managerial or administration sections, but we won't
worry about that for now. Let's explore the various parts of the console. To make our
exploration meaningful, let's create an instance of our process. Click Processes, �����then
Start process next to the latest version of the "Produce music products" process:

The prototype user interface

[118]

This starts a new instance of the process and takes us to the first task form. If you
now click Process Instances, you will see a list of all instances of the process that are
currently in course on this server. If you click View you can see all the details of that
process instance:

From here, we can inspect the process definition diagram and code, as well as
see some history of what has happened to this instance of the process while it has
been running.

Chapter 4

[119]

End users
End users will naturally be the heaviest users of the process's user interface, and
there are two elements of the web console, in particular, that are expressly designed
for them: tasks lists and task forms. The ordinary user should live and breathe in
their task list as it represents the queue of work that they have to complete to fulfil
their part of the process.

The web console actually contains two task lists, one for the user, but also one for the
group. The user's task list presents a list of all the tasks that are currently assigned to
the user that is logged in. For example, if we click User Task List in the menu we can
see that we currently have one task assigned to us:

This makes sense as we are currently logged in as a Talent scout, and we have just
started an instance of the process where the first task node, "Hold auditions", is
assigned to the Talent scout swimlane. If you were to log out and log in as a different
user, you would see that their task list is currently empty, as they haven't had
anything assigned to them yet.

You will also notice as you play around with the web console that tasks exist in
either the user task list or the group task list, but not both. This is to make sure that
you don't get multiple users working on the same group task: the idea is that the
user "takes" a task off the group stack and adds it to their own to work on it. The
group task list is intended for situations where you have a pool of users, any one of
whom could take the task, removing it from the group task list and bringing it into
their personal user task list.

The prototype user interface

[120]

If we go back to the user task list, and click View, next to the task we have assigned
to us in our list, we are presented with the screens we need to be able to complete
this task. This is the task form we generated previously, and we can now see how
those XHTML elements are rendered in our browser:

We can see that the web console has indeed picked up the "mapped names" of our
process variables, using "Audition date" and "Audition location" as the labels in the
input form. We can also see that the task form has three action buttons that the user
can click: Save,� Cancel, and Save and Close. The Save and Cancel buttons will be
present on every task form page, although we will find that later in the process the
Save and Close button will be called different things. This is because this button
is the transitionButton element we saw earlier that will pick up the transition
name, if one is specified. If there isn't a name specified for the transition, the button
is simply labeled End Task by default. The Save button allows the user to fill out the
task form and save its contents without submitting it and moving to the next node
of the process. This is particularly useful in more complex forms where the user may
not know exactly what they need to enter straight off. Similarly, the Cancel button
allows the user to discard any input that they have made and go back to their task
list without moving on in the process.

Chapter 4

[121]

One of the best features of the web console, one which really highlights the benefits
of business process management, is shown in the Diagram tab of the task form:

As you can see, this screen shows the user how their current task fits into the context
of the process as a whole, by highlighting the current node in the process diagram.
This is incredibly powerful from an end user's point of view as they can easily see
how they are one cog in a bigger machine, and how the quality and timeliness of
their work affects the work of others.

If we go back to the task form, enter some example data into the form and click End
Task,�� the process variables we have entered are saved to the jBPM database, the task
is marked as completed and the process execution moves on to the next node in the
process definition. As the next task node is also assigned to our Talent scout, we can
go back into the task list and pick up the next task:

The prototype user interface

[122]

Managers
The managerial part of the web console is probably the least developed part of the
system at the moment. It is anticipated that managers will be able to use the web
console to deploy new processes, monitor operation of the process, correct end users'
process variable mistakes, cancel processes if need be, and monitor process timers.
However, this functionality hasn't been fully developed at the time of writing:
perhaps it will have been by the time you come to read this book. Nevertheless,
never fear, as some of this functionality overlaps with the Business Activity
Monitoring functionality that we will build in a later chapter.

Chapter 4

[123]

If you log out of the web console and log back in with the username "manager" and
password "manager", you can see that there is one more menu option available to
our managers, "Deploy process":

This is actually an alternative way for us to deploy our processes, rather than using
the deployment functionality in the Designer. Personally, I find it easier to use the
Designer's deployer, but you might want to experiment with this one.

The prototype user interface

[124]

Of course, managers can also go into any of the task forms through the Process
instances menu and use the re-assignment functionality to re-distribute the workload
around their team:

Adapt the web console
The web console functions perfectly well as it is, although there are obviously a few
things we'd like to do to make it our own. In later chapters, we'll make some further
adaptations to the web console, but for now we'll content ourselves with adding
some "help" text to the task form pages to give our proof-of-concept testers a few
pointers as to how they should use the system. We are simply going to include a bit
of text on each task form telling the users what is expected of them. We can do this
with some very straightforward HTML. Go back into the Designer and double-click
the hold-auditions.xhtml task form in the Package Explorer. Scroll down to the
end of the code and add the following lines of HTML and text on a new line between
the dataform and uicomponent closing tags:

 Add in the date and location of the next audition. Please enter the
date in the format DD-MM-YYYY.

Chapter 4

[125]

 When you've finished click Save to save your changes for later, or
click End Task to submit and move on. You can click Cancel if you
don't want to save your changes and are not ready to submit.

Hopefully, this code isn't too earth shattering for you. If we now re-deploy the
process definition to the server, start a new instance of this latest version of the
process and have a look at the Hold auditions task form, we can see that our help
text shows up on the screen to help our users understand what they need to do:

You can do this for every task form where you believe it would be worthwhile to
give the end user a bit of a helping hand. Remember, however, that if for some
reason you have to re-generate the task form your help text will be lost.

Sign off for the proof of concept
All that remains now is to demonstrate the proof-of-concept web console to the
sponsor and the proof-of-concept testers, and to ask them to sign it off as ready
for testing. At this stage, it is very worthwhile setting some expectations and
making it clear to these people that they are not signing off the system as
being production-ready, merely that the bare functionality is in place to have a
meaningful proof-of-concept test.

The prototype user interface

[126]

We also need to ask our proof-of-concept users to start gathering together the data
they will need to put the system through its paces. They should look at historical
records of the process to pull together this information: although, sometimes there
will be no option but to fake it as the data may not have been recorded. As long
as the data is sensible and realistic, there is no problem with this approach. The
important thing is that the process definition and the user interface can be tested
under semi-realistic conditions by the testers going through the process in "fast
forward" with pre-determined data.

Summary
In this chapter, we have built the user interface that our proof-of-concept testers will
use to interact with the process definition, which we built in the previous chapter.
At this stage, we are not worrying about making the web console look pretty or in
adapting it for our specific requirements: we are just going to make do with what is
available out of the box. After all, the basic functionality of the jBPM web console is
actually quite advanced and really provides more than enough for us to get started.
In later chapters, we'll tinker here and there with it and we'll work at making the
system more production-ready. But for now, we have our proof-of-concept system
ready to go, and in the next chapter we'll see if we can indeed prove that concept.

We have covered:

Building task forms
Setting up users and groups
Deploying the process
The elements of the user interface
Adding help text to the task forms
Obtaining sign-off that the UI is ready to run the proof of concept

Our final deliverable from this phase has been the web console that has been signed
off as fit for the purposes of running our proof of concept test.

•

•

•

•

•

•

Iterate the prototype
Having built our prototype, we must put it in front of some users for some
preliminary testing. This is our "proof-of-concept" stage. This is really our last
chance to throw out our BPM system before we commit to it and go forward with an
implementation. We need to put it through its paces, and work out whether or not it
is going to fit the bill for what we need from it.

In this chapter, we will cover:

Setting up the proof of concept
Making the prototype available on a server
Running the proof-of-concept test
Making changes to the process
Integrating with other systems

By the end of this chapter, we will have obtained sign-off from our sponsor that we
are ready to move to full-scale user acceptance testing and implementation.

Set up for the proof of concept
It is important to get our proof of concept off on the right foot: a little bit of effort at the
start will pay huge dividends further down the line. The most important thing we have
to do is make it clear to everyone involved exactly what we are setting out to achieve.

Set up the team
Who do we want involved in our proof of concept? Well, everybody: or at least, a
representative of each stakeholder group involved in the process. If we don't have
full representation, then we might miss something and jeopardize the validity of the
test. More crucially, those missing stakeholders would be well within their rights to
withhold the sign-off and prevent us from progressing.

•
•
•
•
•

Iterate the prototype

[128]

Full representation doesn't just mean a name on a sheet of paper, it means full
participation in every aspect of the proof-of-concept program. The people who
are seconded to the proof of concept must have the scope from their managers to
step back from their day job, so that they can give us their full attention without
distractions. Participants who aren't released from their day-to-day tasks won't give
us 100% and again we risk losing our way.

Once the team is assembled and knows the level of commitment that is expected, we
can set out the methodology that we intend to apply for the proof of concept.

Set expectations
Typically, we would expect a proof of concept to be started with a kick-off meeting
to which all the protagonists are invited. At this meeting, we must set out with
crystal clarity exactly what we will (and what we will not) achieve by running
the proof of concept. It is vital that users understand we are not perfecting an
almost-ready-for-go-live system, we are in the early stages of building a prototype.
They must understand that prototypes are put together quickly to demonstrate
whether or not a concept works, with scant regard for aesthetics, security, stability or
any of the other things one expects from a production system.

So what are we trying to achieve? Some of it is about whether or not we have put
the system together correctly, but it is also important we relate back to our original
project objective, which if you remember, was as follows:

Project objective: streamline the process as much as possible, and then
implement a business process management system allowing Bland Records
to better coordinate their suppliers and gain visibility of their pipeline.

So, in addition to considering how well what we have built achieves the
above objective, we should also list out in the kick-off meeting the more
system-related considerations:

Does the process we've defined, fit with business reality?
Is the user interface usable? Can we execute the process in its entirety?
Does the support given by the system allow the process to run more
smoothly?
What needs to be added/changed/removed to improve the operation of
the process?

•

•

•

•

Chapter 5

[129]

Plan the proof-of-concept program
Any plan is about juggling the three pillars of project management: time, budget, and
resources. We should build a plan for our proof of concept that sets out exactly what
we intend in each of these three areas, given the things we need to achieve. Once we
have the overall direction set, we need to break down the program into task-level
activities with dates and milestones.

Before we get started, we need to make sure our stakeholders have gathered the
data they will need to put the process through its paces. They need to look over old
case files, emails, and so on to gather the data they are going to need: this task can
easily be delegated to a working group drawn from the stakeholders themselves.
At this stage, we should apply the Pareto principle and make sure we use the 20%
of possible process scenarios that account for 80% of the work that actually goes
through. We can look at the weird and wonderful exceptions to the process later: for
now, let's just make sure the thing hangs together.

With the data in place, the team will be ready to start work. Daily review meetings
are a good idea: they keep the team motivated and make sure everyone is moving in
the same direction. Typically, a period of testing will be followed by a period of fix,
followed by another period of testing. Weekly or bi-weekly iterations fit this pattern
and can be reflected on the plan.

Capture requirements
We must make sure that we are ready to document and store the issues that our team
comes up with when they start testing. The more effort we put into capturing these
issues and requirements in a structured way, the better (it will make our lives easier
in the long run when we try to prioritize and work on them).

If you are lucky enough to have a requirements management toolset in your
organization, then this is an excellent opportunity to put it through its paces. Failing
that, there are several relatively low-tech options available. A small Access database
or a well-structured spreadsheet can quite easily do the job. With a team of users all
potentially accessing and updating the same list of issues, it is important to lay down
a few ground rules about versioning and concurrent access to avoid unfortunate
mistakes. On recent projects, I have started using a Google Documents spreadsheet,
shared with all the team members, with Google providing the versioning and
concurrent access support: it's simple but it works.

In capturing the issues as they arise, we should force our users to pre-analyze
the issues they are raising. For example, they can give us an indication of the
seriousness of the issue, as well as giving us insight into any workarounds that exist.

Iterate the prototype

[130]

This sort of information will help us to filter and prioritize the list of issues. An
example structure might be:

Reference:
Issue short description:
Issue detailed description:
Logged by:
Logged date:
Severity (blocker/major/minor/optional):
Workaround:

Then, with the addition of another few fields, this same list can also be used by the
application team to log the work they have done on these issues.

Status (open/rejected/resolved):
Fix priority (high/medium/low):
Fixer assigned:
Comments:

For example, where the users have raised duplicate issues, the duplicates can be
marked as "rejected". The remaining issues can then be prioritized for the next
round of fixing, with comments added about what the potential fix might be. With
the entire team working from the same list, we will have good communication and
hopefully progress quickly.

Make jBPM available on a server
With our would-be users raring to go and with our plan in place, we had better make
jBPM available to them so they can get cracking. We need to get the jBPM engine
and the application server running on a server machine, so our users can access it
and start testing. In many organizations, this work will be undertaken by a central
IT department, and as the installation steps are exactly the same as we have already
seen for getting it running on our local machine, we won't go over it again here. Once
the software is installed and the database has been set up as described in the previous
chapter, we will be ready to deploy our process. We should still be able to do this
from our local machine, the intention of course, being that we can continue to develop
the process locally and deploy to the remote server when we are happy with it.

Start up the Designer and go to the Deployment tab. In the Deployment Server
Settings dialog, change the Server Name (and port if your IT department has
changed the default port) to the name or IP address of the server where jBPM is
installed. In our case, our server has an IP address of 192.168.2.3:

•
•
•
•
•
•
•

•
•
•
•

Chapter 5

[131]

Test the connection and if all seems fine, click Deploy Process Archive.

If we now open up our browser and type in the URL for our jBPM console on the
remote server, we should get our login page. In our example, we are connecting to
our server from a Windows Vista machine:

Iterate the prototype

[132]

That's it, we're ready to go. In a later chapter, we'll see how we can make this server
installation more robust by using a more scalable database back-end than the one
that comes with jBPM by default, but for the purposes of our proof of concept the
Hypersonic database will be just fine.

Run the proof of concept
With everything in place, we can get our team going on their testing. As issues come
through, we can use the daily review meetings to make sure high quality information
is logged and that prioritization is effective. We can also use this as a forum to
challenge some of the process issues that come up: are the exceptions to the process
really valid, or is this a once-in-a-lifetime event that we shouldn't be too concerned
about? Quite often, we can expect to hear arguments such as "it has always worked
that way" or "that's just the way it is". These aren't necessarily valid reasons for
changing the process definition: each should be assessed on its own merits and we
must try to diffuse the emotion that process change can bring about. It is vital that
we get support from our project sponsor in these discussions: the sponsor should
sign off on the justification for any changes.

Iterate the system
At the end of each testing period, we need to step back and assess our progress.
Are the issues that are being raised related to the underlying process or to the web
console user interface? The two types of issues would probably be worked on by
different parts of the application team, so it would be good to make responsibility for
each issue clear in the list.

It is also worthwhile looking at the results on a fundamental level: are the issues that
are coming up ones that can be fixed, or is jBPM simply not the right kind of solution
for our problem? We should not feel bad if indeed, we do have to reject jBPM, as
there is no point flogging a dead horse, and sometimes, it is better to admit defeat
than carry on regardless.

Process changes
By now you should be pretty comfortable with making changes to the process
definition and redeploying. It should simply be a case of making the change to the
process map, generating any task forms that might be needed, and deploying the
process definition to the server. There are also some more advanced features of the
jBPM Process Definition Language that we can also look at, trying them out here to
see if they are useful.

Chapter 5

[133]

Task prioritization
Not all tasks are created equal. Some tasks within the process are more important
than others, and if your user has one in their task list, you want to make sure they
complete that task as soon as possible. If we have a look at the user task list in the
web console, we can see that there is a column devoted to Task Priority:

Now, while this functionality doesn't drive anything very special, it does allow our
users to quickly get a handle on the tasks in their task list that they should do first.

We can set our tasks to the most appropriate priority when designing the process.
We need to look at the XML definition of the task in the Source view of the process
in the Designer. All we need to do is find the task in question, and add an attribute of
priority="", and then in between the quotation marks, we put a number between 1
and 5, with 1 being the highest priority and 5 the lowest. If we do this for our "Hold
auditions" task, we end up with a task definition looking like this:

 <task name="Hold auditions" swimlane="Talent scout" priority="1">
 <controller>
 <variable name="audDate" access="read,write,required"
mapped-name="Audition date"></variable>
 <variable name="audLocation" access="read,write,required"
mapped-name="Audition location"></variable>
 </controller>
 </task>

If we now re-deploy the process definition and start an instance of the process, we'll
see that powellb ends up with a task in their task list with a priority of "1":

Iterate the prototype

[134]

Now they'll know they have to do this task first. When this is done for every task in
the process definition, the end result is quite powerful and should certainly help our
users be more productive.

Integration with other systems
In the vast majority of situations business processes involve the use of one or
more IT systems. Our jBPM implementation is not necessarily trying to replace
these systems; rather our goal is to coordinate their use. Nevertheless, there are
opportunities where instead of our user getting a task in jBPM, and then going
away to a separate system to complete the task, we might be able to do the task
directly from the jBPM user interface.

Obviously, this has great benefits in terms of time saving and the user experience,
although we should clearly bear in mind the maintenance overhead that may come
about as a result of building this interface. We would most commonly build an
interface such as this where we want to "wrapper" a legacy system that works well,
but is no longer actively developed: quite often invoicing, warehousing, and other
back-office applications fall into this category. We may also want to store some of the
data that we are using in our process in a data warehousing application, as it may be
of strategic use beyond the confines of our process. Not only can we interface to our
own in-house applications, we might also want to interface directly with those of our
suppliers, so we can get the whole supply chain moving smoothly.

Normally, this would be work undertaken by the developers on our application
team, but as the concept is a general one and it helps us as BAs to understand what's
involved, we will go through a very simple example here. We should also bear in
mind that we wouldn't typically advocate doing complex system integrations during
the proof-of-concept stage of the project.

All we will do here is push some of our process data into an external database
to prove that we can do it. Our example business scenario will be that we have a
royalties application, which another part of the business uses to pay songwriters
whatever they are due on publication of their songs. We will therefore take the
songwriters' names and the names of their songs, and put them into the back-end
database of this putative royalties application.

In order to prove this concept, we have installed a MySQL 4.1 database on a server
on our network and set up a database called royalties, with a table called songs.
We have also installed a MySQL driver on our jBPM server that will help jBPM
connect to the MySQL database. In order to do this, go here and download the
driver: http://www.mysql.com/downloads/api-jdbc.html. Put the downloaded
.jar file into the lib folder of your JBoss server installation; for me this is at
C:\Users\Matt\jBPM\jbpm-jpdl-3.2.GA\server\server\jbpm\lib.

Chapter 5

[135]

Our songs database table contains the following columns:

ID: an auto-incrementing field
song_name: the name of the song that is input in the "Write songs" task
songwriter_name: which we'll get from the username of whoever completes
the "Write songs" task

We are going to achieve all this in jBPM through the use of actions. jBPM actions
allow developers to execute bits of code when events are fired during the execution
of the process. Actions can be represented as action nodes if it is relevant to see them
in the process graph, or they can be hidden from the graph and executed behind the
scenes. If they are put behind the scenes, they will normally be triggered by events
such as the taking of a transition, entering a node or leaving a node.

For our purposes, we want our action to happen behind the scenes, as it isn't really
relevant to the process actors we have using the system. We are going to place an
action on the "leaving node" event of the "Write songs" task. This action will involve
connecting to the royalties database and writing the process variables information
to the database table.

Open up the Designer and browse through the Outline view to the "Write songs"
task. Right-click on the node and select Add Actions then Node Leave:

•

•

•

Iterate the prototype

[136]

We will now see the new action attached to the event in the Outline view:

If we look at the Source view, we can see how this is translated into the raw XML:

 <event type="node-leave">
 <action name="action1"></action>
 </event>

Excellent, we now have an action that will be triggered every time the process goes
through the "Write songs" task. It doesn't actually do anything yet though, as we still
have to define exactly what we want the action to do. To do this, we need to add a new
Java class to our project that will be the "action handler". Luckily, the jBPM folks have
made this easy for us as they already include a sample action handler in the jBPM suite.

Expand the src/main/java element in the Package Explorer and you will find
a package called com.sample.action: right-click this package and select Copy.
Go back up to the src/main/java node of the tree, right-click and select Paste.
Give your new package a name of com.royaltiesadd.action. Now expand out
this new package and select the MessageActionHandler.java file within. In the
Refactor menu at the top of the screen, select Rename and change the name to
RoyaltiesActionHandler.java. The Designer is smart enough to change the
internal naming of the Java class to our new naming convention. If we now double-
click the .java file, we can see our new Java class:

Chapter 5

[137]

Now, we need to replace the code in this Java class with the code that we need
to extract the process variables and insert the data into the database. You can
either type in the following code yourself or just use the file that's included in the
download for this chapter. Don't worry too much about what's going on in the code,
basically, we are just grabbing the song names from the process variables and the
songwriter's name from the username of whoever is logged in, then inserting them
into our database:

package com.royaltiesadd.action;

import org.jbpm.graph.def.ActionHandler;
import org.jbpm.graph.exe.ExecutionContext;
import java.sql.*;

public class RoyaltiesActionHandler implements ActionHandler {
 private static final long serialVersionUID = 1L;

 public void execute(ExecutionContext ctx) throws Exception {
 // get the fired employee from the process variables.
 String firstSong = (String) ctx.getContextInstance().getVari
able("songName1");
 String secondSong = (String) ctx.getContextInstance().getVar
iable("songName2");
 String thirdSong = (String) ctx.getContextInstance().getVari
able("songName3");
 String fourthSong = (String) ctx.getContextInstance().getVar
iable("songName4");
 String fifthSong = (String) ctx.getContextInstance().getVari
able("songName5");
 String sixthSong = (String) ctx.getContextInstance().getVari
able("songName6");
 String seventhSong = (String) ctx.getContextInstance().getVa
riable("songName7");
 String eighthSong = (String) ctx.getContextInstance().getVar
iable("songName8");
 String ninthSong = (String) ctx.getContextInstance().getVari
able("songName9");
 String tenthSong = (String) ctx.getContextInstance().getVari
able("songName10");
 String songWriterName = (String) ctx.getJbpmContext().
getActorId();

 Connection con = null;
 try {
 Class.forName("com.mysql.jdbc.Driver").
newInstance();
 con = DriverManager.getConnection("jdbc:mysql://localhost/
royalties?user=root&password=secret");
 if(!con.isClosed())

Iterate the prototype

[138]

 //Now we add our data into the database
 System.out.println("Connection successfully
established.");
 Statement statement = con.createStatement();
 statement.executeUpdate("INSERT INTO songs "
 + "(ID,song_name,songwriter_name) "
 + "VALUES (NULL,'" + firstSong + "','" +
songWriterName + "'),"
 + "(NULL,'" + secondSong + "','" + songWriterName
+ "'),"
 + "(NULL,'" + thirdSong + "','" + songWriterName
+ "'),"
 + "(NULL,'" + fourthSong + "','" + songWriterName
+ "'),"
 + "(NULL,'" + fifthSong + "','" + songWriterName
+ "'),"
 + "(NULL,'" + sixthSong + "','" + songWriterName
+ "'),"
 + "(NULL,'" + seventhSong + "','" +
songWriterName + "'),"
 + "(NULL,'" + eighthSong + "','" + songWriterName
+ "'),"
 + "(NULL,'" + ninthSong + "','" + songWriterName
+ "'),"
 + "(NULL,'" + tenthSong + "','" + songWriterName
+ "')"
);
 System.out.println("Songs and writers inserted.");
 statement.close();
 con.close();

 } catch(Exception e) {
 System.err.println("Exception: " + e.getMessage());
 } finally {
 try {
 if(con != null)
 con.close();
 } catch(SQLException e) {}
 }
 }
}

Caveat: the above code is a simple demonstration of how to call out from
jBPM, but you wouldn't want to tightly couple your process to a data store
in this way in real life. In real life, it would be much better to use an action
handler to access an external web service, which would itself perform
domain model manipulation and sit on top of a persistence layer. That's
far too complicated for a simple example like this though!

Chapter 5

[139]

We now just need to tie together our new Java action handler class and the JPDL
action. To do this, go back into the Outline view, right-click the action1 action and
select Properties. Switch to the Handler dialog and enter the full path and name of
our action handler class com.royaltiesadd.action.RoyaltiesActionHandler:

We deploy the process to the server, making sure we also check the src/main/java
Java classes folder on the Deployment tab so our action handler is also deployed.
Now, go through the process and get to the "Write songs" task form:

Iterate the prototype

[140]

When we click the "Save and Close" button the process instance will leave the "Write
songs" node, firing our action and causing our action handler Java class to run. If we
now go into the database, we can see we have indeed managed to push the song and
songwriter data into the database table:

Clearly, as interfaces go, this is fairly hokum, but it is easy to appreciate how this
simple example can be extended and built upon for a real-life application.

Obtain sign-off
After several iterations of testing and fixing periods, we should have got to a stage
where all valid outstanding issues have been converted into a full scale change request
because they are a scope change, closed down, fixed or are of such a low priority that
we can proceed without a fix. We should make sure the change requests are properly
documented, prioritized, and the work needed for the change is estimated.

Stepping back from the issues, is the original concept proved? Do our stakeholders
buy into the system we've built? Is our sponsor on board and happy that this
phase is complete? If the answer to these questions is yes, then we have achieved
everything we wanted to from our proof of concept. Our system is fit for purpose
and adequately supports the business process. We are now ready for full-scale UAT
followed by go-live.

Chapter 5

[141]

Summary
We've moved our system on leaps and bounds in this chapter and we're edging
closer to having a system that is ready for live. We have put the jBPM system on
a server, so our proof-of-concept testers can bash their test data into it and give us
feedback on what they think. We have taken that feedback, sorted it into stuff that
must be done now, and stuff that can be done later; and we've started making some
of the changes we can do now.

We have allowed managers to prioritize tasks by design and on the fly. Most
complicated of all, we have shown how our system can be integrated with other
applications, both in house and external. We've done such a good job that our
sponsor has happily signed off our proof-of-concept system.

We have now achieved our proof of concept and we're ready to move to full scale user
acceptance testing and real implementation. This is what we'll do in the next chapter.

Proof-of-concept to
implementation

With our proof-of-concept system maturing as a result of the iteration cycles we have
taken it through, it is now time for us to start thinking about putting the system live.
Before we do so, there are a number of tasks that we need to accomplish, as well as
some optional changes we can make to improve the function of the system.

In this chapter, we'll look at how we judge when we are ready to start planning
to go live and we'll cover the essentials we need to consider when building an
implementation plan. We'll show how the web console can be customized according
to your own branding and we'll see how we can swap the default jBPM database for
a more robust, enterprise-ready database server. Finally, we'll look at the concept
of business process monitoring and build our own process monitoring suite. The
data collected by this suite will allow us to keep control over our process and to start
to realize the return on investment that we promised our sponsors at the start of
the project.

By the end of this chapter, we will have looked at the following deliverables:

Implementation planning
Web console customizations
MySQL backend for jBPM
Business process monitoring suite using the SeeWhy platform

•

•

•

•

Proof-of-concept to implementation

[144]

Preparation for implementation
After taking our BPM system through several iterations, ironing out bugs, and
smoothing the workflow as we go, at some point it will finally be time to put the
thing live. Judging when we are ready for live is something of an art and it is
important to prepare thoroughly for the big go-live date.

Judging readiness
So how do you know when your system is ready to go live? This is not an easy
question to answer as every individual situation is different, and indeed you
need to gaze into a crystal ball somewhat, as you don't necessarily want to wait
until everything is 100% finished before you start the ramp-up for live. Generally
speaking, when judging our readiness for live, we would at least want:

To have the hardware the live system is going to run on in place.
No critical change requests or issues outstanding. In most scenarios, it is
probably OK to have development items on the change list: these can be
implemented once the system is live.
Confidence that there are no significant risks or issues that will stop us
obtaining sign-off from our sponsor that we are ready for live.

If the above criteria are met then it is time for us to develop a detailed
implementation plan and to start gearing ourselves up for go-live.

Implementation plan
Going live with a business process critical system such as this should not be taken
lightly. A proper implementation plan is essential, even if there is always the
possibility that the business process could just continue on in the current state if
something happens to the new system. Unfortunately, every business situation will
be different, so it is practically impossible to provide a template implementation plan
where you simply fill out the blanks. Nevertheless, the following table sets out a
checklist of things to consider when putting together an implementation plan.

Area of consideration Detail Notes
IT Hardware Hardware tests, performance tests,

redundancy, failover, and backup
planning. Security.

Hardware and network
support

Who will support the hardware and
network? When should they be available
to us during the go-live period? Service
level agreements.

•

•

•

Chapter 6

[145]

Area of consideration Detail Notes
Non-BPM software
support (browsers,
operating systems, and
so on)

Support for the systems we
are integrating with. Cutover
resources. Warn helpdesk about our
implementation. Do helpdesk require
support scripts? Service level agreements.

BPM application System administration Who will administer the system?
Dedicated resource or part-time? What
is expected of them? Service level
agreement? User set up.

Super users First line of support? What is expected
of them? What is the incentive to be a
super user?

Installation Who is responsible? When do we need
them during the go-live period? Hand
over to business as usual support.

Monitoring Who will monitor the system once it
is live? What do we expect them to
do if there are problems? What is the
escalation path? Change request process
post-go-live.

Cutover Go-live date and
timelines

Set a realistic target date, working
backwards with all tasks that need to be
accomplished.

How will we go live? Parallel running or "big bang"?
Contingency Plan for the worst case scenario.
Global implications If implementing globally, which time

zone should go live first? Any language
implications for the plan?

Intense support Set up a "war room": special phone lines
and email addresses. 24x7 availability of
critical people.

Communications User community Make sure all our end users are aware
of our implementation date and what
is expected of them. "Show and tell"
sessions led by the users involved in the
proof-of-concept?

Other stakeholders Indirectly affected by the
implementation: suppliers, customers
other departments. Review our
stakeholder analysis.

Training User training When and where? Who will do the
training? "Just in time" training is best.

Proof-of-concept to implementation

[146]

Customizing the web console
Some business process management suites offer complete solutions for building a
highly customized graphical user interface to your process definition. For instance,
the Singularity Process Platform has a "drag and drop" development environment
that the process developer uses to customize the front end web files that the platform
generates. JBoss jBPM isn't this advanced yet, and if we want to make changes to the
default web console pages, we have to either limit ourselves to editing the XHTML
task forms or throw the whole lot away and build our own. Building your own web
console or Windows application front end to the process engine is entirely possible
and probably advisable in large-scale implementations. The web console and sample
enterprise application that come with the jBPM suite download can act as reference
material for your own designs.

For our purposes, just before we go live, we probably want to do some minor
customization to the web console. For example, we may want to replace the JBoss
logo with our own company or department logo, change the colors, font, and so
on. You may also want to add a few more links into the navigation side bar: to
your process documentation or support website for example. Fortunately, this is
relatively easy to accomplish and we'll go through the steps here. For more advanced
customization, it is best to leave the work to a professional Java developer, but we
can make simple changes ourselves.

Furthermore, it is worth bearing in mind that making wide-ranging customizations
to the web console may well mean that upgrading to newer versions that are
released by the JBoss jBPM project is made that much more difficult. Also, getting
access to upgrades released by the project community is one of the principle benefits
of using an open-source product, so it is worthwhile trying to work with as vanilla a
version as possible.

Nevertheless, it should be relatively easy to retrofit the simplistic amendments
that we'll do here into future versions of the web console. First off, we need to get
the source code for the web console. Luckily, the project team have kindly given
us a copy of the code with our jBPM installation. Look in the deploy directory at
the top level of your jBPM installation: you should see a file called jbpm-console.
war in there. For me, this is at C:\Users\Matt\jBPM\jbpm-jpdl-3.2.GA\deploy.
This .war file is simply a compressed version of a regular folder structure, much
like a ZIP file. In fact, we can open this file with a regular ZIP file utility and inspect
its contents. On my machine, I have a ZIP utility called 7-Zip, though any ZIP tool
should do the job. Open the .war file and extract it to a handy location: a folder on
your desktop for example. When extracted, the directory structure should be clearly
visible, like this:

Chapter 6

[147]

We don't need to worry about most of these folders and, in fact, we should be careful
not to edit or delete any by mistake because it may cause the web console to stop
working. We need to focus on the css and images folders to make cosmetic changes to
the web console. Go into the� images folder and find the background.gif file. Make a
backup copy of this image and then open up the original in your favorite image editor:
I use the GIMP. Make any changes that you want to the logo and save the file. I have
blanked out the "JBoss" logo in the top left corner and replaced it with my own "Bland
Records" logo. You could change the colours or do whatever you want:

Now that we've made our changes, we need to save our folder structure back to a
.war file. To do this, we will use a built in Java command-line utility called "jar". This
just makes sure that the .war file is built in the correct way. Open up a command line
(Start | Run | type "cmd"). Use the CD command to change directory to the folder
where you extracted the web console code: make sure you are at the top level of that
folder structure. The command will be something like:

CD C:\Users\Matt\Desktop\jbpm-console\

Now we need to run the jar utility with the following command; make sure to type
it exactly as it appears below:

jar cMf jbpm-console.war *

Proof-of-concept to implementation

[148]

After a moment's thinking about it, the jar utility should do its job and create a file
called jbpm-console.war in the top level of our temporary folder:

Now we need to deploy this amended web console to our application server. Go to
the deploy folder of the JBoss application server installation (note that this is not the
deploy folder at the top level of the installation). For me, this is at C:\Users\Matt\
jBPM\jbpm-jpdl-3.2.GA\server\server\jbpm\deploy. In this folder, you will see
that there is already a jbpm-console.war in there: this is the currently deployed web
console. Move this file to a safe location in a different folder, so we can bring it back
in if we've made a mistake. Now copy our newly-created jbpm-console.war into the
deploy folder. Start up the JBoss application server and browse to the web console.
After logging in, you should see that the changes we have made have taken effect:

Obviously, this is a simple example, but you can clearly see how this could be
extended to make other changes to the web console.

Chapter 6

[149]

Swapping the database back end
The Hypersonic database that comes with jBPM is an excellent database for
developing and prototyping an application, but it doesn't have the level of
robustness that we need for our live application. Further, we are going to want to
mine the data that our application produces, and this will be much easier to do if the
database back end is a full-scale enterprise database.

JBoss jBPM supports a number of enterprise databases, including the ubiquitous
Oracle, DB2 and Microsoft SQL Server. Which database you choose is most likely to
be influenced by whatever flavor of enterprise database you use in the rest of your
organization. We will swap the Hypersonic database for MySQL because it is freely
available, highly stable, and easy to install. Let's go through the steps for swapping
out the back end on a Windows machine.

Install the database server
Go to http://dev.mysql.com/downloads/mysql/4.1.html and download the
relevant version of MySQL for your operating system; in our case this is Windows.
Ensure you download version 4.1 as version 5 has been known to cause a few
problems with JBoss jBPM. Once downloaded, install the database on your server
machine, accepting the defaults given to you by the installation program.

Now that MySQL is installed, start the server (this is in the Services dialog of
Administrative Tools in the Control Panel on Windows). Go to Program Files |
MySQL | MySQL Server 4.1 | MySQL Command Line Client. You should be
presented with a dialog similar to the following:

Enter the password that you gave during the installation routine and you will be
granted access to the database server. Now, we need to create our database and to do
this we need to type in some simple SQL. Type in the following line, taking care to
type it exactly:

CREATE DATABASE IF NOT EXISTS jbpmbackend;

Proof-of-concept to implementation

[150]

Note the semicolon at the end of the line. If all goes well MySQL should confirm that
the database has been created:

Install the database tables
Now that we have our database ready to go, we have to set up the database tables
that jBPM will use to hold its data. The JBoss jBPM project has provided us with a
head start on this by creating a ready-made SQL script that we can use to set up the
database schema we need. Unfortunately, this script does need a bit of amendment
before we can run it, but we'll see the steps to make it ready.

If you look in the db folder of your jBPM installation, you will see a number of .sql
files (for me this is at C:\Users\Matt\jBPM\jbpm-jpdl-3.2.GA\db). You will notice
that there is one of these .sql files for most of the popular enterprise databases,
including Oracle, IBM DB2, and Microsoft SQL Server. Of course, we want the one
for MySQL and this is called jbpm.jpdl.mysql.sql. To run this SQL script on our
server, we first need to make sure that we run the script against our new database.
Type the following exactly in the command-line client:

USE jbpmbackend

We then need to tell the server to run our script, but as mentioned above,
unfortunately the default jbpm.jpdl.mysql.sql script doesn't work out of the box.
We need to make some alterations to it. Open up the file in a text editor and delete
the following lines from the start of the script:

alter table JBPM_ACTION drop foreign key FK_ACTION_EVENT
alter table JBPM_ACTION drop foreign key FK_ACTION_EXPTHDL
alter table JBPM_ACTION drop foreign key FK_ACTION_PROCDEF
alter table JBPM_ACTION drop foreign key FK_CRTETIMERACT_TA
alter table JBPM_ACTION drop foreign key FK_ACTION_ACTNDEL
alter table JBPM_ACTION drop foreign key FK_ACTION_REFACT
alter table JBPM_BYTEARRAY drop foreign key FK_BYTEARR_FILDEF
alter table JBPM_BYTEBLOCK drop foreign key FK_BYTEBLOCK_FILE
alter table JBPM_COMMENT drop foreign key FK_COMMENT_TOKEN
alter table JBPM_COMMENT drop foreign key FK_COMMENT_TSK
alter table JBPM_DECISIONCONDITIONS drop foreign key FK_DECCOND_DEC

Chapter 6

[151]

alter table JBPM_DELEGATION drop foreign key FK_DELEGATION_PRCD
alter table JBPM_EVENT drop foreign key FK_EVENT_PROCDEF
alter table JBPM_EVENT drop foreign key FK_EVENT_NODE
alter table JBPM_EVENT drop foreign key FK_EVENT_TRANS
alter table JBPM_EVENT drop foreign key FK_EVENT_TASK
alter table JBPM_JOB drop foreign key FK_JOB_TOKEN
alter table JBPM_JOB drop foreign key FK_JOB_NODE
alter table JBPM_JOB drop foreign key FK_JOB_PRINST
alter table JBPM_JOB drop foreign key FK_JOB_ACTION
alter table JBPM_JOB drop foreign key FK_JOB_TSKINST
alter table JBPM_LOG drop foreign key FK_LOG_SOURCENODE
alter table JBPM_LOG drop foreign key FK_LOG_TOKEN
alter table JBPM_LOG drop foreign key FK_LOG_OLDBYTES
alter table JBPM_LOG drop foreign key FK_LOG_NEWBYTES
alter table JBPM_LOG drop foreign key FK_LOG_CHILDTOKEN
alter table JBPM_LOG drop foreign key FK_LOG_DESTNODE
alter table JBPM_LOG drop foreign key FK_LOG_TASKINST
alter table JBPM_LOG drop foreign key FK_LOG_SWIMINST
alter table JBPM_LOG drop foreign key FK_LOG_PARENT
alter table JBPM_LOG drop foreign key FK_LOG_NODE
alter table JBPM_LOG drop foreign key FK_LOG_ACTION
alter table JBPM_LOG drop foreign key FK_LOG_VARINST
alter table JBPM_LOG drop foreign key FK_LOG_TRANSITION
alter table JBPM_MODULEDEFINITION drop foreign key FK_TSKDEF_START
alter table JBPM_MODULEDEFINITION drop foreign key FK_MODDEF_PROCDEF
alter table JBPM_MODULEINSTANCE drop foreign key FK_TASKMGTINST_TMD
alter table JBPM_MODULEINSTANCE drop foreign key FK_MODINST_PRCINST
alter table JBPM_NODE drop foreign key FK_PROCST_SBPRCDEF
alter table JBPM_NODE drop foreign key FK_NODE_PROCDEF
alter table JBPM_NODE drop foreign key FK_NODE_SCRIPT
alter table JBPM_NODE drop foreign key FK_NODE_ACTION
alter table JBPM_NODE drop foreign key FK_DECISION_DELEG
alter table JBPM_NODE drop foreign key FK_NODE_SUPERSTATE
alter table JBPM_POOLEDACTOR drop foreign key FK_POOLEDACTOR_SLI
alter table JBPM_PROCESSDEFINITION drop foreign key FK_PROCDEF_STRTSTA
alter table JBPM_PROCESSINSTANCE drop foreign key FK_PROCIN_PROCDEF
alter table JBPM_PROCESSINSTANCE drop foreign key FK_PROCIN_ROOTTKN
alter table JBPM_PROCESSINSTANCE drop foreign key FK_PROCIN_SPROCTKN
alter table JBPM_RUNTIMEACTION drop foreign key FK_RTACTN_PROCINST
alter table JBPM_RUNTIMEACTION drop foreign key FK_RTACTN_ACTION
alter table JBPM_SWIMLANE drop foreign key FK_SWL_ASSDEL
alter table JBPM_SWIMLANE drop foreign key FK_SWL_TSKMGMTDEF
alter table JBPM_SWIMLANEINSTANCE drop foreign key FK_SWIMLANEINST_TM
alter table JBPM_SWIMLANEINSTANCE drop foreign key FK_SWIMLANEINST_SL
alter table JBPM_TASK drop foreign key FK_TSK_TSKCTRL
alter table JBPM_TASK drop foreign key FK_TASK_ASSDEL
alter table JBPM_TASK drop foreign key FK_TASK_TASKNODE

Proof-of-concept to implementation

[152]

alter table JBPM_TASK drop foreign key FK_TASK_PROCDEF
alter table JBPM_TASK drop foreign key FK_TASK_STARTST
alter table JBPM_TASK drop foreign key FK_TASK_TASKMGTDEF
alter table JBPM_TASK drop foreign key FK_TASK_SWIMLANE
alter table JBPM_TASKACTORPOOL drop foreign key FK_TSKACTPOL_PLACT
alter table JBPM_TASKACTORPOOL drop foreign key FK_TASKACTPL_TSKI
alter table JBPM_TASKCONTROLLER drop foreign key FK_TSKCTRL_DELEG
alter table JBPM_TASKINSTANCE drop foreign key FK_TSKINS_PRCINS
alter table JBPM_TASKINSTANCE drop foreign key FK_TASKINST_TMINST
alter table JBPM_TASKINSTANCE drop foreign key FK_TASKINST_TOKEN
alter table JBPM_TASKINSTANCE drop foreign key FK_TASKINST_SLINST
alter table JBPM_TASKINSTANCE drop foreign key FK_TASKINST_TASK
alter table JBPM_TOKEN drop foreign key FK_TOKEN_PARENT
alter table JBPM_TOKEN drop foreign key FK_TOKEN_NODE
alter table JBPM_TOKEN drop foreign key FK_TOKEN_PROCINST
alter table JBPM_TOKEN drop foreign key FK_TOKEN_SUBPI
alter table JBPM_TOKENVARIABLEMAP drop foreign key FK_TKVARMAP_CTXT
alter table JBPM_TOKENVARIABLEMAP drop foreign key FK_TKVARMAP_TOKEN
alter table JBPM_TRANSITION drop foreign key FK_TRANSITION_TO
alter table JBPM_TRANSITION drop foreign key FK_TRANS_PROCDEF
alter table JBPM_TRANSITION drop foreign key FK_TRANSITION_FROM
alter table JBPM_VARIABLEACCESS drop foreign key FK_VARACC_TSKCTRL
alter table JBPM_VARIABLEACCESS drop foreign key FK_VARACC_SCRIPT
alter table JBPM_VARIABLEACCESS drop foreign key FK_VARACC_PROCST
alter table JBPM_VARIABLEINSTANCE drop foreign key FK_VARINST_TK
alter table JBPM_VARIABLEINSTANCE drop foreign key FK_VARINST_TKVARMP
alter table JBPM_VARIABLEINSTANCE drop foreign key FK_VARINST_PRCINST
alter table JBPM_VARIABLEINSTANCE drop foreign key FK_VAR_TSKINST
alter table JBPM_VARIABLEINSTANCE drop foreign key FK_BYTEINST_ARRAY

We then need to type a semicolon at the end of every line in the file: a tedious but
necessary job as MySQL demands this syntax. Finally, the default script doesn't
include the tables that are needed to control access in the web console. To do this, we
need to add the following lines of SQL code to the end of the file:

CREATE TABLE JBPM_ID_GROUP(ID_ BIGINT NOT NULL auto_increment,CLASS_
CHAR(1) NOT NULL,NAME_ VARCHAR(255),TYPE_ VARCHAR(255),PARENT_
BIGINT,primary key(ID_)) type=InnoDB;

alter table JBPM_ID_GROUP add index FK_ID_GRP_PARENT (PARENT_),add
constraint FK_ID_GRP_PARENT foreign key (PARENT_) references JBPM_ID_
GROUP(ID_);

CREATE TABLE JBPM_ID_MEMBERSHIP(ID_ BIGINT NOT NULL auto_
increment,CLASS_ CHAR(1) NOT NULL,NAME_ VARCHAR(255),ROLE_
VARCHAR(255),USER_ BIGINT,GROUP_ BIGINT,primary key(ID_)) type=InnoDB;
alter table JBPM_ID_MEMBERSHIP add index FK_ID_MEMSHIP_GRP (GROUP_
),add constraint FK_ID_MEMSHIP_GRP foreign key (GROUP_) references
JBPM_ID_GROUP(ID_);

Chapter 6

[153]

CREATE TABLE JBPM_ID_PERMISSIONS(ENTITY_ BIGINT NOT NULL,CLASS_
VARCHAR(255),NAME_ VARCHAR(255),ACTION_ VARCHAR(255)) type=InnoDB;

CREATE TABLE JBPM_ID_USER(ID_ BIGINT NOT NULL auto_increment,CLASS_
CHAR(1) NOT NULL,NAME_ VARCHAR(255),EMAIL_ VARCHAR(255),PASSWORD_
VARCHAR(255),primary key(ID_)) type=InnoDB;

ALTER TABLE JBPM_ID_MEMBERSHIP ADD index FK_ID_MEMSHIP_USR (USER_),add
CONSTRAINT FK_ID_MEMSHIP_USR FOREIGN KEY(USER_) REFERENCES JBPM_ID_
USER(ID_);

INSERT INTO JBPM_ID_GROUP VALUES(1,'G','sales','organisation',NULL);
INSERT INTO JBPM_ID_GROUP VALUES(2,'G','hr','organisation',NULL);
INSERT INTO JBPM_ID_GROUP VALUES(3,'G','participant','security-
role',NULL);
INSERT INTO JBPM_ID_GROUP VALUES(4,'G','manager','security-
role',NULL);
INSERT INTO JBPM_ID_GROUP VALUES(5,'G','administrator','security-
role',NULL);
INSERT INTO JBPM_ID_USER VALUES(1,'U','cookie monster','cookie.
monster@sesamestreet.tv','cookie monster');
INSERT INTO JBPM_ID_USER VALUES(2,'U','ernie','ernie@sesamestreet.
tv','ernie');
INSERT INTO JBPM_ID_USER VALUES(3,'U','bert','bert@sesamestreet.
tv','bert');
INSERT INTO JBPM_ID_USER VALUES(4,'U','grover','grover@sesamestreet.
tv','grover');
INSERT INTO JBPM_ID_MEMBERSHIP VALUES(1,'M',NULL,NULL,1,3);
INSERT INTO JBPM_ID_MEMBERSHIP VALUES(2,'M',NULL,NULL,2,3);
INSERT INTO JBPM_ID_MEMBERSHIP VALUES(3,'M',NULL,NULL,4,2);
INSERT INTO JBPM_ID_MEMBERSHIP VALUES(4,'M',NULL,NULL,4,3);
INSERT INTO JBPM_ID_MEMBERSHIP VALUES(5,'M',NULL,NULL,3,3);
INSERT INTO JBPM_ID_MEMBERSHIP VALUES(6,'M',NULL,NULL,3,2);
INSERT INTO JBPM_ID_MEMBERSHIP VALUES(7,'M',NULL,NULL,2,2);
INSERT INTO JBPM_ID_MEMBERSHIP VALUES(8,'M',NULL,NULL,2,4);
INSERT INTO JBPM_ID_MEMBERSHIP VALUES(9,'M',NULL,NULL,2,5);
INSERT INTO JBPM_ID_MEMBERSHIP VALUES(10,'M',NULL,'boss',2,1);
INSERT INTO JBPM_ID_MEMBERSHIP VALUES(11,'M',NULL,NULL,1,1);

There is a pre-altered version of this script in the download for this chapter if you
don't feel like straining your typing finger. With the file altered, save it and go back
to the MySQL command line. Type in:

source path_to_your_jbpm.jpdl.mysql.sql_file

If all goes well then we should be rewarded with a long list of "Query OK"
confirmations from MySQL. Our database tables are now all set up and ready to
receive the data needed to run the web console.

Proof-of-concept to implementation

[154]

Import the data
With our database tables set up, we must now set up our users. This is simply a
matter of running a MySQL-ized version of the SQL scripts we used in Chapter 4.
There is a file included in the download for this chapter called insert-user-info-
mysql.sql, and this is what we should use to set up our users. Assuming that your
user group is going to expand for go-live, you should edit this file to include details
of every user who will need access to the live system. Once the file is ready, in the
MySQL command-line client, type:

source path_to_inser-user-info-mysql_file

When you have run all the scripts, you can check to see if the users are set up
by entering:

SELECT��������������������� * FROM JBPM_ID_USER;

All being well, the command-line client should confirm back that the user table
contains the details of all our users:

Chapter 6

[155]

Set up a JNDI data source
With our database set up and ready to go, we must now tell JBoss to use this
database rather than the Hypersonic one it uses by default. The first step is to set
up what's called a "JNDI data source". This is a simple XML file that tells the JBoss
server where to find the database, and the connection details it needs to get access.
Move the jbpm-ds.xml file (you can find in the deploy directory of your JBoss
server installation) to a safe location for backup: for me this file is at C:\Users\Matt\
jBPM\jbpm-jpdl-3.2.GA\server\server\jbpm\deploy. With the old data source
file safely backed up, create a new file called jbpm-ds.xml in the deploy directory
and type the following XML code into it:

<?xml version="1.0" encoding="UTF-8"?>

<datasources>
 <local-tx-datasource>
 <jndi-name>JbpmDS</jndi-name>
 <connection-url>jdbc:mysql://localhost:3306/jbpmbackend</
connection-url>
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 <user-name>root</user-name>
 <password>secret</password>
 <metadata>
 <type-mapping>MySQL</type-mapping>
 </metadata>
 </local-tx-datasource>
</datasources>

Remember to change the database server URL, user name, and password
information that are highlighted above to suit what you specified during the
installation of MySQL. Again, there is a copy of this jbpm-ds.xml file in the
download for this chapter.

Install the MySQL driver
We must also provide the JBoss server with the driver it needs to connect to MySQL.
Download the MySQL Connector/J package from http://www.mysql.com/
downloads/api-jdbc.html. Extract the ZIP file that you have downloaded��������� and put
the resulting .jar file���������� into the lib folder of your JBoss server installation: for me,
this is at C:\Users\Matt\jBPM\jbpm-jpdl-3.2.GA\server\server\jbpm\lib.

Amend the JBoss configuration
The JBoss application server uses several other configuration files to manage its
connection to a database, and we need to make sure those files are amended to point
to our new MySQL database.

Proof-of-concept to implementation

[156]

Find the login-config.xml file in the conf directory of the JBoss server installation:
for me this is at C:\Users\Matt\jBPM\jbpm-jpdl-3.2.GA\server\server\jbpm\
conf. Make a backup of this file, and then open it up so we can amend it. Add the
following code to the end of the file:

 <application-policy name = "jbpm">
 <authentication>
 <login-module code="org.jboss.security.auth.spi.
DatabaseServerLoginModule" flag="required">
 <module-option name="dsJndiName">java:/JbpmDS</module-
option>
 <module-option name="principalsQuery">
 SELECT PASSWORD_ FROM JBPM_ID_USER WHERE NAME_=?
 </module-option>
 <module-option name="rolesQuery">
 SELECT g.NAME_ ,'Roles'
 FROM JBPM_ID_USER u,
 JBPM_ID_MEMBERSHIP m,
 JBPM_ID_GROUP g
 WHERE g.TYPE_='security-role'
 AND m.GROUP_ = g.ID_
 AND m.USER_ = u.ID_
 AND u.NAME_=?
 </module-option>
 </login-module>
 </authentication>
 </application-policy>

Next, we need to amend the standardjaws.xml file that is also in the conf directory.
Make a back up of it, then open up the file and find the <datasource> element at the
top of the file. Replace the <datasource> and <type-mapping> elements with the
code highlighted below:

<jaws>
 <datasource>java:/JbpmDS</datasource>
 <type-mapping>mySQL</type-mapping>
 <debug>false</debug>

 <default-entity>
 <create-table>true</create-table>
 <remove-table>false</remove-table>
 <tuned-updates>true</tuned-updates>
 <read-only>false</read-only>
 <time-out>300</time-out>
 <row-locking>false</row-locking>
 <read-ahead>false</read-ahead>
 </default-entity>

Chapter 6

[157]

Amend the hibernate configuration
Almost there! Finally, we need to amend the Hibernate configuration that jBPM uses
to manage the persistence of its Java objects to the database. Basically, this means
telling jBPM to save its data to MySQL rather than the old Hypersonic database.

The first step is to change the Hibernate configuration in our web console. As we did
above, this involves editing the source code for the web console. Go back into the
extracted source code and navigate to the WEB-INF\classes directory. Open up the
hibernate.cfg.xml file that is located there. Amend the code in the file with the
lines highlighted below, taking care to use the URL, username, and password for
your MySQL configuration:

<?xml version='1.0' encoding='utf-8'?>

<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-
3.0.dtd">

<hibernate-configuration>
 <session-factory>

 <!-- hibernate dialect -->
 <!--<property name="hibernate.dialect">org.hibernate.dialect.
HSQLDialect</property> -->
 <property name="hibernate.dialect">org.hibernate.dialect.
MySQLDialect</property>

 <!-- JDBC connection properties (begin) -->
 <property name="hibernate.connection.driver_class">com.mysql.jdbc.
Driver</property>
 <property name="hibernate.connection.url">jdbc:mysql://
localhost:3306/jbpmbackend</property>
 <property name="hibernate.connection.username">root</property>
 <property name="hibernate.connection.password">secret</property>
 <!-- JDBC connection properties (end) -->
 <property name="hibernate.cache.provider_class">org.hibernate.
cache.HashtableCacheProvider</property>

 <!-- DataSource properties (begin) -->
 <property name="hibernate.connection.datasource">java:/JbpmDS</
property>
 <!-- DataSource properties (end) -->

 <!-- JTA transaction properties (begin) ===
 <property name="hibernate.transaction.factory_class">org.
hibernate.transaction.JTATransactionFactory</property>

Proof-of-concept to implementation

[158]

 <property name="hibernate.transaction.manager_lookup_class">org.
hibernate.transaction.JBossTransactionManagerLookup</property>
 <property name="jta.UserTransaction">/UserTransaction</property>

 ==== JTA transaction properties (end) -->
.....

We've abbreviated the code for convenience: you can find a copy of the amended file in
the download for this chapter. Now we need to use our Jar utility to make a new jbpm-
console.war file to deploy. As before, open up a command line, change to the top
level of the directory with the web console code in it, and run the following command:

jar cMf jbpm-console.war *

Paste the newly created jbpm-console.war file into the deploy directory of the
server: for me, this is at C:\Users\Matt\jBPM\jbpm-jpdl-3.2.GA\server\server\
jbpm\deploy. Our web console is now configured to use the new database. If we
now start up the application server and browse to the web console, we can see that
the slate has been wiped clean and we now have version 1 of our process definition
deployed in jBPM and running on MySQL:

Monitoring the process
Business Activity Monitoring, or "BAM", is a buzzword that is bandied around
a lot by consultants and management, but unfortunately, it is generally poorly
understood. Usually, this results in business process management projects being told
to, "do some BAM", but this vague instruction is open to interpretation and often
leads to poorly-thought out implementations that don't provide anything valuable.

Chapter 6

[159]

So, before we dive in and, "do some BAM", we'd better understand exactly what we
are talking about. In reality, there are three different sides to process monitoring:

Process management
Process metrics analysis
Process forecasting

You'll notice that none of these actually include "Business Activity Monitoring". I
have deliberately shied away from this catch-all terminology in order to work with
a tighter definition of what we actually want to achieve by monitoring our process.
The combination of these three elements will encompass everything that is usually
meant by "business activity monitoring". Each of these three elements must be
mastered if the BPM implementation is to be successful. Let's look at a definition of
each process monitoring element.

Process management
Process management is about monitoring individual instances of the process as they
are executed. It is an activity that happens in real time, allowing management to
stay abreast of operations and keep track of time overruns, delays, and bottlenecks
as they occur. This is a vital tool for managing the process on a day-to-day level. For
example, if a particular task is meant to take three hours to complete, but a particular
process instance has been stuck on the task for six hours, the system can notify
management of the delay, allowing them to take corrective action.

Process metrics analysis
Process metrics analysis is a backward-looking activity that analyzes trends in
aggregated historical process instance data. This is an activity that has been part
a of business process work since before business process management systems
were available. Previously, process metrics were analyzed based on data that were
estimated by the analyst and the users, but now that we are able to capture the
exact data in the BPM system, we can draw conclusions from a much more accurate
data set. For example, we will now have exact data for the average time it takes to
complete a certain task node. We can analyze the trends in this average to see if
the process is running more or less efficiently, helping us to identify and deal with
bottlenecks. Typically, we are going to want to track metrics like "average time per
task per actor" or "average throughput per month".

•

•

•

Proof-of-concept to implementation

[160]

Process forecasting
The final element of our process monitoring solution is forecasting the date on
which we expect process instances to complete. We should be able to forecast this
date for individual instances, as well as aggregating all instances that are executing:
we can use these forecasts to plan the company's pipeline. For example, in the case
of Bland Records, we will want to know how many albums are expected to release
in March 2008, allowing us to smooth the pipeline over several months, if it would
be beneficial.

Example process reporting suite
JBoss has recently announced a partnership with SeeWhy that is intended to provide
many of the business activity monitoring capabilities that are missing from the jBPM
suite at the moment. SeeWhy produces a business intelligence platform that also
runs on the JBoss application server and which we can integrate with jBPM. We
will use SeeWhy to provide our "process management" reporting and notification
solution. It should be noted that jBPM does provide some notification functionality,
but as SeeWhy is much more flexible, we have decided to use it instead. The most
powerful aspect of SeeWhy is its real-time analysis of incoming process data: if we
expect an operation to take three hours then SeeWhy can tell us as soon as it takes
longer than three hours. This being said, we will also use the SeeWhy platform for
the, "process metrics analysis", and, "process forecasting", elements of our reporting
suite. We could use any data mining and report presentation technology for these
elements, but as we'll already have SeeWhy set up, we have decided to go with that.
If we really wanted to keep things simple, we could simply export the data from our
MySQL database as an Excel spreadsheet and mess around with it by hand, but it is
nice to see how this can be automated with the SeeWhy toolset.

Integrating the SeeWhy business intelligence
platform
The SeeWhy Business Intelligence platform is designed to accept "event" data from
other systems and transform that raw data into useful information. This useful
information can then drive management notifications and dashboard reports. When
put together with jBPM, the combined software architecture looks something like this:

Chapter 6

[161]

Users interact with the jBPM Console

jBPM JBoss Server

SeeWhy Jboss server

Event
interface

Interpretation
engine

Admin sets up and
deploys metrics

SeeWhy
Navigator

SeeWhy
notification

engine

User interacts
with metrics

User interacts with
the metrics

Process info

Event JMS messages

User receives
notifications based

on metrics

Assimilator
interface

SeeWhy
Desktop

Proof-of-concept to implementation

[162]

External systems send messages into the SeeWhy Event Interface. This then passes
the messages on to the Assimilator, which ensures that the event data is safely
stored. The data is then passed on to the Interpretation Engine, which runs the
business rules and calculations for the appropriate metric that have been configured
in the SeeWhy Desktop. The Presentation layer then formats the metrics and
presents the data through the SeeWhy Navigator. The Notification layer sends out
notifications to end users based on a comparison between metric rules that have been
set up and the data that is coming through. ��������������������������������������� Let's set it up and see what we can do
with it.

Get SeeWhy
First of all, we need to get the software installed onto the machine that we are going
to use. We are going to mimic a typical production environment and install SeeWhy
on a separate machine from the server that we are using for jBPM. As a pre-requisite,
we will need to have version 5 of MySQL installed on the server machine that we
are going to use. Go to http://www.seewhy.com and register with the website.
Once you have completed the registration procedure and are signed in, locate the
download page at http://www.seewhy.com/download and download the SeeWhy
community edition of the software for your operating system. We will use the
Windows version that includes the Java VM: if you already have Java installed then
select the version without Java VM.

Install SeeWhy
Unzip the file you have downloaded to a convenient location and double-click the
.exe file to start the installer. The first step is to choose a Java VM for SeeWhy to use.
If you are using the version of the installer that comes with a Java VM then just use
that, otherwise, you'll have to search your machine for it yourself. Mine is located
at C:\Program Files\Java\jdk1.5.0_11\bin\java.exe. Choose "No" when the
installer asks you if you have an existing JBoss instance you wish to use. Accept the
default folder that the installer gives you for the JBoss installation; the installer will
then download JBoss and install it to the specified location.

With JBoss installed, we must now connect SeeWhy to our MySQL database. When
prompted, select a database type of MySQL. Next, select, "I want to use a local
database server", then, "Yes, I have an existing MySQL instance I want to use".
Select, "I will choose a MySQL folder", then browse to your MySQL installation
folder; for me, this is at C:\Program Files\MySQL\MySQL Server 5.0.

We must then install the database connector that will allow JBoss to connect to
MySQL. Select, "I want to download a database connector", and the installer will
download the necessary from the MySQL website.

Chapter 6

[163]

When prompted, enter the details of your MySQL installation, making sure MySQL
is running so that SeeWhy can connect to it. If your version of MySQL is less than
5.0.27 then you will probably get a warning telling you that you are using the wrong
version. Don't worry about this; ignore the warning and continue the installation.

Enter a SeeWhy container name of "seewhy". Next, click "Yes, install an email
server for me". Accept the default installation directory that the installer gives you.
After this, accept the default location for the SeeWhy installation files and finally
click Install.

Once the installation routine has run, we need to perform a few configuration steps
to complete the installation. Call the database seewhy and accept the other defaults.
Again you may get a warning that it is the wrong database: ignore this warning and
continue. All being well, SeeWhy should now be installed and be operational. To test
the installation, go to the C:\SeeWhy Community Edition V3.2\SeeWhy_Tutorial\
folder and double-click the Start SeeWhy Server.bat file. Once the start up routine
has run, fire up your browser and go to http://localhost:8080/Navigator, or
if you want to connect from a remote machine on your network go to http://ip�_
address��������������������������������_�������������������������������of�����������������������������_����������������������������seewhy����������������������_���������������������server:8080/Navigator. Either way, you should be asked to
log in, to which you can use seewhy as both the username and password and you
will then be presented with a screen like this:

Proof-of-concept to implementation

[164]

Set up the BAM points on the graph
With SeeWhy successfully installed, we now need to get jBPM talking to it. For
the purposes of getting this up and running, we are going to keep this very
simple, merely counting the number of times a particular task node is hit. We
will experiment with SeeWhy later in this chapter to track metrics that are more
meaningful in our process environment.

We will track the number of times the Select band members task node in our process
definition is hit by an instance of the process. To do this, we need to modify our
process definition, so start up the Designer. We will change our process definition
to include a new node that will notify the SeeWhy software to increase its count of
Select band members tasks by one each time the process comes through. To do this,
we add a new node called Call SeeWhy, immediately after the� Select band members
node and join the process definition back up:

Note that we have just used a plain old node of type "node", not a task node, as we
are simply using it as a container for an action rather than asking someone to do
some work here. This call to SeeWhy will use a custom action handler, in a similar
fashion to what we did previously for our integration with the Royalties database.
This action handler will get the information from the Select band members node and
pass it on through to SeeWhy in the form of a JMS message.

JMS, or the "Java Messaging Service", is the standard method for
sending and receiving interface messages between applications in a Java
environment. In other words, it is a technology Java applications use to talk
to each other.

Chapter 6

[165]

In the Package Explorer, navigate to the src/main/java folder, right-click and select
New | Package. Give the new package a name of com.seewhy.jbpm. Right-click
your new package and select Import. Select to import from File System, then browse
to the location on your hard drive where you have unzipped the code download for
this chapter. Locate the two files in the download called MessageSender.java and
SeeWhyExternalMessageSender.java: check the boxes next to these two files and
click Finish.

When you do this the SeeWhyExternalMessageSender.java file may well show a
little red cross next to it in the Package Explorer indicating that there is a problem
with it. Not to worry, this is easily solved: the Java class has been written to comply
with the 1.5 version of the Java development kit and Eclipse may be configured
to work with 1.4. To fix the problem, in Eclipse, go into the Window menu, then
to Preferences. Navigate the preferences tree to the Java/Compiler node. In the
Compiler compliance level field, select "1.5". The project should rebuild itself and
we should lose our error message. You may be left with some warning notifications
but don't worry about these.

Now go into the Outline view, find the new Call SeeWhy node, right-click
and select Add Actions | Node Enter. Double-click the action1 action that is
added to the node and switch to the Handler dialog. In the Class field, enter
the path to our new action handler: com.seewhy.jbpm.MessageSender, then in
the field configuration dialog check the myEventName Field Name and specify
SelectBandMember for its Field Value (notice that we've run the words together).
Secondly, specify bm1,bm2,bm3,bm4,bm5,bm6 for the myVariablesToUse field: leave
the myDisableSend unchecked, it's there for debugging purposes:

Proof-of-concept to implementation

[166]

With our process definition amended, we just need to deploy it to the server. Start
up the database and then JBoss, then deploy the process definition and the action
handler code to the server: we've done this enough times by now, I'm sure you know
how to do it!

Make the action handler code available to jBPM
It is a slight quirk of jBPM that in order to make our SeeWhy action handler code
available to our process definition, we need to actually deploy it within the web
console package itself. The first step in doing this is to export the action handler code
from Eclipse as a .jar file. In the Package Explorer, navigate to the com.seewhy.
jbpm node of the src/main/java tree. Right-click on this node and select Export.
In the Export dialog, expand the Java node and choose JAR file, then click Next. In
the next screen, make sure the com.seewhy.jbpm package is checked for export and
export the file to your desktop with a name of com-seewhy-jbpm.jar:

Chapter 6

[167]

Click Finish to complete the export. You may get some warning messages but these
can be safely ignored. If you now look at your desktop, you should find the new
com-seewhy-jbpm.jar file; now we need to add this to our web console package.
As we did earlier in this chapter when we swapped out the web console logo, we
need to extract the jbpm-console.war file to a temporary location with a handy ZIP
utility. When this is done, navigate to the WEB-INF\lib folder and copy in our com-
seewhy-jbpm.jar file:

With our code safely accessible to the web console, all we need to do now is re-war
the package and deploy it to the server. Open up the command line, use the CD
command to navigate to the top level of your temporary jbpm-console directory,
and then use the following command to create a new .war file:

jar cMf jbpm-console.war *

Copy the resulting jbpm-console.war file into the deploy directory of your jBPM
JBoss installation to complete the process.

Proof-of-concept to implementation

[168]

Configure the jBPM JBoss server
Now, we need to configure a JMS queue so that the server knows where to send the
messages that will be output as a result of hitting the Call SeeWhy node. We are
going to put our event message on an outbound message queue, where it will be
picked up by the SeeWhy JBoss server.

To set up the jBPM JMS queue, find the jbpm-seewhy-jms-service.xml file in the
code download for this chapter and put it into the deploy\jms folder of your jBPM
Boss server installation: for me this is at C:\Users\Matt\jBPM\jbpm-jpdl-3.2.GA\
server\server\jbpm\deploy\jms. If you open up this file in Notepad, you can see
that is quite simple and just tells the server about the queue that we are going to use
called "jBPMSourceQueue".

<?xml version="1.0" encoding="UTF-8"?>

<server>
 <mbean code="org.jboss.mq.server.jmx.Queue" name="jboss.
mq.destination:service=Queue,name=jBPMSourceQueue">
 <depends optional-attribute-name="DestinationManager">jboss.mq:
service=DestinationManager</depends>
 <depends optional-attribute-name="SecurityManager">jboss.mq:
service=SecurityManager</depends>
 </mbean>
</server>

That's it, the jBPM side of the equation is set up and ready to go. Note that we have
configured our setup in such a way as to have jBPM post its messages locally for
the remote SeeWhy machine to pick up. We could easily have set this up the other
way round if we preferred, with jBPM putting its messages on the SeeWhy machine.
To do this, we'd need to create a jndi.properties file describing the name and
location of the remote JMS queue and alter the jBPM JBoss start server command to
include a reference to this file (with something like -DSeeWhyJNDIProperties="C:/
jndi.properties"). Of course, the two components could also be co-located in the
same JBoss instance, if that made sense in your environment. We won't linger over
the details of this as the setup we are going for is perfectly fine.

Telling SeeWhy about our process event
With the jBPM side set up, now we need to get the SeeWhy installation looking in
the right place and ready to receive data when we execute the process. The first step
is to build an event schema file that defines the structure of the business events that
SeeWhy will receive. We need to specify the name that we are using for our business
event, as well as picking out any variables we might be interested in and that are
available through the process context. If you remember we configured our action
handler to pick up the bmx variables and put them into the event message for us.

Chapter 6

[169]

In our schema file, we need to specify what kind of variables we are expecting:
basically, we use CodeType if we're expecting text and MeasureType if we are
expecting numbers. In the code download for this chapter, you will find a file called
SelectBandMembers.xsd. Copy this file to the projectschemas.war folder under
your deploy directory in the SeeWhy JBoss installation. If you open up the file in a
text editor you can see what it contains:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Written by: SeeWhy Software -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:
cct="http://www.seewhy.com/2003/1/cct" xmlns:cyt="http://www.seewhy.
com/2003/1/systemtypes" elementFormDefault="qualified" attributeFormDe
fault="unqualified">
 <xs:import namespace="http://www.seewhy.com/2003/1/systemtypes"
schemaLocation="http://localhost:8080/coreschemas/SeeWhySystemTypes.
xsd"/>
 <xs:element name="SelectBandMembers">
 <xs:annotation>

 <xs:documentation>SelectBandMembers</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="cyt:BusinessEventType">
 <xs:sequence>
 <xs:element name="bm1" type="cct:CodeType"/>
 <xs:element name="bm2" type="cct:CodeType"/>
 <xs:element name="bm3" type="cct:CodeType"/>
 <xs:element name="bm4" type="cct:CodeType"/>
 <xs:element name="bm5" type="cct:CodeType"/>
 <xs:element name="bm6" type="cct:CodeType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
</xs:schema>

One further amendment that we need to make in this folder is to open up the
eventList.txt file and add in an entry of SelectBandMembers to the end, like this:

Sale
SelectBandMembers

Now SeeWhy knows about the type of event that we are going to send it from jBPM.

Proof-of-concept to implementation

[170]

Configuring SeeWhy's incoming event interface
Next, we need to set up a SeeWhy event interface and assimilator. These elements
are the technical configuration of the SeeWhy components that actually receive the
events and pass them to SeeWhy's Interpretation engine.

Setting up SeeWhy to receive the jBPM message queue is a relatively simple matter.
In your SeeWhy installation, find the SeeWhy_Scripts folder in the SeeWhy_
Tutorial directory. In here, you will see a file called createEventScripts.bat:
double-click it. This handy little utility will create the basics of the configuration files
we need to get SeeWhy looking in the right place. You will be prompted to enter a
name for the event: enter SelectBandMembers as we used in our action handler. You
will also be prompted for the name of the event schema file; just hit Enter again to
use the default. The utility program will then create the files that we need in a new
event_SelectBandMembers �� folder. There is a bit of tweaking we need to do before
this will work, however.

The first thing we have to do is change the Select��������������������������BandMembers_EventDataFeed.
properties file, as it is set up to read from a local message queue and we want
to get our events from the remote jBPM queue. In the default version of the
Select������������������������������������BandMembers_EventDataFeed.properties, you will see three properties
that point straight back to this file: HandShakeConstructorProperties,
PayloadTransformerProperties, and PluggableEventFeedProperties. It is the
last of these we are interested in as it defines the queue from which we are expecting
to get our event details. Change the line:

PluggableEventFeedProperties=./event_SelectBandMembers/
SelectBandMembers_EventDataFeed.properties

to:

PluggableEventFeedProperties=./event_SelectBandMembers/InboundJMS.
properties

You will also see some lines a bit further down that look like this:

#JMSEventSystem.properties
#
EventQueueJNDI=queue/eventjBPMSeeWhyQueue

Chapter 6

[171]

Remove this bit of code: we are going to specify our own JMS event system
properties in a separate file. Speaking of which, find the InboundJMS.properties
file in the chapter's download. This file defines the JMS queue that the SeeWhy JBoss
server is going to connect to:

#JMSEventSystem.properties
#
EventQueueJNDI=queue/jBPMSourceQueue
HandShakeConstructorProperties=SelectBandMembers_JMSEventDataFeed.
properties

#EventDataFeed.properties
#JMSEventSystem.properties
#
ConnectionFactoryJNDI=ConnectionFactory
JNDIProperties=jms-jndi.properties

Put the InboundJMS.properties file in the same folder as our SelectBandMembers_
EventDataFeed.properties file: for me, this is at C:\SeeWhy Community Edition
V3.2\SeeWhy_Tutorial\SeeWhy_Scripts\event_SelectBandMembers.

To complete our connection between the two servers, we need to make sure that the
SeeWhy JBoss server recognizes the location of the remote jBPM JBoss server. To do
this, we need to put a .properties file in the SeeWhy_Scripts folder of our SeeWhy
installation. In the download for the chapter, you'll find a file called jms-jndi.
properties. Open this up in Notepad, and edit the line that specifies the location of
the jBPM server: note that this must end in ":1099" as that is the server port that we
need to connect to with JMS. For me, this file looks like this:

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
java.naming.provider.url=jnp://192.168.2.4:1099

Save this file into the SeeWhy_Scripts folder: for me, this is at C:\SeeWhy
Community Edition V3.2\SeeWhy_Tutorial\SeeWhy_Scripts\.

Now let's see if all our configuration work has paid off. Start the database servers
on both machines, then start both JBoss servers. If you have no errors reported by
the startup routines, double-click the SelectBandMembers_run_EIandAssim.bat
file to start the event interface and the assimilator. All being well, the command-line
console should show something like the following:

Proof-of-concept to implementation

[172]

That should be it, but let's just check that it is working. Fire up the jBPM web console
and go through the process up to and beyond the Select Band Members node. You
shouldn't have any problems getting past the node. Now go to Start | All Programs
| MySQL | MySQL Server 5.0 | MySQL Command Line Client. Enter the
password for your MySQL server. At the mysql> prompt, type use seewhy. With the
database selected, type the following SQL to see if our event has come across:

SELECT * FROM cyeSelectBandMembers;

Chapter 6

[173]

You should get an output that shows the table does have an event in there (I have
two in mine):

Congratulations, our two JBoss servers are now talking to each other!

If the database isn't populated, you need to look around to see what's gone
wrong. A couple of things to check straight off are:
Is everything named correctly? If you make a spelling mistake in the
queue names, event schema name, and so on, it won't work.
Check the CY-EventStreamLog.log log file in the SeeWhy installation
folders. This contains a log of activity from the Event Interface and
Assimilator: you should see some indicators of activity there. If not, your
Event Interface and Assimilator setup isn't working at all.

Tell SeeWhy how to interpret the data
With our interface between SeeWhy and jBPM up and running, we must now tell
SeeWhy how we want it to interpret the data that comes through. To do this, we
need to define metric calculations and rules using the SeeWhy Desktop. This will
determine what happens to the content of the events that we will capture in the
Interpretation engine.

Proof-of-concept to implementation

[174]

Go to http://your-server-ip:8080/Desktop and click Metric Configuration
at the top of the Desktop. Put in an ID of "SelectBandMemberCount", a name of
"SelectBandMember Count", and a description of, yes, you guessed it, "Count of
SelectBandMember":

Click Next. In the next screen, click Configure in the Value field. In the Functions
dialog, browse down to COUNT() and double-click it. Then in the Events dialog,
browse down to our SelectBandMembers event and double-click that. You'll
notice how the metric expression builds up at the top of the screen and that the
validity of this expression is evaluated at the bottom. In the Parameters dialog,
highlight SelectBandMembers and click Configure. In the resulting window, for the
Parameter Types field choose Aggregation:

Chapter 6

[175]

Click OK. In the Aggregation Period field, choose 1 Minute: although this is a very
short time period, it will at least allow us to see the data going through the system
fairly easily (our resulting graph will make some sense when we put some test data
through: the aggregation means that the count won't endlessly increase as you might
assume). Make sure the Record box is flagged. In the Triggers field, click Configure.
Check the box next to SelectBandMembers and click OK:

The trigger simply tells SeeWhy which incoming event to look out for with this
particular metric. Click Next then Next again. SeeWhy should confirm that our
metric has been created; now we must deploy it. Click the Metric Deployment tab
and choose the "Deploy metrics from work area to live" option. Click Next. SeeWhy
should confirm that our metric has been deployed. To see the metric, we need to go
to the SeeWhy Navigator. Go to http://your-server-ip:8080/Navigator/ in
your browser. You will notice that our metric doesn't appear in the list of metrics on
the left of the screen yet: we need to run some new data through first, as only those
metrics for which SeeWhy has calculated data will appear in the Navigator.

Proof-of-concept to implementation

[176]

Go back into the jBPM console on the other machine and start a new instance of the
process. Go through the process until and beyond the Select Band Members node.
Do this a few times so that there is some data running through. Now go back to the
Navigator: our metric should now show up, and we should just about be able to see
some data in the far right of the graph:

Position your cursor over the slash of red that indicates your metric data on the
graph, right-click, and choose Zoom In | Horizontal Axis. Do this a few times until
the data becomes clearly visible:

Chapter 6

[177]

Congratulations, you now have data flowing through your BAM solution!

Taking it further
There are many options for configuring SeeWhy to meet our specific needs. As this
book isn't a SeeWhy tutorial, we won't go into a great deal of detail, although let's
point out a few key features that we'll probably want to take advantage of:

Functions: SeeWhy has a whole host of inbuilt functions that we can use
to transform the incoming data. We have seen the COUNT() function in
our example above, but there are many others for us to play around with.
AVERAGE(), MAX(), MIN(), and SUM() are some of the more obvious ones.
Dimensions: Our action handler that we have implemented in jBPM will
pass over all the process variables that we specify in our event schema.
This allows us to dimension our process metric according to each of those
process variables. It doesn't make much sense in the example we did above
(who would be interested in seeing the count of the number of times we've
hit Select Band Members per bmx process variable?), but clearly this would
be valuable in other situations. For instance, we might well be interested in
tracking the positive response rate on contract negotiations and this could be
done by using the ContractAgreed process variables as dimensions.

•

•

Proof-of-concept to implementation

[178]

Users: we'll need to set up our managers or team leaders as users so they can
access SeeWhy and start acting on the information it is providing them. This
is easily done in the User Configuration aspect of the Desktop.

There are many more options open to us: please review the tutorial, reference,
and guide documents in your SeeWhy installation folder for more details, as well
as the ever-growing amount of support material on the SeeWhy website at
http://www.seewhy.com.

Set up email notifications
Not only can SeeWhy report on data, it can also send out notifications via email to
our users to let them know about things going on during process execution. These
email notifications are triggered by process metrics moving beyond a pre-defined
range of "normal" data.

Tell SeeWhy when to alert
Currently, our metrics are calculating values but don't have any rules behind them
to tell SeeWhy when to send an alert to the user: this is the first thing we need to
add. Let's edit the configuration of the SelectBandMemberCount metric to set up a
rule. In the Desktop, open up the Metric Configuration aspect. Select the Modify
existing metric option then click Next. The next panel will show a field with the
metric name greyed out. Select Metrics in the left-hand tree so it is expanded, you
can then see the available metrics including our SelectBandMemberCount metric.
Click the SelectBandMemberCount metric in the tree and that metric name will
appear in the grey field in the centre of the display and will be checked in the tree.
Click Edit then Next.

In the Modify – Configure Actual Calculation: SelectBandMember�����Count panel we
want to set a simple threshold at which point an alert will be generated. To do this,
check the box next to the Thresholds field and then click the Configure… button.
This will open a new dialog called Configure Thresholds.

To illustrate the basic principles, we'll set the Lower Thresh���old to "-1" and the Upper
Threshold to "1" and check the Always Trigger checkbox. This means that every
time our count exceeds 1 within our aggregate time, (which if you remember was set
to one minute) we will get an alert for each calculation performed with a result above
1. If the calculation was able to drop below -1 then we'd also see an alert when the
lower threshold was passed: although obviously this would not be possible in our
scenario. To get this into effect, we need to OK the dialog (the Thresholds field will
now contain a textual description of the limits we've just defined). Then press the
Save button.

•

Chapter 6

[179]

Once saved, in the same way as when we first created the metric, it needs to be
deployed to the server.

Configure a notification
The first thing we have to do is to create or obtain a template that can be used to
create the notification. Fortunately, an example template has been already created
and is included in the SeeWhy installation. We can use the aggalertmail.html
and aggalertmailsubject.txt files that can be found at C:\SeeWhy Community
Edition V3.2\SeeWhy_Tutorial\SeeWhy_Mail\Mail_Templates. You will see a
couple of other example templates in there as well.

Now select the User Configuration aspect. The left-hand tree will show the known
users and notifications that are available. We have to connect our metric up to the
notification template that is to be used and then to then the channel through which
the notification should be sent. On the tree, right-click on Notifications and choose
New. This will give us a panel for defining the notification. We need to start by
defining the Alert Reference: this links us to the metric. So select the Configure…
button, which will pop up a new dialog. Select the SelectBandMemberCount metric
from the drop-down box. The remaining settings don't need to be changed for this
basic example, so the dialog can be closed with the OK button. The A�������������� lert Reference
field will now show SelectBandMember�����������������Count������������.Rule.Actual, which means SeeWhy
will send out a notification every time the threshold we set previously is broken by
the "actual" calculated value of the incoming data.

We can leave the Alert State and Media fields to their defaults. Finally, we need to
select our notification templates: aggalertmailsubject.txt for the header and
aggalertmail.html for the body. Complete the process by clicking the Save button.

Before anyone can receive a notification, they need a suitable address, for us just
an email address. As we're going to use the JAMES email server that SeeWhy has
installed for us, and we're the default seewhy user, we need to make sure that the
seewhy user has a suitable email address. To do this, we need to open up the Users
part of the tree and select seewhy | User Contacts. Click Add in the bottom right-
hand corner and add in an email address of seewhy@localhost.localdomain, then
OK the dialog. The email address will appear in the list and we can save that change.

Proof-of-concept to implementation

[180]

The last step is to tell SeeWhy which notifications we're interested in. Select the User
Subscriptions element for the seewhy user. We need to Add a new subscription
(each subscription we have appears in the list). The Add button opens a new dialog
where we choose the Alert Reference again using the Configure… button. This
provides us with a dialog just like the Notification Definition one, so we need to
enter the same values: choose SelectBandMember�����Count from the dropdown and
close with the OK button. In our scenario, it is only really meaningful when the
alert starts (or continues to be on) so we can select On for the Alert S����tate and close
the dialog with the O�K button. The list will now contain a description of our new
subscription that we just need to save using the Save button.

Setting up your email client
To be able to receive the notification emails, an email client will need to be able to
receive email from the local mail server JAMES (note that you could also configure
SeeWhy to talk to your own mail server). Open Outlook and click Tools. Select
Account Settings then click New in Email Accounts. Select POP3 then Next.
Set the Your Name field to seewhy with an email address of seewhy@localhost.
localdomain, a user name of seewhy,������������������� and a password of seewhy. Incoming and
outgoing mail server should both be localhost. If you have the mail server running,
you can click on Test Account Settings to make sure you're set up correctly. To start
the server, double-click the Start E-mail Server.bat file in the SeeWhy_Tutorial
folder. OK the dialogs in Outlook to complete the setup.

Testing the notifications
With all the changes made, we need to go back to the jBPM web console and work
through more than one process instance per minute to trigger the alert. The alert may
take a little while to appear in your email client, depending upon timing settings on
your email client, but it will eventually get there:

Chapter 6

[181]

As you can see, this is fairly straightforward, but does at least show the concept in
action. The SeeWhy notification template syntax gives us lots of opportunities to
improve on this basic format though, and with a bit of work we can end up with
something as good-looking and complex as this example:

Proof-of-concept to implementation

[182]

Using SeeWhy for BAM
Now that we've seen the basics of SeeWhy, how are we going to apply it to our
Business Activity Monitoring requirement? The following paragraphs set out
some ideas:

Process management: we've already seen how SeeWhy is great for alerting
our users to abnormal events that happen during process execution. Clearly,
we are going to be able to configure metrics that allow us to track time
overruns, delays, and bottlenecks based on comparisons with average,
minimum or maximum process data. More often than not, this is going to
involve tracking two events: �� we'll need to be calculating the time elapsed
from when a process instance enters a node to when it leaves it. From this,
we will be able to derive extremely accurate activity and process cycle time.
Process metrics analysis: having identified the primary process metrics that
we're going to track early on in our project, it is simply a matter of configuring
them in SeeWhy and then using the default Navigator screens. For instance,
one of the most expensive activities we identified during our analysis phase
was that of "Write songs". If we configure a process metric to track the cycle
time of this activity, we will be able to see the long term trend using averages
over an aggregated period and we can focus on driving it down.
Process forecasting: using process metrics trend analysis techniques
SeeWhy can identify "expected" values given past process metrics
calculations. For instance, we would be able to calculate the average time
it will take to finish the activity from the current point in the process.
SeeWhy can calculate expected values for any process metric it tracks, so the
possibilities are endless.

There is a great deal to discover and put to use in the SeeWhy business intelligence
platform, and we have merely scratched the surface of what's possible: we could
write a whole book about it. Nevertheless, hopefully this part of the book has given
you some ideas and pointers for how it can become a vital part of your end-to-end
BPM suite.

Go-live
Our BPM system is now officially a BPM "suite" and is in a state of readiness for go-
live. All that remains is for us to obtain final sign-off from our stakeholders and our
sponsors. Then it is simply a matter of following our detailed implementation plan.
When we do put the new system live, it is important that we don't get sidetracked by
the million and one "good ideas" that are bound to arise as a result of us letting loose
a bunch of new users on the system. The Business Analyst's favorite weapon has
always been "prioritization" and this will be an excellent time to put it into practice.

•

•

•

Chapter 6

[183]

After all, with the system now live we are no longer in the development phase:
anything that comes up now is a change request for a live system. Change requests
should be prioritized according to the business case for the change and a decision on
their validity taken by some kind of review board.

Now that our system is live, we are ready for the final stage of our BPM project:
ongoing process improvement. Our project sponsor is likely to be pleased, because
this is the part of the project that is likely to deliver the biggest return on our
investment. We'll tackle this in the next and final chapter.

Summary
This has been one of our more technical chapters, although hopefully we haven't
lost you along the way! Even if we have, this chapter will still have showed you
what it is possible to accomplish with jBPM and other related toolsets. We have
taken our system from a bare-bones business process management proof-of-concept
system to a mature and robust BPM suite. Now, it is time to capitalize on all our
hard work and start getting a return from our investment. Our work force will now
be better organized and more productive, and we as Business Analysts can start
analyzing the data coming out of our BPM system to see where we can make further
process improvements.

In this chapter, we have:

Considered what should go into a detailed implementation plan
Changed the database back end of jBPM for something more robust
Developed a process monitoring solution for our BPM suite

•

•

•

Ongoing process
improvement

As the sun sets on our glorious BPM project, it is time to look back in wonder at the
highs and lows that got us this far. Is our sponsor happy? Have our users adopted
the system? How much has the application saved our business? The answers to these
questions may not always be positive, but they must be posed if we are to learn for
next time. And just as we reach what we believe to be the summit of this particular
project mountain, we find that this is in fact, only the first in a series of peaks,
leading to a much higher pinnacle. In fact, the work has only just begun. The real
improvements are still to come from ongoing process improvement efforts based on
the high quality process metrics data we are now collecting. JBoss jBPM is such a rich
product that it would be churlish to stop at what we have got now: there are many
opportunities for further development that remain to be explored.

In this final chapter we will:

Assess our project
Perform process analysis and ongoing improvement
Put together business process documentation
Present ideas for further development of our BPM system

Project assessment
No project runs smoothly from start to finish: if it did, there would be no need for
talented people like us to fix the problems. Along the way, we have probably pulled
some clever stunts to make sure we got the right result. Now that the project is over,
the really clever thing to do is look back and make sure we don't find ourselves
facing the same issues next time.

•

•

•

•

Ongoing process improvement

[186]

We shouldn't concentrate on the mistakes and ignore our successes, however. With
our business process management system in place, our sponsor happy, and our users
over the moon with their shiny new tool, it's time to back up this feel-good moment
with some hard numbers: how much money has our system saved the company?

Having completed our project review, it is time to retire the project team and move
into business as usual mode.

Project post mortem
The atmosphere in a project post mortem often lives up to its name. It can be a
painful exercise in blame and counter-blame. Sometimes, this is unavoidable: if a
member of the team really hasn't performed then they must be held accountable.
However, a strong project manager would ensure a non-performing team
member was removed from the project before the project was over. It is a defining
characteristic of the project post mortem that responsibility for both the successes
and failures of the project are apportioned among the team. This is a valuable
exercise, as it allows those team members to recognize those areas where they are
strong versus those areas where they are weaker and could improve.

Aside from producing learning points for individuals, it is important that the
organization as a whole learns from the experience. After all, it may be a completely
different set of people who take on the next BPM implementation project. The first and
probably most important action that the team can take is to make sure the project's
documentation is fully squared away and properly archived. When that new team of
BPM implementers come to start their project in a year's time, they should be able to
look back at our documentation and see the full story of how the project unfolded. We
must make sure our code is well documented and the system architecture is properly
modeled. The new team should also be able to read a document that sets out the
specific "learning points for next time" that we have identified.

This part of the project lifecycle is so often overlooked that it is practically unheard
of for it to happen properly. Nevertheless, it cannot be stressed enough how valuable
it can be. Project managers should get ready for a fight with management who will
almost certainly want to roll the team onto a new project as soon as the system has
gone live. Good luck!

Evaluate project versus success criteria
With the project over and the system in use, at a certain point it pays to perform
some retrospective analysis about how successful our project has been. Have we
done what we said we were going to do? If we have, then great, let's see what else

Chapter 7

[187]

we can achieve. If we haven't, let's see what we can do to turn the situation around
and get back on track. Of course, we can't do this kind of assessment immediately
after going live: any new system and process takes a certain amount of time to bed
in. Sometimes, it can take many months for a user community to get over its initial
inertia and get used to a new way of working.

Way back in Chapter 2 we defined what our success criteria for this project would be
and when they should be assessed. To save you looking back through the book, let's
repeat them here:

The process time from first audition to album release is reduced from six
months to four.
Pipeline can be forecasted and controlled, so that competing products from
Bland Records are not released on the market at exactly the same time.
The above success criteria will be assessed six months after implementation
of the project in order to allow the changes to take effect.

Let's look at each of these in turn.

Firstly, have we reduced the process time from first audition to album release? Well
obviously, this is a simulated example, so without setting up a new company called
Bland Records there is no way we can assess this criterion. Nevertheless, in a
real-life scenario this would probably be a very crucial measure of our project's
success, and should be relatively easy to gauge. Reducing the turnaround time of an
end-to-end process is one of the key promises of a BPM implementation and if we
haven't made any progress on this, then we should be pretty worried that something
has gone wrong somewhere. Obviously, make sure you have left enough time
between implementing the system and conducting the assessment for the process
to have taken a "clean" turn through its cycle; otherwise you will get a result that is
skewed because of a hangover from the old way of working.

Our second success criterion can be judged for our example scenario. We have
indeed made it possible to predict Bland's pipeline and for management to adjust
the process output so that releases do not clash in the same month. The reports we
put together with our SeeWhy implementation in the last chapter, are a great way
for Mr Gali to maintain visibility over his pipeline. From these reports, it is a simple
matter to delay or bring forward a particular instance of the process by the managers
prioritizing or de-prioritizing it in the web console. They could even simply tell a
user not to process a particular instance until a certain date. Either way, control over
the pipeline is achieved in a way that was not possible before.

•

•

•

Ongoing process improvement

[188]

Determine the real ROI of the system
Now we get to the nitty-gritty. These are the numbers that the CIO and CEO will
really be looking for. There's a great deal of nonsense talked about Return on
Investment in the technology industry, and there are some very spurious calculations
of this magic number, particularly by the larger vendors. Realistically, the only
ROI number you can rely on is the one you calculate yourself, based on your own
implementation costs and benefits. The calculation itself is as follows:

Return on investment = annual benefit divided by the investment amount.

So how do we derive these figures? Well coming up with the investment amount
shouldn't be a problem for a well governed project. We should have detailed figures
of all the costs that we've incurred putting in jBPM: it's simply a matter of totalling
them up. Deriving the annual benefit of the new system is a bit more difficult as one
can interpret "benefit" in a number of ways. The following is a suggestion for how
to calculate annual benefit, but feel free to adapt it to your own situation. Annual
benefit is:

Increased revenue: calculated by working out how many more cycles
of the process we can now complete per year as a result of implementing
the system, multiplied by the average revenue take of a single instance of
the process.
Plus:
Reduction in costs: calculated by working out the cost of a single
instance of the new process, minus the cost we originally estimated for
a single instance of the old process, multiplied by the new number of
process cycles per year. Obviously, this is the moment when it pays to
have done good quality process metrics analysis on the old process.

It can also sometimes be valid to include some more intangible measures in this
calculation of annual benefit. For example, if the implementation of a BPM system
has genuinely affected your competitive position, you might say that it has added to
the value of your brand. You might also come up with some figures for a reduction
in staff turnover because of increased job satisfaction, decreased training costs
because the process is now supported, improved customer satisfaction due to a more
consistent quality of output, and so on. For the purposes of demonstration, we'll stick
with our simple calculation as above:

Chapter 7

[189]

Investment amount = taking into account all our labor, hardware, and
software costs, our jBPM implementation cost Bland Records $112,000.
Increased revenue = due to the decrease in process turnaround time, we can
now complete two more instances of the process per year. Each instance of the
process makes on average $200,000, so our increase in revenue is $400,000.
Reduction in costs = due to the automation of some points of the process and
the fact that the process is now easier to understand and hence cheaper to
staff, we have managed to save 10% of our costs per instance of the process.
Our old process used to cost $80,875 per cycle but it now costs just $72,787.50.
So if we can now run 14 cycles of the process per year compared to the old 12
our reduction in costs is ($80,875 - $72,787.50) x 14 = $113,225.
Therefore:
Bland Records ROI on their BPM implementation = ($400,000 + $113,225) /
$112,000
ROI = 4.6

That is an extremely healthy number!

Obtain project sign-off
With big checkmarks next to each of our success criteria and a ROI number that
major vendors would shed blood for, it is surely a formality gaining sign-off from
Mr Gali that this project is complete. In obtaining sign-off, not only are we formally
wrapping up the project, we are also putting the BPM system into "business as usual"
mode. This is an important stage, as the system now moves from having a status
as an investment for Bland Records, to becoming a cost base. The upshot is that
Bland Records can no longer enjoy the tax breaks it did when it was investing in its
business. Typically, this means much tighter control over further expenditure and a
serious slow down on system change, so we had better be sure we judged our point
of go-live correctly. Assuming all is in order, however, we should be able to obtain
sign-off from our sponsor to shut down the project.

Process analysis and improvement
The upfront process improvements, systemization, and automation we have already
made is really only half the story. Once you have your BPM system integrated
into your organization, you have really only scratched the surface of the process
benefits you can expect to achieve. Higher quality analysis resulting from real and
accurate process metrics can lead to much more important process improvements
as time goes on. It may take several years for these improvements to emerge, but an
investment in a business process management system is the gift that goes on giving.

Ongoing process improvement

[190]

Track process metrics
So how do we realize these extraordinary promises? Well, the key starting point is
our process metrics. Now that the system is bedded in, and we can see the kind of
data that is coming through, we can assess how important the process metrics we
chose to track really are. Are we giving our management team the right tools to make
business decisions, or are there other KPIs we should be tracking? Luckily, with our
SeeWhy business intelligence platform integration, making changes to the process
metrics we are tracking is a simple task.

As we build up a history of process execution, we can start to see whether the
guesstimates we made for our key performance indicators were on target or not. With
the real data in front of us, we can see the minimum, maximum, and average of any of
the process metrics we are tracking in SeeWhy. We can use this data to tweak our KPIs
to better reflect real life. Realistic KPIs are important because when an exception to the
norm occurs, we now know it is a real exception, rather than the stab in the dark effort
we had before BPM came along. This means management effort is targeted in the right
places and that staff don't feel they are being held accountable for unrealistic targets.

For example, let's imagine that we have decided to use SeeWhy to track the time it
takes from when we enter the "Record backing vocals" node to the time we leave it.
This will give us the full cycle time for this process activity. Over time, we will build
up a good idea of what the "normal" time range is for this activity, allowing us to set
up a realistic KPI of, say, one day. Based on this we might decide to set up SeeWhy,
so that we are notified if this metric dramatically exceeds this specified KPI: longer
than two days for instance. Assuming this notification is sent to the right person, this
will allow management to keep on top of anomalies.

Over time, we can also spot trends in our metrics data. Hopefully, these trends will
always be in the right direction, but of course there will always be those which go the
other way. With hard data available in real time to back up the recognition of these
trends, strong management decisions can be made to rectify the situation.

For example, taking the metric we were tracking above, if we configured the SeeWhy
metric dimensions correctly, we might notice that certain musicians take longer than
others to record their backing vocals. Having spotted this trend we can do something
about it and make sure this part of the process is running as fast as possible.

Change request processes
Our jBPM system is now embedded in Bland Records and people are now relying
on it to do their day to day jobs. Hence jBPM is now a mission-critical application for
Bland Records and must be handled with care. The change process must be designed
to ensure only compelling changes are put through, and that the live system is
protected from process and code amendments that have been developed too rapidly.

Chapter 7

[191]

In general terms, the change process that we put together should probably look
something like this:

Submit
request for
change

Triage

Change
request?

Issue fix
process

Evaluate
business
case

Meets
minimum
business
case?

Reject
change
request

Present to
change
board

Include in
next release?

Development
process

Archive for
next change

board

No

Yes

Yes

Yes

No

No

Ongoing process improvement

[192]

It is important to note that this change request process must be able to handle
changes to the underlying business process as well as to jBPM itself. There are
considerations to bear in mind for each of these types of change.

Business process changes
As discussed in the previous section, our process metrics have allowed us to build up
an excellent cost picture of our process. This is a first-rate springboard from which we
can evaluate the suggestions for process change that come through: we can calculate the
cost versus the estimated expected benefit of the change. With these figures we can put
together a proper business case for our steering committee to base its decision on.

jBPM changes
The change process for jBPM itself should be like that of any mission-critical
application. However, it is important to remember that jBPM is subject to ongoing
development by the open-source community. The first consideration in this regard
is to ensure that your own developments don't take your cut of the jBPM codebase
too far from the community's roadmap: doing so would leave you on your own.
The second consideration is that if you do develop jBPM along the lines of the jBPM
roadmap then you should donate your work back to the community, thus improving
the product for everyone, as well as ensuring your developments are supported and
built on by the jBPM project.

Business process documentation
With the hurly burly of the development phase out of the way, there is now more
time to devote to "nice to have" features of our BPM system. One of these features
that we might like to develop further is our online process documentation for
our users. Why would we want to do this? Well, an intuitive system is one thing,
but the reality of naive users is quite another. In truth, a user community is much
more likely to fully adopt a new system if users have crystal clear documentation
talking them through what they have to do and why they have to do it. Ideally,
this documentation should be available from go-live, if not before to coincide with
training, but in the real world this is unlikely to get the resources it needs.

Good quality business process documentation pays for itself. It provides the basis of
training materials, which would otherwise be dry and hard to understand without
a process context. This means that new hires can be brought in much more easily.
Not only will new people benefit, but also our existing staff will work smarter if
they understand how their cog fits into the larger machine. With an understanding
of how their work affects others in the process chain, our staff are more likely to be
motivated to produce quality work.

Chapter 7

[193]

What kind of documentation?
Traditional process documentation usually consists of Visio files stuck somewhere
on a network drive on the off-chance that anyone who takes the trouble to find them
might bother to open them up and have a look. If you're really lucky the process
diagrams might have been exported as PDFs or as images so that our users who
don't have Visio can open them up. These files sit on the network gathering virtual
dust and are normally out of date by the time the first person comes across them.

The other scenario is where we have had expensive consultants in, to build us a
"knowledge base". This generally looks amazing when it is presented to us, but then
we soon start to realize that making changes to it is such an arduous process that no
one will ever take the trouble. We might even be locked in and have to phone up the
consultants who built it every time we want to change something. The traditional
knowledge base is an expensive maintenance nightmare that never fulfils expectations.

Our documentation has to be much smarter than this, we want it to:

Be comprehensive
Be simple to understand
Be easy to navigate
Be easy to maintain
Allow users to contribute and feel a sense of ownership

Fortunately, there is a fantastic tool which, when used correctly, can really fit the bill
for all these requirements: the wiki.

Using a wiki
For those of you who have not visited planet Earth in the last few years, a wiki is
basically a type of website where you can easily edit the web pages. You simply
click an "Edit" button, type your changes and then save them: hey, presto! The page
is updated. The most famous example is Wikipedia (http://www.wikipedia.org),
where people around the world contribute as a community to building an online
encyclopedia. We are going to do something very similar with our users. We are
going to provide a framework of business process, around which our users are going
to collaboratively build up documentation that helps them complete that process.

A wiki is fast to develop, cheap to set up, and cheap to run. There are many flavors
of wiki available; lots of them open source, so we don't even have to invest a great
deal in the software. You can even download the code that runs Wikipedia, a wiki
platform called Mediawiki (http://sourceforge.net/projects/wikipedia),
although there are simpler wiki platforms out there for the uninitiated. We will leave
it up to the reader to decide which wiki flavor they prefer.

•

•
•
•
•

Ongoing process improvement

[194]

The important thing about a wiki is that it is a collaborative environment. If we
set up a sensible editorial policy that allows our users to edit the pages they need
without destroying the process framework, we can build a comprehensive and
up-to-date set of documentation that will never go stale, and which doesn't have
the same barriers to access and maintenance as the more traditional process
documentation solutions.

The first step is to build the business process framework from which we will hang
off the detailed documentation. The ideal way to do this is to have the home page of
our wiki feature a simplified view of our process map diagram. Using simple HTML
image maps, we can then allow our users to click through the process steps to get to
the next level down in the process hierarchy. Of course, if you can't embed HTML in
your wiki, you can always use a simple ordered list of the process steps and link each
one through to the next level down.

On the next level down, we want to organize our process information in a consistent
manner. The headings you use will depend on your situation, but here is a
suggestion for what can work at the process step level:

Overview: a narrative overview of the activity, how it fits into the context of
the process.
Activity steps: detailed training steps for completing this activity.
Business rules: any business rules that govern how the activity should
be performed.
Data quality best practice: how do we want users to enter data for
this activity?
KPIs: how do we judge whether the activity has been performed well or not?
Ownership: who owns this activity?

The ownership question is an important one. There are two kinds of ownership we
need to think about here. Who owns this activity from a change process point of
view? In other words, who will be asked to sign off if we want to make a change
to this activity? And who is the editorial owner for this section of the process
documentation? It generally makes sense to nominate one person to keep an eye on a
section of the documentation to ensure it is growing in the right way, and to correct
editing mistakes as the documentation is built.

•

•

•

•

•

•

Chapter 7

[195]

The detailed documentation can be linked from underneath each of these sub-headings,
so that we build up a documentation hierarchy that looks something like this:

Modeled
requirement

True
requirement

Interpretation End
software

Interpretation
Software

generation

End user Business Analyst

Comparison Modeling Activity-specific
sub-headings, organized by:

Overview
Activity steps

Business rules
Data quality best practice

KPIs
Ownership

Detailed documentation:
chart sheets

workflow diagrams
rules and policies

Over time, this business process wiki should build into an invaluable resource that is
a real asset for your organization.

Ideas for further development
There are many avenues for further development that could be explored with jBPM:
in fact, there are as many variations as there are implementation business scenarios.
In this section, we will present a few ideas for taking jBPM further, leaving it up to
the reader to decide which are worth further investigation and experimentation.

Breaking up the process into phases using
superstates
JBoss jBPM supports the notion of process "superstates", which we can use to split
up our long process into process phases. This can be very useful when we want to
report on the status of a process instance: rather than having to tie down the instance
to a single node, we can report back that the instance is in the "such and such phase".

Ongoing process improvement

[196]

For example, we might want to break up our "Produce music products" process into
four phases, such as:

Band formation
Band development
Album recording
Album production

In terms of the JPDL syntax we use to achieve this, we define superstate nodes in the
same way as any other node. We cannot start or end the process with a superstate,
so we must have a start state node that immediately transitions to the next node,
using a forward slash to denote that we are descending a level of the hierarchy into a
superstate node's collection of nodes. We then use the superstate tags to encapsulate
all the nodes that form that phase of the process. When the phase is over, we use
"../" to move up a level of the hierarchy, out of that particular superstate and on to
the next superstate phase's first node. The JPDL looks like this:

 <start-state name="Hold auditions">
 <transition name="" to="Band formation/Select band members"></
transition>
 </start-state>
 <super-state name="Band formation">
 <task-node name="Select band members">
 ...
 <transition name="" to="Call SeeWhy"></transition>
 </task-node>

 ... the rest of this phase's task nodes ...

 <task-node name="Name band">
 <transition name="" to="../Band development/Organize vocal
tuition"></transition>
 </task-node>
 </super-state>
 <super-state name="Band development">
 <task-node name="Organize vocal tuition">
 ...
 <transition name="" to="fork1"></transition>
 </task-node>

 ����������������� ... and so on ...

 </super-state>
 ...

As you can see, this is relatively simple JPDL syntax. It must be said, however, that
the jBPM Designer diagram view does not support this particularly well in its current
incarnation. Hopefully, future versions will find better ways of representing superstates.

•
•
•
•

Chapter 7

[197]

Abstracting into a process hierarchy
In a similar vein, if we have a very long process stream, we might want to break up
our process into a set of sub-processes that are governed by a single parent process.
JPDL supports this through "process composition". A parent process is built from a
series of "process state" nodes, each of which represents the complete execution path
of a particular sub-process.

Building up a process hierarchy in this way can make the job of process maintenance
an easier one. As process definitions are developed and become more complex,
working with shorter sub-processes is less cumbersome than working with a long
one of labyrinthine complexity. Having said this, connecting all the sub-processes
together is not a simple task in the current implementation of JPDL, as you have
to map each variable that you want to pass from the current sub-process onto the
next by hand. This rather negates the benefit of abstracting the long process into a
hierarchy. Hopefully, future incarnations of JPDL will do this a bit more tidily. The
current syntax for doing process composition in JPDL is as follows:

<process-definition name="Produce music products">
 <start-state>
 <transition to="Sub-process 1 state" />
 </start-state>
 <process-state name="Sub-process 1 state">
 <sub-process name="Sub-process 1" />
 <variable name="1" access="read,write" mapped-name="11" />
 <variable name="2" access="read" mapped-name="22" />
 <transition to="..." />
 </process-state>
 ...
</process-definition>

As you can see, this can get rather clunky when lots of variables need to be passed
through the hierarchy.

Building a process-driven enterprise
One use of process composition that does make sense is to connect two related but
distinct processes together for the purposes of building a single integrated process.
For example, now that we have a working process definition for Bland Records'
"Produce music products" process, we might consider doing the same thing for the
next process along in the hierarchy, namely "Coordinate manufacture". When we
have done this, rather than having the two processes run on a standalone basis, we
would probably want to connect the two together. We can easily connect the two
together with the process composition syntax mentioned above, and there should

Ongoing process improvement

[198]

be fewer variables that require passing across between these two distinct processes
than would need to be passed through a sub-divided single process. If we were to
perform this exercise for all our business processes, then we would be talking about
the Shangri-la of BPM: the fully process-driven enterprise.

Automate business rules processing
Business rules are statements that define or constrain some aspect of the business
and therefore govern process execution. We have already implemented some
simplistic decision making in our process definition, but this is only the tip of the
iceberg. With a little imagination, there are endless scenarios where we can let the
system take the strain of making process decisions. Doing this can be a valuable
exercise for an organization, as it can mean that:

Staffing costs are reduced—you don't need such smart people making decisions.
The quality of output goes up—computers don't make mistakes (much).
Process throughput is increased—because a computer can perform a decision
calculation in a tiny fraction of the time taken by a human.

We have a number of strategies at our disposal for implementing decision making in
our BPM system:

Model a normal task node and have a human perform the decision making.
Model a decision node and use the inbuilt jBPM expression language to make
a decision based on the process variables at hand.
Model a node that uses an action to call out to an external system that
specializes in making complex decisions.

We have already seen how we can use task forms to enable decision making by
humans. Let's now see the syntax for making jBPM do the decision making. In order
to evaluate a decision, we need to create a decision node and insert an expression
that will calculate the outcome of the decision based on the input of whatever
process or task variables are appropriate. We specify multiple leaving transitions,
each one containing a condition, and jBPM will take the first one that evaluates to
true. �� If none of the transitions specified resolves to true, the first transition listed will
be taken, so the first transition should always represent the "otherwise" path. ����The
syntax for a decision node looks like this:

 <decision name="decision1">
 <transition name="otherwisetransition" to="Otherwise node" condi
tion="#{someVariable > 1}"></transition>
 <transition name="iftruetransition" to="If true node" condition=
"#{someVariable <= 1}"></transition>
 </decision>

•
•
•

•
•

•

Chapter 7

[199]

The expression itself is written in a Java expression language that is used in Java
Server Pages and Java Server Faces code. You can find more details of this expression
language here:

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSPIntro7.html

As an example, let's see how we could re-implement the "All contracts agreed?" node
as a decision node. At the moment, we are using a task form and a human is looking at
the state of the bmxAgreed variables to decide whether they all evaluate to "Yes" or not:

 <task-node name="All contracts agreed?">
 <task name="All contracts agreed" swimlane="Legal adviser">
 <controller>
 <variable name="bm1Agreed" access="read" mapped-name="Band
member 1 agreed?"></variable>
 <variable name="bm2Agreed" access="read" mapped-name="Band
member 2 agreed?"></variable>
 <variable name="bm3Agreed" access="read" mapped-name="Band
member 3 agreed?"></variable>
 <variable name="bm4Agreed" access="read" mapped-name="Band
member 4 agreed?"></variable>
 <variable name="bm5Agreed" access="read" mapped-name="Band
member 5 agreed?"></variable>
 <variable name="bm6Agreed" access="read" mapped-name="Band
member 6 agreed?"></variable>
 </controller>
 </task>
 <transition name="No" to="Contract new member"></transition>
 <transition name="Yes" to="Name band"></transition>
 </task-node>

To automate this, all we need to do is change the node type to a decision node and
include a condition on the transitions that will automatically evaluate whether every
agreed variable is equal to "Yes" or not:

 <decision-node name="All contracts agreed?">
 <transition name="No" to="Contract new member" condition="
#{(bm1Agreed=="No") or (bm2Agreed=="No") or (bm3Agreed=="No") or
(bm4Agreed=="No") or (bm5Agreed=="No") or (bm6Agreed=="No")}"></
transition>
 <transition name="Yes" to="Name band" condition="#{(bm1Ag
reed=="Yes") and (bm2Agreed=="Yes") and (bm3Agreed=="Yes") and
(bm4Agreed=="Yes") and (bm5Agreed=="Yes") and (bm6Agreed=="Yes")}"></
transition>
 </task-node>

Now, if any of the agreed variables is a "No", we will take the "No" transition, just as
we would if a human had read the variables in a task form.

Ongoing process improvement

[200]

For more complex decisions, we can build an implementation of the jBPM
DecisionHandler class to perform the decision calculation. This Java class will then
return a transition name to tell jBPM which leaving transition should be taken as a
result of the decision.

Quite complex decision making can therefore be done within jBPM itself. However,
there are occasions where the business rules that are being evaluated are so
complicated that it would be a Herculean task to write the code required to perform
the decision making. Indeed, in these scenarios we will probably already have a
system that is specifically designed to make these kinds of decisions. In this case,
we need to write a state node with multiple leaving transitions, and which has an
action on node-enter to call out to the business rules engine system, providing it
with any process variables it needs to perform the decision calculation. The state
node will then wait until the external system responds with a trigger specifying
the leaving transition that should be taken, for instance with code such as Token.
signal(String transitionName).

A typical example of where business rules require this kind of heavy-duty processing
is in the insurance industry. Our process might collect data off an insurance claim
form and put it into process variables, then submit those process variables to a
business rules engine, which would respond with a yes or no as to whether the claim
is valid and should be paid.

Replace the user information database
We have seen in previous chapters how we have altered the jBPM database tables that
contain user information in order to provide login and process role functionality to
the web console. While this works well, it does mean we have to maintain our own
user database, whereas it probably makes sense to plug directly into our existing
company directory that will already have organization information set up in it, for
example, Active Directory or an LDAP directory. As this should always be up to date,
integrating in this way will remove an administration task from our jBPM workload.

Doing this kind of integration involves ripping out the jBPM identity component.
This is not a simple task and is beyond the scope of what we can cover here. For
more information on how to do this, please look at the jBPM user guide, wiki, and
forums on www.jboss.com.

Chapter 7

[201]

Document management
One of the most common scenarios in a business process is the handing back and
forth of a document. For example, the insurance claim form that we cited above
would be passed around numerous departments in the insurance company before
a decision was made on the claim. The problem with documents is that they have a
tendency to disappear. Even when the document in question is stored electronically,
we can still have problems with versioning and controlling access to the document
by multiple users.

One way to get around the inherent problems with the use of documents in an
organization is to implement some kind of document management system, such as
Documentum's Eroom, Microsoft's Sharepoint, or Alfresco's Alfresco ECM. These
systems make sure your documents are secure and backed-up, that the right people
have access and don't interfere with each other's edits, and that documents are
properly versioned. These systems have become an absolute necessity in today's world
of co-located teams that work together on projects from multiple global locations.

But why not take this a stage further and integrate your document management
system of choice with jBPM? Many of these systems provide the hooks needed to
interact with the document store programmatically, so integrating with jBPM is
really only a case of writing action handlers that perform the necessary action on the
document store. For example, in our insurance claim form scenario above, we might
have nodes in our process definition like:

Receive claim form
Scan in claim form
Store claim form

We could then automate the "Store claim form" node by writing an action handler
that takes as input a variable that points to the location of our scanned-in file and
then copies that file into the document store. The action handler could then return
a new process variable that is a pointer to the document's location in the document
store, so later nodes in the process can also interact with the document. As this
would be a relatively advanced integration, we'll leave it up to the reader to pursue.

•

•

•

Ongoing process improvement

[202]

Summary
So we are finished: it is time to put our feet up and reap the bounteous rewards of all
our hard work. We have put together a full-featured and complete business process
management system that meets the expectations of the people involved and provides
real value to the client business. This is an investment that will go on paying back
in the years to come, with incremental process improvements being identified and
implemented. There are rich opportunities for further development of our system,
bringing increased process automation, and a smoother execution of the process.

I hope this book has given you the tools you need to put together a successful
business process management system implementation project and I wish you the
very best of luck in your BPM endeavors.

Epilogue
Flushed with success and awash with spare cash, Sven Gali decided to expand his
business beyond the narrow confines of the record industry. He created spin-off
companies in diverse industries, all under the "Bland" banner. The Bland combined
circus and airline service was a huge hit, as was the rope recycling venture. Sadly
Bland's range of Indian foods was not so successful. With a vast fortune amassed, Mr
Gali turned away from the business world, dabbling in extreme sports and record-
breaking adventures. He became the first man to successfully single-handedly cross
the Atlantic in a coracle and narrowly failed to beat the world record for "holding
one's breath".

Gali has since been awarded a knighthood in the Queen's millennium New Year's
honours list for "services to entrepreneurship".

Index
A
activity flow diagram 38
Agile methodology

about 7
advantages 7
disadvantages 8

B
BAM

about 158
BAM points, setting up on graph 164-166
process forecasting 160
process management 159
process metrics analysis 159

BPM
about 5
advantages 12, 13
BPM suite 16
business process 10
business process, improving 11
business process, re-engineering 11
documentation 192
for software development 6
history 9, 10
JBoss 18
JBoss jBPM 17
key definition 12
management theory 10
SeeWhy 19
useful situations 14

Business Activity Monitoring. See BAM
Business Analyst

advantages 9

Business Process Management. See BPM
business scenario

about 23
high level project plan 25
nodes, adding 81-95
process, building 77, 80
processes 28
process owner 34
project initiation document 24
project objective 25
project scope 28
project team 30
subject matter expert 34
success criteria 25
swimlanes, adding 80
workflow, mapping 36, 37

D
database back end, swapping

about 149
data, importing 154
database server, installing 149
database tables, installing 150-153
hibernate configuration, amending 157, 158
JBoss configuration, amending 155, 156
JNDI data source, setting up 155
MySQL driver, installing 155

designer user interface
deployment, editor area 69
design, editor area 70
diagram, editor area 68
editor area 67
outline view 72
package explorer 66, 67

[204]

properties explorer 72
source, editor area 70
swimlanes, editor area 68

documentation, BPM
about 192
creating, wiki used 193-195
required features 193

E
email notifications, SeeWhy used

alerting 178
configuring 179, 180
email client, setting up 180
setting up 178-181
testing 180, 181

I
implementation

database back end, swapping 149-158
plan 144
preparing 144
web console, customizing 146-148

installation, JBoss
designer user interface 66-73
Java, installing 55, 56
JBoss application server, installing 57-59
JBoss jBPM designer, installing 59-65
JBoss jBPM engine, installing 57-59
shortcuts, setting up 66

J
JBoss

about 18
annual benefit, calculating 188
architecture 54
concept 73
designer, installing 59
engine, installing 57
installing 54
jPDL 73
process, developing 53

JBoss Application Server. See JBoss
jBPM Process Definition Language. See

jPDL

jPDL
about 73
actions 76
nodes 74
process state 77
process variables 77
super state 77
swimlanes 76
transitions 76

K
kick off meeting 34

N
nodes

about 74
adding 81-95
decision 75
forks 75
joins 75
node 76
state 74
tasks 74

P
process, analyzing

about 34
activity flow diagram 38, 39
improving 189
quick win, identifying 48, 49
RACI matrix 42, 43
RACI matrix with the process 44-47
rapid implementation projects 48
responsibilities, identifying 38
roles, identifying 38
workflow, mapping 35

process, developing
business rule processing, automating

198-200
document management 201
process driven enterprise, building 197
processes breaking, superstars used 195,

196
process hierarchy 197

[205]

user information database, replacing 200
process, improving

process metrics, tracking 190
request process, changing 190, 192

process changes
business process changes 192
jBPM changes 192
requesting 190-192

process forecasting 160
process management 159
process metrics analysis 159
process monitoring. See BAM
process reporting suite

about 160
SeeWhy Business Intelligence platform,

integrating 160
project, assessing

about 185
evaluating 186
project post mortem 186
ROI, determining 188

project, setting up
business scenario 23
initiation document 24, 25
kick off meeting 34
scope, deciding 25-28
team, forming 29-34

project initiation document
about 24
high level project plan 24
project objective, identifying 24
success criteria, identifying 24
uses 24

project team
forming 29
process owners 31, 32
project office 30
project sponsors, identifying 30
subject matter experts 31, 32

proof of concept
expectations, setting up 128
jBPM, making available on server 130-132
planning 129
requirements, capturing 129, 130
running 132
setting up 127
team, setting up 127, 128

prototype, iterating
about 132
process changes 132
system, integrating 134-140
task, priotarizing 133

prototype user interface
building 99
deploying 114, 115
developing 100-106
iterating 132
process, deploying 114, 115
users, setting up 106-113

Q
quick wins

identifying 48
keywords 48

R
RACI matrix

about 42
process, evaluating 44
process, putting along side 44
rules 42

rapid implementation projects
identifying 48

responsibilities
identifying 38

Return on Invesment. See ROI
ROI

determining 188, 189
increased revenue 188
reduction in costs 188

roles
identifying 38

S
scope of project

about 25
process 26
process, defining 26
process hierarchy 27

SeeWhy
about 160
action handler code 166, 167

[206]

BAM, using for 182
BAM points, setting up on graph 164-166
data, interpreting 173-176
email notifications, setting up 178-181
event interface, configuring 170-173
features 177, 178
getting 162
installing 162, 163
jBPM JBoss server, configuring 168
process event 168, 169

software development
BPM approach, using 6

software development, BPM
Agile methodology 7
methodologies 6-9
project life cycle 15
waterfall approach 6
waterfall approach, disadvantages 6

success criteria
about 186

swimlanes
adding 80

T
team. See project team

U
user interface

building 99
prototype, building 99
prototype, developing 100

users
setting up 106

W
web console interface

about 116
adapting 124, 125
end users 119-121
managers 122
working with 116-118

wiki
about 193
documentation, creating 193-195

workflow
mapping 35
mapping, flowchart technique used 35
notations 36
process mapping tools 36

	Business Process Management with JBoss jBPM
	Table of Contents
	Preface
	Chapter 1: Introduction
	The BPM approach to software development
	Evolution of software development methodologies
	The emergence of key technologies
	Meanwhile—management theory
	What is a business process and why do we want to manage it?
	Business process improvement and re-engineering

	From this convergence, BPM emerges
	Business process management: a definition
	Key benefits of BPM
	Typical business scenarios ripe for BPM

	How this book works
	The solution we'll build
	Introducing our suggested project lifecycle
	Introducing our example business scenario
	Introducing our example BPM suite
	JBoss jBPM
	JBoss
	SeeWhy business intelligence platform

	Summary

	Chapter 2: Understanding the Target Process
	Setting up the project
	Introducing our example business scenario
	Project initiation document
	Scope the target process
	Put together the project team
	Identify project sponsors
	Project office
	Identify process owners and subject matter experts

	Kick-off meeting

	Analyze the process
	Map the workflow
	Example

	Identify roles and responsibilities
	Activity flow diagram
	RACI matrix

	Put metrics alongside the process
	Example

	Identify quick wins
	Example

	Sign off to be process

	Summary

	Chapter 3: Develop the Process in JBoss jBPM
	Introduction
	The JBoss jBPM architecture

	Installation
	Install Java
	Install the JBoss jBPM engine and the JBoss application server
	Install the JBoss jBPM designer
	Set up shortcuts
	Touring the designer's user interface
	Package explorer
	Editor area
	Properties explorer
	Outline view

	JBoss jBPM concepts
	jBPM process definition language—jPDL
	Nodes
	Transitions
	Actions
	Swimlanes
	Process variables
	Process state
	Super state

	Building our example process
	Add our swimlanes
	Adding our nodes
	Export for sign-off

	Summary

	Chapter 4: The Prototype User Interface
	Build the prototype
	Develop the prototype user interface
	Set up our users
	Deploy the process and user interface

	Investigating the web console interface
	End users
	Managers

	Adapt the web console
	Sign off for the proof of concept

	Summary

	Chapter 5: Iterate the Prototype
	Set up for the proof of concept
	Set up the team
	Set expectations
	Plan the proof-of-concept program
	Capture requirements
	Make jBPM available on a server
	Run the proof of concept

	Iterate the system
	Process changes
	Task prioritization
	Integration with other systems

	Obtain sign-off
	Summary

	Chapter 6: Proof-of-Concept to Implementation
	Preparation for implementation
	Judging readiness
	Implementation plan
	Customizing the web console
	Swapping the database back end
	Install the database server
	Install the database tables
	Set up a JNDI data source
	Install the MySQL driver
	Amend the JBoss configuration
	Amend the hibernate configuration

	Monitoring the process
	Process management
	Process metrics analysis
	Process forecasting
	Example process reporting suite
	Integrating the SeeWhy business intelligence platform

	Go-live
	Summary

	Chapter 7: Ongoing Process Improvement
	Project assessment
	Project post mortem
	Evaluate project versus success criteria
	Determine the real ROI of the system
	Obtain project sign-off

	Process analysis and improvement
	Track process metrics
	Change request processes
	Business process changes
	jBPM changes

	Business process documentation
	What kind of documentation?
	Using a wiki

	Ideas for further development
	Breaking up the process into phases using superstates
	Abstracting into a process hierarchy
	Building a process-driven enterprise
	Automate business rules processing
	Replace the user information database
	Document management

	Summary
	Epilogue

	Index

