
CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

The Within-Strip Discrete Unit Disk Cover Problem

Robert Fraser ∗ Alejandro López-Ortiz †

Abstract

We investigate the Within-Strip Discrete Unit Disk
Cover problem (WSDUDC), where one wishes to find
a minimal set of unit disks from an input set D so that
a set of points P is covered. Furthermore, all points and
disk centres are located in a strip of height h, defined
by a pair of parallel lines. We give a general approxi-
mation algorithm which finds a 3d1/

√
1− h2e-factor ap-

proximation to the optimal solution. We also provide a
4-approximate solution given a strip where h ≤ 2

√
2/3,

and a 3-approximation in a strip if h ≤ 4/5, improv-
ing over the 6-approximation for such strips using the
general scheme. Finally, we show that WSDUDC is NP-
complete for a strip with any height h > 0.

1 Introduction

We are interested in updating an area of seafloor terrain
following a survey by a ship. A survey is typically per-
formed by towing an echosounder behind a ship, which
results in a swath of data points along the ship’s path.
If the ship performs this task while in transit, the sur-
veyed area forms a strip along the seafloor. We wish to
update the seafloor data set by treating the new data
set P as the standard, while maintaining representative
points from the old data set Q for completeness. Our
goal is to find a minimum cardinality setQ? ⊆ Q so that
each point in P is within a predefined unit distance of
a point in Q?. This is an instance of the Within-Strip
Discrete Unit Disk Cover (WSDUDC) problem.

In the WSDUDC problem, the input consists of a set
of m unit disks D with centre points Q, and a set of n
points P, all of which lie in the Euclidean plane. We
define the strip s of height h as the region of the plane
between two parallel lines `1 and `2, where Q ∩ s = Q
and P ∩ s = P. We assume that we are provided with
the lines `1 and `2; alternatively, a minimum width strip
may be computed. We wish to determine the minimum
cardinality set of disks D? ⊆ D such that P ∩ D? = P.
This is a seemingly simpler context than the general Dis-
crete Unit Disk Cover (DUDC) problem, which has no
strip confining the positions of the points and disks. The
DUDC problem is NP-complete [11], and has received
attention due to applications in wireless networking and

∗University of Waterloo, Canada, r3fraser@uwaterloo.ca
†University of Waterloo, Canada, alopez-o@uwaterloo.ca

related optimization problems [15].
This paper addresses an open question regarding the

hardness of the general DUDC problem. An implication
of a polynomial time algorithm for WSDUDC for strips
of any fixed width would be a simple PTAS for DUDC,
using the shifting techniques of Hochbaum and Maass
[10]. The recent PTAS for DUDC [13], as discussed
shortly, uses fundamentally different techniques.

The notion of decomposing a problem into strip-based
subproblems is natural, since an exact algorithm or
PTAS for the subproblem can potentially be used to de-
rive a general PTAS using the “shifting strategy” [10].
For example, the PTAS for the geometric unit disk cover
problem (like DUDC except the centres of the disks
are unrestricted) operates by dividing the problem into
strips [10]. The maximum independent set of a unit disk
graph may be found in polynomial time if the setting
is confined to a strip of fixed height [12]. Geometric
set cover on unit squares (precisely WSDUDC, except
the disks are replaced with axis-aligned unit squares)
may be solved optimally in nO(k) time when confined
to strips of height k [8]. Considering these results, the
hardness of WSDUDC is somewhat surprising.

The WSDUDC problem was formally introduced by
Das et al. [7], as a subroutine for their DUDC approx-
imation algorithm. In that work, it was demonstrated
that points in a strip of height 1/

√
2 (≈ 0.707) may be

covered in O(mn+n log n) time using a fixed partition-
ing technique to obtain a 6-approximate algorithm.

The Strip-Separated Discrete Unit Disk Cover (SS-
DUDC) problem was first addressed by Ambühl et al.
[2, Lemma 1]. The input consists of a set of points
P located in a strip in the plane, like WSDUDC, but
the set of unit disk centres Q lies strictly outside of
the strip rather than in the strip. In the appendix, we
outline an O(m2n + n log n) time exact algorithm for
SSDUDC based on [2], which we use as a subroutine
in our work. The Line-Separated Discrete Unit Disk
Cover (LSDUDC) problem has a single line separating
P from Q. A version of LSDUDC was first discussed by
[6], where a 2-approximate solution was given; an exact
algorithm for LSDUDC was presented in [5]. Another
generalization of this problem is the Double-Sided Disk
Cover (DSDC) problem, where disks centred in a strip
are used to cover points outside of the strip. This also
has an exact dynamic programming solution [14].

Many papers have addressed DUDC using a vari-
ety of techniques, e.g. [4, 6]; a summary of such re-

24th Canadian Conference on Computational Geometry, 2012

sults is presented in [7]. Brönnimann and Goodrich
[3] established the first constant factor approximation
algorithm based on epsilon nets. Mustafa and Ray
[13] described a PTAS for a more general version of
DUDC based on local search. Interest in research
on approximation algorithms for DUDC and related
problems has remained high because of the large run-
ning time associated with the PTAS (O(m65n) for a 3-

approximation, O(mO(1/ε)2n) in general for 0 < ε ≤ 2).
The best tractable result for DUDC is that of [7], which
describes a 18-approximate algorithm which runs in
O(mn + n log n) time.

1.1 Our Results

We provide a general 3d1/
√

1− h2e-approximate algo-
rithm for solving the Within-Strip Discrete Unit Disk
Cover (WSDUDC) problem on strips of height h < 1,
which runs in O(m2n + n log n) time. Given a strip of
height at most 2

√
2/3 (≈ 0.94), a 4-approximate so-

lution is given which refines the general algorithm by
checking for simple redundancy while still running in
O(m2n + n log n) time. For a strip of height at most
4/5, an O(m6n) time 3-approximate solution is pro-
vided which uses dynamic programming to solve all sub-
problems optimally (using the general 3d1/

√
1− h2e-

approximate algorithm on strips of height 2
√

2/3 or 4/5
would produce a 6-approximation). To conclude, we
show that WSDUDC is NP-complete.

2 Approximation Algorithms for WSDUDC

In this section, we present algorithms for approximating
the optimal WSDUDC solution. We begin with a gen-
eral technique, followed by refinements which achieve
better approximation factors in narrower strips.

Theorem 1 Given a strip of height h < 1, we may find
a 3d1/

√
1− h2e-approximation to the WSDUDC prob-

lem in O(m2n+n log n) time. If h ≤ 2
√

2/3, we can im-
prove the approximation factor to 4 in O(m2n+n log n)
time. Given a strip of height h ≤ 4/5, a 3-approximate
solution may be found in O(m6n) time.

We define the set of rectangles R◦, where R◦i is the
largest rectangle of height 2h which may be covered by
Di ∈ D, where the strip s has height h and is assumed
to be horizontal. Further, we use a set of rectangles R
of height h, defined as Ri = R◦i ∩ s,∀R◦i ∈ R◦.

Observation 1 Suppose we are given a strip of height
h < 1 and a unit disk D whose centre lies in the strip.
R◦ is defined as the rectangle of height 2h and width
k = 2

√
1− h2 which is circumscribed by D. If a point

q is covered by R◦, then D also covers q. Furthermore,
R◦ covers the entire height of the strip.

gap1 interval1
gap2 gap3

gap4interval2 interval3

Figure 1: Intervals are continuous segments of the strip
covered by the rectangles in R, and gaps are the seg-
ments of the strip outside of the intervals.

We divide the set of points P into two sets P = PR∪PR,
where PR is the set of points covered by the set of rect-
angles R, and PR = P\PR, i.e. those points covered by
D but not R. The approximation algorithms proceed in
two stages to compute the cover: first the points in PR
are covered, and then the remaining uncovered points
in PR are covered. We refer to the points in PR as oc-
curring in the gaps of the strip, and the points in PR
are in the intervals (see Figure 1). In our discussion, we
assume that h > 0, so that k = 2

√
1− h2 < 2. 1

2.1 Covering PR
The centres of all disks are separated from the points in
PR by vertical lines (those of the gap boundaries). For
each gap of the strip, the points are covered optimally
with the O(m2n+n log n) time algorithm for SSDUDC.
While points in each gap are covered optimally, we may
lose optimality when we combine these solutions2. Re-
call that rectangles have width k = 2

√
1− h2. There

is a rectangle for each disk, and so no disk centre lies
within a distance of k/2 of any gap. By interleaving
rectangles with gaps of width ε, a disk may cover points
in 2d1/k− 1/2e gaps as ε→ 0. To see this, consider the
right side of a disk Di, where Ri defines an interval of
width k/2 on this right side. Since Di has unit radius,
d(1 − k/2)/ke additional intervals (and thus gaps, one
to the left of each interval) may be at least partially
covered by the right half of Di. Thus, the union of the
solutions for each gap has an approximation factor of
2d1/k − 1/2e for covering PR.

2.2 Covering PR
To cover the points remaining after the previous step,
we iteratively add the right-most rectangle that covers
the left-most remaining point to the solution, as detailed
in Algorithm 1 (Greedy-Rectangles).

1If h = 0, all points and disk centres are collinear, and
PR is empty. This setting is solved optimally by the Greedy-
Rectangles algorithm detailed in Section 2.2.

2Covering the points in the union of the gaps cannot be covered
optimally in general, as the hardness proof for WSDUDC (Section
3) only has points in gaps.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Algorithm 1 Greedy-Rectangles(R,PR)

R′ ← ∅, sort R by x-coordinate, sort PR by left boundary
while PR 6= ∅ do

p` ← left-most point in PR
Rr ← right-most rectangle in R covering p`
R′ = R′ ∪Rr

PR = PR \ (Rr ∩ PR)
return R′

Lemma 2 A rectangle R′i selected by Greedy-
Rectangles may overlap another rectangle R′i−1 (the
previous rectangle chosen) by k − ε, for any ε > 0.

Proof. The left rectangle R′i−1 covers a point p` which
is to the left of the right rectangle R′i, which in turn
covers a point pr to the right of R′i−1. By pushing p` to
the left edge of R′i−1 and pr to the right edge of R′i, the
rectangles may be overlapped so that R′i−1 lies ε to the
left of R′i, and both are chosen. �

Lemma 3 Let R′ = {R′1, . . . , R′|R′|} be the set of rect-
angles found by Greedy-Rectangles, indexed from
left to right so that ∀i, j, i < j ↔ left(R′i, R

′
j) where

left(R′i, R
′
j) indicates that R′i is left of R′j. Then

∀i, j, j > i + 1→ R′i ∩R′j = ∅.

Proof. Suppose that this is not the case and R′i
and R′j intersect although there exist rectangles
R′i+1, . . . , R

′
j−1 ∈ R′, where i + 1 ≤ j − 1. Let

P ′ be the set of points covered by the rectangles
R′i+1, . . . , R

′
j−1. P ′ is covered entirely by R′i ∪ R′j , and

none of R′i+1, . . . , R
′
j−1 are the right-most rectangle cov-

ering a point to the right of R′i, so they would not be
chosen by Greedy-Rectangles. �

Lemma 4 Greedy-Rectangles computes a cover of
PR with an approximation factor of 3d1/k− 1/2e times
the optimal solution.

Proof. Consider the maximum number of rectangles
in the Greedy-Rectangles solution that may be re-
placed by a single disk Di in the strip. One of the
rectangles available to the algorithm is Ri ⊂ R◦i , where
R◦i is circumscribed by Di. By Lemma 2, there may be
another rectangle ε to the left or right of Ri which will
be selected by the algorithm, and so the approximation
factor is at least 2. It may be possible to pack addi-
tional pairs of nearly overlapping rectangles as densely
as permitted by Lemma 3 so that the points covered
by these rectangles are also covered by Di. Since all
disks have unit radius and R◦i is circumscribed, each
side of Di can potentially cover all points covered by
at most 2d(1 − k/2)/ke − 1 additional rectangles (see
Figure 2). This analysis is similar to Section 2.1, but
now all rectangles are paired except for the right-most
one (in a right-most pair, the region covered only by the

D1 R◦
1

D2

D3

D4

D5

D6R◦
2

R◦
3

R◦
4

R◦
5

R◦
6

q1 q2
q3

q4

q5

q6

q7

q8

q9

Figure 2: An illustration of Lemma 4. We wish to know
the number of rectangles in which a disk, say D1, may
possibly cover all points. D1 may be paired with an-
other rectangle as described in Lemma 2, we illustrate
this with D2. We now wish to determine how many dis-
tinct rectangles may be covered to the right of this pair
(the case for the left side is analogous). In this case, we
have h = 0.97, and so 2d(1−k/2)/ke−1 = 3. We see this
with R◦3, R

◦
4, R

◦
5, as D1 covers all points in these rect-

angles. It is possible that D1 covers points contained in
a rectangle paired with the right-most rectangle in this
set (e.g., q8 ∈ D1 ∩R◦6), but such points are covered by
R◦5 as well.

right rectangle cannot be covered at all by Di since we
consider the pairs to have width k, i.e. ε = 0). Thus,
the total approximation factor is 4d1/k − 1/2e. �

Greedy-Rectangles requires both the set of rectan-
gles R and the set of points PR to be sorted in left to
right order. The sorted lists are each walked through
once, so the running time is O(m logm + n log n).

2-approximation when k ≥ 2/3 (h ≤ 2
√

2/3). The
general algorithm for covering PR presented above has
an approximation factor of 4 when k ≥ 2/3. For each
pair of consecutive rectangles R′i−1 and R′i found by
Greedy-Rectangles, we determine whether there ex-
ists a disk Dj such that (R′i−1 ∪R′i) ∩ P ⊆ Dj ∩ P. To
do so, we run through R′ in order, and check whether
the current pair may be replaced by any disk in D.

Consider a disk Di ∈ D?, which may or may not be
a member of our refined solution set. Di may intersect
at most four rectangles in R′. Every consecutive pair
of rectangles in R′ now requires at least two disks, so
at least two disks are required to cover any four consec-
utive rectangles. Therefore, the overall approximation
factor is two. This operation will scan m disks for ev-
ery possible disk to remove from the solution, so the

24th Canadian Conference on Computational Geometry, 2012

operation takes O(m2n + n log n) time.

Optimal solution when k ≥ 6/5 (h ≤ 4/5). In this
case3, the PR sub-problem may be solved optimally us-
ing dynamic programming. We define a set of disks Ds

as mutually spanning if each disk in Ds covers a non-
empty set of points which lies to the left of all other
disks in Ds, as well as a non-empty set of points lying
to the right of all other disks in Ds.

Lemma 5 If h ≤ 4/5, an optimal solution to PR re-
quires mutually spanning sets of cardinality at most 3.

Proof. Suppose that there exists a mutually spanning
set of four disks in the optimal solution. Recall that
each point in the set PR is covered by some rectangle
circumscribed by a disk. Using Lemma 3, we show that
a set of four rectangles exists which covers all of the
points covered by the four disks. At least one rectangle
is required to cover the left-most point, then there may
be a pair of width at least k, and a final rectangle spans
an additional k. The maximum width in a strip for
a mutually spanning set of disks of any cardinality is
3−k/2; note that 2k > 3−k/2 when k > 6/5. Therefore,
any solution which uses four mutually spanning disks to
cover a set of points P ′ may use (at most) four rectangles
to cover a set of points P ′′, where P ′ ⊆ P ′′. �

By Lemma 5, a dynamic program which add disks to
the solution in a left-to-right fashion need only con-
sider up to triples of disks to terminate sub-problems
to ensure that the sub-problems are independent and
optimal. Such a dynamic program is described in Al-
gorithm 2. In the algorithm, D2 and D3 are the sets
of mutually spanning doubles and triples of disks re-
spectively, and D is the set of all sets of disks under
consideration. Given two sets Di,Dj ∈ D, if Di cov-
ers points left of Dj , and Dj does not cover points left
of Di, we write Di <c Dj to indicate this relationship.
Otherwise, we consider them incomparable under this
operator. Hence, we may establish a partially ordered
set over all of the sets in D w.r.t. the <c operator. Note
that directed cycles are impossible in this set, since the
transitive property holds for the <c operator. We im-
pose a topological sorting D = {D1, . . . ,D|D|} so that
for any two sets Di,Dj in this ordering, we have that
i < j → Dj 6<c Di.

The correctness of Optimal-PR follows from the fact
that all points left of a set Di are covered in a valid
solution to a subproblem terminating with Di, and all
mutually spanning sets up to size three are considered.
Optimal-PR runs in O(m6n) time: there are O(m3)
possible combinations of disks that we consider in two

3A similar dynamic programming algorithm applies to larger
strips, but the running time increases rapidly with h.

Algorithm 2 Optimal-PR (D,PR) (Assumes k ≥
6/5)

D← D ∪D2 ∪ D3, m′ ← |D|
Topologically sort D on the <c operator
c[0] = 0, c[1 . . .m′] =∞
for i = 1 . . .m′ do

for j = 0 . . . i− 1 do
size ← c[j] + |Di|
if size < c[i] and no points lie between Di and Dj

then
c[i]← size

Backtrack on c to recover optimal cover D?

return D?

nested for loops, and inside the nested loop we check
the disks against the point set P.

2.3 Combining solutions for PR and PR
Recall that the approximation factor for covering the
entire set of PR is 2d1/k − 1/2e and 4d1/k − 1/2e
for covering PR, where k is the width of the rectan-
gles. We simply sum these factors to get an overall
approximation factor of 6d1/k − 1/2e < 3d1/

√
1− h2e

for strips of arbitrary height h < 1. The running time is
O(m2n+n log n), effectively dominated by the SSDUDC
algorithm used to cover PR.

4-approximation when k ≥ 2/3 (h ≤ 2
√

2/3). We
have a 2-approximate algorithm for PR when k ≥ 2/3,
and we may solve each gap of PR optimally. For the
purposes of counting, we may assume that the disks
forming the cover for each gap are equally distributed
amongst the neighbouring intervals for both the approx-
imate solution and the optimal one. We are not in-
terested in the worst-case approximation factor in any
given interval; rather we are interested in the approxi-
mation factor over the strip as a whole. For each gap,
only disks found in adjacent intervals may form part of
the solution. Disk centres are located at least a distance
1/3 from the end of an interval, and so disk centres in
non-adjacent intervals are more than unit distance away
from the gap. Thus, for each interval of the strip, as-
sume that n` (resp. nr) disks are used for covering the
gap to the left (resp. right), and ns disks are used for
covering the points in the interval. The minimum num-
ber of disks required is max{n`, ns/2, nr}, since both n`

and nr are optimal and ns is a 2-approximation. We
conclude that n` + ns + nr ≤ 4 ·max{n`, ns/2, nr}, and
thus it is a 4-approximation algorithm. Again, the run-
ning time is O(m2n + n log n).

3-approximation when k ≥ 6/5 (h ≤ 4/5). We have
optimal algorithms for computing the cover of each gap

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

of PR and each interval of PR. Further, the disks cov-
ering a gap only come from the two adjacent intervals,
and the disks covering an interval only come from the
interval itself. Since the disks in each interval can con-
tribute to only three problems, each of which is solved
optimally, the worst-case is that three times the opti-
mal number of disks is used. The running time of the
algorithm is dominated by Optimal-PR, so the overall
running time is O(m6n).

2.4 Application to DUDC

As a corollary of our results, we note that we may
slightly improve upon the approximation factor of the
previous best result for DUDC outside of the PTAS (an
18-approximation [7]), albeit with an increase in run-
ning time. Their algorithm first divides the plane into
horizontal strips of height 1/

√
2, and WSDUDC is run

in each strip using a 6-approximate algorithm. Remain-
ing uncovered points are covered using disks centred
outside their strips with a 12-approximate algorithm.
Substituting the 3- (resp. 4-) approximate WSDUDC
algorithm outlined in this paper provides a 15- (resp.
16-) approximate algorithm for DUDC, which runs in
O(m6n) (resp. O(m2n + n log n)) time.

Corollary 6 There is a 15- (resp. 16-) approximate
algorithm for DUDC, which runs in O(m6n) (resp.
O(m2n + n log n)) time.

3 Hardness of WSDUDC

We prove that WSDUDC is NP-complete by reduc-
ing from the minimum vertex cover problem (Vertex-
Cover) on planar graphs of maximum degree three,
which is known to be NP-complete (and APX-hard)
[9, 1]. Recall the setting for Vertex-Cover: We
are given a graph G = (V,E), and we seek a min-
imum cardinality subset V ? ⊆ V such that for all
e(i,j) = (vi, vj) ∈ E, either vi ∈ V ? or vj ∈ V ?. In
other words, the vertex cover is a minimum cardinality
hitting set of all of the edges in the graph.

Theorem 7 WSDUDC is NP-complete.

WSDUDC is in NP, since a certificate may be pro-
vided as a set of disks that covers all of the points in P,
which is trivial to verify.

In the reduction, we create an instance of WSDUDC
from a planar graph so that a solution D? to the WS-
DUDC problem provides a solution V ? to the Vertex-
Cover problem on the graph. For our reduction, it is
easier to consider the dual (disk piercing) setting of WS-
DUDC. The Within-Strip Discrete Unit Disk Piercing
problem (WSDUDP) accepts a set of points Q, a set
of unit disks DP with centre points P, and a strip of
height h as inputs, and computes the minimum number

of points Q? ⊆ Q such that each disk in DP contains at
least one point from Q?. Let WS(G) be the WSDUDP
instance created from a graph G. Note that a solution
Q? for WSDUDP is exactly the set of centre points to
D?, the optimal solution to the WSDUDC problem in
the primal setting.

Assume that we have a planar embedding of the graph
and a horizontal strip so that the terms left, right, above
and below are all well defined. Let `vvert be a vertical
line through vertex v. For the reduction, we make use
of dummy vertices, which are simply extra vertices that
we may place on an edge of the graph G. A dummy edge
is an edge which is incident upon at least one dummy
vertex. Informally, the steps of the reduction are:

1. Obtain a planar embedding of G where each vertex
has a distinct x-coordinate.

2. For any vertex v with degree three where all inci-
dent edges are left or right of `vvert, ‘bend’ the lowest
edge with a dummy vertex so that the edge becomes
incident to v from the opposite side of `vvert, call this
new graph G′ = (V ′, E′).

3. For each vertex v ∈ V ′, add a dummy vertex at
each point where `vvert ∩ e 6= ∅,∀e ∈ E′.

4. Identify each vertex v of degree one or two where
all edges are incident on the same side of `vvert, say
w.l.o.g. the edges are incident from the right. Place
a vertical line `vert between v and the next vertex
to the left, and add a dummy vertex at each point
where `vert ∩ e 6= ∅,∀e ∈ E′. This ensures that
consecutive vertical arrays of vertices differ in car-
dinality by at most one.

5. For any pair of vertices vi, vj ∈ V , ensure that an
even number of vertices occur any path from vi to
vj in G′, by adding additional dummy vertices.

6. Create the WSDUDP instance WS(G) from G′ so
that every edge in E′ corresponds to a disk in D and
every vertex in V ′ to a point in Q. We then show
that an optimal solution to WSDUDP provides an
optimal cover for G′, from which an optimal vertex
cover for G may be found, as required.

Lemma 8 Given an edge e(i,j) of the graph G = (V,E),
we can add a pair of adjacent dummy vertices Vd =
{vi1 , vi2} along the edge e(i,j) to create the graph G′ =
(V ∪Vd, E ∪{e(i,i1), e(i1,i2), e(i2,j)}\{e(i,j)}). The graph
remains planar, and the cardinality of the optimal solu-
tion to Vertex-Cover over G′ is |V ?| + 1, where V ?

is the set of vertices in a minimum vertex cover of G.

Proof. By placing the dummy vertices directly on the
edge e(i,j) in any embedding, planarity is preserved.
There are two possibilities for a minimum vertex cover

24th Canadian Conference on Computational Geometry, 2012

}}

dvertdvert/2 ddisk

`1

`2

(a)

(b)

trans-2

cis-3

trans-3

cis-2

Figure 3: A sample WSDUDP construction WS(G) for the NP-hardness reduction. (a) Given a graph G, we compute
a planar embedding (see Section 3.1 for vertex classes). (b) We construct a series of stacks of disks, where disks in
adjacent stacks have slight overlap. The disk centres in each stack are aligned vertically and separated by a fixed
distance dvert. The number of disks in adjacent stacks may only vary by one. If two consecutive stacks have the same
number of disks, the centres are aligned horizontally and separated by ddisk. If two consecutive stacks have differing
numbers of disks, the centres are staggered vertically by dvert/2, so that each disk centre is ddisk from two disk centres
in the adjacent stack (thus, these stacks are distance

√
d2disk − d2vert apart). The points of Q are indicated by squares;

those points stabbing three disks are empty. The centre points of the disks P are displayed as filled circles.

V ? over an edge e(i,j) in G = (V,E); either one or both
of its vertices are in V ?. The addition of a pair of
dummy vertices {vi1 , vi2} on e(i,j) creates three edges
in place of e(i,j): {e(i,i1), e(i1,i2), e(i2,j)}, with e(i,i1) and
e(i1,i2) sharing the dummy vertex vi1 , and e(i1,i2) and
e(i2,j) sharing the other dummy vertex vi2 .

In the first case, e(i,j) is covered by one vertex from
V ?, say vi. e(i,i1) is covered by V ?, but e(i1,i2) and e(i2,j)
are not. The only optimal cover is to add the shared
dummy vertex vi2 to the solution. Therefore, the size
of the optimal solution increases by one. In the second
case, e(i,j) was covered by both vi and vj in V ?, and
so e(i,i1) and e(i2,j) are covered. Therefore, arbitrarily
selecting one of the dummy nodes to cover e(i1,i2), say
vi1 , increases the size of the optimal solution by one. Al-
though e(i,i1) is covered by two vertices, the topology of
the graph and cover local to vi remains unchanged. �

Lemma 9 Given any optimal solution V ?
G′ to Vertex-

Cover on G′, we can find an optimal solution V ?
G to

Vertex-Cover on G in polynomial time.

Proof. Suppose there is only one pair of dummy nodes
in G′. At least one of the dummy vertices from the pair
{vi1 , vi2}must be in the optimal solution V ?

G′ , since they
are the endpoints of the edge e(i1,i2). If only one is in the
optimal solution, say vi1 , we can discard it and return
V ?
G = V ?

G′ \ {vi1} as an optimal solution to Vertex-
Cover on G.

If both vi1 and vi2 are in V ?
G′ , we must discard both

and add either vi or vj to the solution for V ?
G. If vi or

vj is also in V ?
G′ , then the adjacent dummy vertex is

extraneous. Without loss of generality, say vi, vi1 and
vi2 are in V ?

G′ ; this is a contradiction since V ?
G′ \ {vi1}

provides a vertex cover. Therefore neither vi nor vj is in

V ?
G′ , and we may arbitrarily set V ?

G′ = (V ?
G′\{vi1})∪{vi}.

This provides another vertex cover for G′ which is of
equal cardinality, and thus is optimal. Now we are in
the first case again.

If there are more pairs of dummy vertices, this argu-
ment may be applied iteratively to adjacent pairs in G′

until each pair of dummy vertices has only one vertex
in V ?

G′ . If there is exactly one dummy vertex from each
pair in the optimal vertex cover, these may be removed
to provide an optimal vertex cover V ?

G for G by Lemma
8. �

An example WSDUDP construction WS(G) is shown
in Figure 3, to provide intuition for the gadgets used
in the reduction. Each edge of the graph G′ (actual
or dummy) corresponds to a disk in WS(G), and each
vertex (actual or dummy) corresponds to a point in Q.
A point in Q stabs two disks in WS(G) if the degree
of the corresponding vertex in G′ is two; the remaining
points stab three disks and their corresponding vertices
have degree three.

A wire wi is a sequence of disks positioned so that
consecutive centres are spaced ddisk units apart, not
necessarily collinearly, where 2

√
1− h2

` < ddisk <√
2 + 2

√
1− (3h`/4)2, so that there exists a small area

of overlap between consecutive disks which contains
a point in Q.4 Disk centres on adjacent wires are
dvert = 3h`/2 units apart vertically, and we define a
stack as a set of such vertically aligned disks. The cen-
tres of the disks in a stack are shifted within the strip
by dvert/2 relative to an adjacent stack when the num-
ber of disks in the two stacks differs, while the distance
between consecutive centres in each wire remains ddisk.

4Note that 2
√

1− h2
` <

√
2 + 2

√
1− (3h`/4)2 for h` > 0.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Lemma 10 There is a non-empty area of intersection
between three disks in consecutive stacks when the cen-
tres of the stacks are shifted by dvert/2 relative to each

other, and ddisk <
√

2 + 2
√

1− (3h`/4)2.

Proof. Without loss of generality, assume that disks
D1, D2 are in the left stack and D3 is in the right stack,
and their centrepoints are p1, p2, p3 respectively. Let
⊥p1,p2

be the perpendicular bisector between p1 and p2;
p3 lies on ⊥p1,p2

. Let ∂i denote the boundary of Di.
Then there is a unique point to the right of p1 and p2
where ⊥p1,p2 ∩∂1 ∩ ∂2, call this point pr. Now if pr and
p3 are less than unit distance apart, then D3 covers pr
and there is a non-empty area of intersection between
D1, D2, and D3. Elementary arithmetic shows that this

holds when ddisk <
√

2 + 2
√

1− (3h`/4)2. �

3.1 Gadgets

In the graph, we may encounter vertices of degree one,
two, or three. With each vertex, wires may begin, end,
split, merge, or continue unchanged. For vertices of de-
gree one, the incident edge will correspond to a terminal
disk on a wire. For vertices of degree two, if one edge
leaves to the left and the other to the right in the em-
bedding, this is a trans-2 vertex5, and we handle it by
continuing all wires. If both edges go in the same direc-
tion (left or right), we call this a cis-2 vertex, and we
have a gadget to merge the pair of wires corresponding
to the edges. Analogously, we have gadgets for both
the trans-3 and cis-3 degree three vertices. Finally, we
build a gadget to increase the number of vertices on an
edge. With each gadget, we apply the analogous modifi-
cation to G′ by adding dummy vertices to the respective
edges. This ensures that an optimal solution to WS(G)
corresponds exactly to an optimal vertex cover for G′.

cis-2 Gadget. In this case, a pair of wires will ter-
minate, and since the two terminal disks correspond to
a pair of edges sharing a vertex, we place a vertex in the
area covered by both disks and no others. An extra col-
umn of dummy nodes should be used to extend all other
wires if the vertex is on an interior face of the planar
embedding of the graph, since two wires are terminated
simultaneously, and we may only shift wires by dvert/2
with each column.
trans-3 Gadget. Suppose we have an upper wire

ending in disk Du and a lower wire ending in disk Dl,
and they merge into a single wire beginning with disk
Dc. Therefore, we can place Dc at a point so that the
distance between the centres of both Dc to Du and Dc

to Dl is ddisk, as described in Lemma 10. By placing a

5Borrowing from the Latin terms in isomerism, trans means
“on the other side”, and cis means “on the same side”. We label
them relative to a vertical line through the vertex, so a cis vertex
has all incident edges to one side of the vertical line.

vertex in Dc ∩Du ∩Dl, a single point stabs three disks,
which corresponds to a vertex which can cover three
edges in the graph.

cis-3 Gadget. For this gadget, we combine the
trans-3 and cis-2 gadgets to build a cis-3 configura-
tion. In the planar graph embedding, this corresponds
to introducing a bend in the lowest edge incident to the
cis-3 vertex with a dummy vertex, so that it becomes a
trans-3 vertex.

Card+ Gadget. If the total number of dummy ver-
tices added to an edge of G is odd, we require a gadget
which increases the number of disks between a pair of
points on a wire by one. An extra disk whose centre
is very close to the centre point of a disk on the wire
(Figure 4) allows points to be placed so that the wire
remains independent from adjacent wires, while increas-
ing the number of disks on the wire by one.

D1 D2
D3q1 q2 q3p1 p2

Figure 4: The Card+ gadget. We add a disk D2 into
a wire by inserting the disk very close to one of the
others on the wire. Given D1 and D3 on a wire with
p1 ∈ D1∩D3, we add a disk D2 whose centre q2 is beside
q1, and p1 is moved so that p1 ∈ D1 ∩ D2, p1 6∈ D3.
Analogously, p2 ∈ D2 ∩ D3, p2 6∈ D1. Now the wire
contains one more disk that previously, and the new
disk does not cover any points from adjacent wires.

Now an instance of WSDUDP WS(G) may be con-
structed from any planar graph G with no vertex of
degree greater than three. A solution Q? to WS(G) is
also a solution V ?

G′ to the Vertex-Cover problem on
G′ = (V ′, E′), where vi ∈ V ′ is mapped to qi ∈ Q and
qi ∈ Dj ↔ vi ∈ ej ∈ E′. By Lemma 9, we can find
a minimum vertex cover V ?

G for G from V ?
G′ in poly-

nomial time. Therefore, there is a hitting set of size
c + (|D| − |V |)/2 for WS(G) if and only if there exists
a vertex cover of size c for G (exactly half of the extra
points added in the construction of WS(G) from G are
required for a hitting set for D). The number of disks
stacked vertically in any column of WS(G) is in O(m),
where m is the number of edges and n is the number of
vertices in the graph G. The number of such stacks is
in O(n), so the total number of disks and points in the
WSDUDP construction is O(mn). This completes the
proof of Theorem 7.

4 Conclusions

We have outlined several approximation algorithms
for the WSDUDC problem, along with a proof

24th Canadian Conference on Computational Geometry, 2012

of NP-completeness for the problem. The gen-
eral 3d1/

√
1− h2e-approximate algorithm and the 4-

approximate algorithm for strips of height ≤ 2
√

2/3
both run in O(m2n+n log n) time. Finally, we presented
a 3-approximate algorithm for strips of height ≤ 4/5
which runs in O(m6n) time. These results were applied
to the DUDC problem to provide a 15-approximate al-
gorithm. The running time of the DUDC algorithm is
dominated by WSDUDC, so further improvements to
our results will directly apply to DUDC as well.

Acknowledgements

Previous work on the WSDUDC problem was the result
of joint work with Gautam Das and Bradford Nicker-
son. Alejandro Salinger, Patrick Nicholson and Fran-
cisco Claude participated in helpful discussions on this
set of results, and our presentation and several details
have been significantly improved by comments and cor-
rections from anonymous reviewers.

References

[1] P. Alimonti and V. Kann. Some APX-completeness
results for cubic graphs. Th. Comp. Sci., 237(1-2):123
– 134, 2000.

[2] C. Ambühl, T. Erlebach, M. Mihal’ák, and
M. Nunkesser. Constant-factor approximation for
minimum-weight (connected) dominating sets in unit
disk graphs. In APPROX, pages 3–14, 2006.

[3] H. Brönnimann and M. Goodrich. Almost optimal set
covers in finite VC-dimension. Disc. and Comp. Geom.,
14(1):463–479, 1995.

[4] P. Carmi, M. Katz, and N. Lev-Tov. Covering points by
unit disks of fixed location. In ISAAC, pages 644–655,
2007.

[5] F. Claude, G. Das, R. Dorrigiv, S. Durocher, R. Fraser,
A. López-Ortiz, B. Nickerson, and A. Salinger. An im-
proved line-separable algorithm for discrete unit disk
cover. Disc. Math. Alg. & Appl., 2(1):77–87, 2010.

[6] G. Călinescu, I. I. Măndoiu, P.-J. Wan, and A. Z. Ze-
likovsky. Selecting forwarding neighbors in wireless ad
hoc networks. Mob. Net. & Appl., 9(2):101–111, 2004.

[7] G. Das, R. Fraser, A. López-Ortiz, and B. Nickerson.
On the discrete unit disk cover problem. In WALCOM:
Alg. & Comp., pages 146–157. 2011.

[8] T. Erlebach and E. van Leeuwen. PTAS for weighted
set cover on unit squares. In APPROX, pages 166–177.
2010.

[9] M. R. Garey and D. S. Johnson. The rectilinear steiner
tree problem is NP-complete. SIAM J. App. Math.,
32(4):826–834, 1977.

[10] D. S. Hochbaum and W. Maass. Approximation
schemes for covering and packing problems inimage pro-
cessing and VLSI. J. ACM, 32:130–136, 1985.

[11] D. Johnson. The NP-completeness column: An ongoing
guide. J. of Alg., 3(2):182–195, 1982.

[12] T. Matsui. Approximation algorithms for maximum
independent set problems and fractional coloring prob-
lems on unit disk graphs. In JCDCG, pages 194–200.
2000.

[13] N. Mustafa and S. Ray. Improved results on geometric
hitting set problems. Disc. & Comp. Geom., 44:883–
895, 2010.

[14] X. Xu and Z. Wang. Wireless coverage via dynamic
programming. In WASA, pages 108–118. 2011.

[15] D. Yang, S. Misra, X. Fang, G. Xue, and J. Zhang. Two-
tiered constrained relay node placement in wireless sen-
sor networks: Efficient approximations. In (SECON),
pages 1 –9, 2010.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Appendix

SSDUDC Algorithm

Ambühl et al. [2] outlined a dynamic program for the SS-
DUDC problem, and established that it was a polynomial
time algorithm. In Algorithm 3, we provide pseudocode
for SSDUDC based on their ideas, so that we may analyze
the worst case running time. We make use of the function
neq(j, j′), which evaluates to 1 if j 6= j′, and 0 otherwise.
Assume that the lines `1 and `2 are horizontal, and that all
points in P are contained in the strip defined by the lines.
Furthermore, assume that all disks in D are centred outside
of the strip. We denote the weight of disk Di by wDi , and
the weights of the lines are w`1 = w`2 = 0

Algorithm 3 SSDUDC(P,D)

Sort P left-to-right
Divide D into DU and DL (disks centred above `1 and
below `2 resp.)
DU ← DU ∪ {`1}, DL ← DL ∪ {`2}
for i := 1 to n do

// Find optimal solution covering all points up to pi−1

wopt ←∞, j′ ← 0, k′ ← 0
for j := 1 to |DU | do

for k := 1 to |DL| do
if i > 1&wopt > T [i− 1, j, k] then

wopt ← T [i− 1, j, k], j′ ← j, k′ ← k
for j := 1 to |DU | do

for k := 1 to |DL| do
T [i, j, k]←∞ // Base case (i.e. if pi 6∈ DU

j ∪DL
k)

if pi ∈ DU
j ∪DL

k then
if i = 1 // Initialize the DP table then

T [1, j, k]← wDU
j

+ wDL
k

else
T [i, j, k] ← min{T [i, j, k], T [i − 1, j, k], T [i −
1, j′, k′] + neq(j, j′) ·wDU

j
+ neq(k, k′) ·wDL

k
}

// Backtrack from optimal weight cover on pn to find D?

return D?

This algorithm is dominated by the three for loops and the
initial sorting operation; the latter contributes O(n logn) to
the final running time. The outer loop may iterate O(n)
times, while the inner two loops may iterate O(m) times
each. All the work performed in the inner-most loop may
be done in constant time, so the total running time of this
implementation is O(m2n + n logn).

It is tempting to use a similar dynamic program to im-
prove the running time of Algorithm 2 (Optimal-PR). How-
ever, for the SSDUDC algorithm, we have the property that
disks in the solution are each active (i.e. the lowest up-
per disk or highest lower disk [2]) on a contiguous set of
points in the sorted set P. This property does not hold for
our formulation of the PR covering problem when h ≤ 4/5
(refer to Section 2.2 for definitions); there may exist a se-
quence of points {pi, pi+1, pi+2} ∈ P and mutually spanning
sets Dj ,Dk in the optimal solution, where pi, pi+2 ∈ Dj and
pi+1 ∈ Dk. Therefore, a dynamic program which iteratively
determines the optimal cover for the points of P is not nec-
essarily correct for the PR covering problem.

