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Abstract

We describe a pure divide-and-conquer parallel algo-
rithm for computing 3D convex hulls. We implement
that algorithm on GPU hardware, and find a significant
speedup over comparable CPU implementations.

1 Introduction

The 3D convex hull problem is to identify, for a given
set of n points in R3, the minimal set of input points
such that the convex envelope of those points contains
all input points. The problem is fundamental to com-
putational geometry and has been studied extensively.
Several O(n log n) time algorithms are known, with var-
ious trade-offs in constant factors, simplicity, numerical
robustness, data structure dependencies, and nondegen-
eracy requirements (see e.g. [1] [3] [6] [7] [9] [14] [16]).
Chan’s celebrated output-sensitive algorithm [4] runs in
O(n log h) time, where h denotes the number of faces in
the output hull, which is asymptotically optimal.

A graphics processing unit (GPU) is a parallel co-
processor available in commodity computers. An out-
growth of the computer gaming industry, GPUs utilize a
highly-parallel single instruction multiple data (SIMD)
architecture. At a high-level, GPUs work by applying a
concise constant-space function called a kernel to all el-
ements of an array simultaneously. Kernels are written
in domain specific embedded languages (DSELs) such as
NVIDIA’s CUDA [13] or the OpenCL [10] open stan-
dard. Each kernel instance is passed an integer global
identifier (id) which is customarily used to delineate
the ranges of input that each kernel invocation applies
to. The potential performance, measured in either gi-
gaFLOPS or memory bandwidth, of GPUs is substan-
tially greater than that of multicore CPUs. However, re-
alizing this potential on practical problems, besides the
embarrasingly-parallel graphics applications for which
GPUs were originally designed, has proven challenging.
By and large, existing parallel algorithms depend on
facilities, such as message passing and/or synchroniza-
tion primitives, which are unavailable in the GPU envi-
ronment. Yet, GPUs are purpose-built for high perfor-
mance computation on low-dimensional geometric ob-
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jects, and the opportunity to apply them to computa-
tional geometry problems cannot be ignored.

While the 3D convex hull problem has been studied
extensively in the standard computational model, pre-
cious little past work is applicable to GPU implemen-
tations. As stated above, GPU kernels cannot com-
municate with or synchronize against each other. This
limitation rendered unusable every PRAM-model algo-
rithm we surveyed (e.g. [2]). Further, running kernels
have no provision for dynamic memory; their collective
input and output must be allocated before the kernels
execute en masse and freed afterward. Accordingly dy-
namic data structures are off limits. The absence of
the doubly connected edge list (DCEL) structure is a
particularly formidable obstacle in this context.

There are several results on computing 2D hulls
purely on the GPU [8] [15] [17], but results on the
more general and complex 3D problem have been elu-
sive. While preparing this manuscript, we became aware
of an independent result on the 3D problem [18]. That
algorithm uses heuristics to cull many, but not all, inte-
rior points on the GPU, then feeds the remaining points
to a black-box CPU hull implementation (e.g. Quick-
Hull [3]). Experimental results show that the hybrid
approach achieves a speedup factor of 10–46 times [18]
on a GPU with approximately 1581 peak gigaFLOPS
[11]. The algorithm presented here achieves a speedup
of roughly 8 times on a GPU with 54 peak gigaFLOPS
[12], while using a pure GPU divide-and-conquer ap-
proach. The pure approach is conceptually simple, and
its worst case running time is not impacted by the pres-
ence of outlier points.

2 Algorithm

Our algorithm is an adaptation of Chan’s minimalist
3D convex hull algorithm [5]. Note that this O(n log n)-
time algorithm is distinct from the O(n log h)-time al-
gorithm mentioned earlier, also authored by Chan. The
minimalist algorithm is, by design, a straightforward
top-down divide-and-conquer algorithm for computing
3D convex hulls. It was originally motivated by peda-
gogical needs for an algorithm that achieves a favorable
O(n log n) running time, while being simple to explain
and implement and avoiding dependency on difficult
data structures or algorithms. Serendipitously these
design constraints correspond to those imposed by the
GPU.
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Figure 1: Algorithm Events.

The minimalist algorithm works by recasting the 3D
problem as a 2D kinetic problem. 3D (x, y, z) points
are mapped to (x, y,∆y) points with an initial (x, y)
starting point and ∆y vertical rate of speed. As time t
advances, the points move at distinct velocities, which
triggers structural changes in the convex hull of the
points (see Figure 1). Computing the convex hull of
the original 3D points may be visualized as comput-
ing a kinetic movie of these configurations for all values
−∞ < t <∞. The algorithm represents this movie as a
chronological sequence of events when input points are
added to, or removed from, the hull. Input points are
presorted by x-coordinate; event sequences for roughly
equal-size subsets are generated recursively, then com-
bined by a Graham-scan-like O(n) merging process. In
the base case a single point nominates itself as the only
convex hull point.

While the minimalist algorithm boasts many of the
features necessary for GPU implementation, it cannot
be ported to the GPU directly. GPU kernels cannot be
recursive, so the top-down divide-and-conquer approach
is inappropriate. Instead, the algorithm must be reori-
ented into one or more mapping steps where an array
of input data elements are mapped by a kernel to an
array of output data elements. We achieve this reori-
entation by rewriting the minimalist algorithm to use
bottom-up divide and conquer. We define a movie array
data structure as a table of event logs. Our algorithm
allocates a single movie array, and initializes one triv-
ial event log for each input point. Then, our algorithm

// CPU Algorithm Point

struct Point {

double x, y, z;

Point *prev , *next;

void act() {...}

};

// GPU Algorithm Point

struct Point {

cl_float x;

cl_float y;

cl_float z;

cl_int prev;

cl_int next;

};

Figure 2: Differences in the Point datatype.

repeats a merge step that combines each pair of event
logs with adjacent indices into a single event log. A
merge step maps a movie array with n logs of length at
most l to a new array with at most dn/2e logs of length
at most 2l each. Thus, after dlog2 ne merge steps, the
movie array contains a single event log for the entire
point set. The key property of this algorithm with re-
spect to GPU computation is that each log merge may
be performed entirely independently of the others. Each
kernel has a particular range of input movie array in-
dices to read from, and a corresponding range of output
indices to write to, and may perform its computation
independently of other concurrent kernel instances.

3 Implementation

Our implementation of the GPU algorithm follows
the bottom-up divide-and-conquer design as mentioned
above. As shown in Figure 3, the point structure in
the CPU algorithm uses a doubly linked list connected
by pointers. The idea is to divide the sorted list down
into trivial subsequences and build the list back up to
the desired set of faces on the convex hull. Memory
pointers are difficult (though not impossible) to move
between the CPU and GPU since the two devices have
distinct memory spaces. Also, on the GPU each kernel
instance needs to seek to its assigned sub-input based
on its global id, which could take O(n) time using a list
structure. For these reasons, our GPU implementation
uses arrayed lists with integer indices rather than linked
lists with node addresses (Figure 3).

Modifying the way data is stored impacts the way
data is accessed. Figure 4 shows the differences in
act() function used for inserting and deleting points
from event logs. Figure 5 shows the differences in pass-
ing potential faces into the event-time calculations.

The implementation process began with converting
the original CPU algorithm to use arrays rather then
pointers to represent the data. Point data is imple-
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// CPU Algorithm list of points

Point *P = new Point[n];

...

// Sorts points into a doubly

// linked list based x- coordinate .

Point *list = sort(P, n);

// event lists

Point **A = new Point *[2*n];

Point **B = new Point *[2*n];

// GPU Algorithm list of points

Point *P = (Point *)

malloc(n*sizeof(Point ));

// event lists

cl_int *A = (cl_int *)

malloc (2*n*sizeof(cl_int ));

cl_int *B = (cl_int *)

malloc (2*n*sizeof(cl_int ));

Figure 3: Differences in list creation.

// CPU Algorithm act () function call

point ->act()

// CPU Algorithm act () function

struct Point {

...

void act() {

if (prev ->next != this) {

// insert point

prev ->next = next ->prev = this;

}

else {

// delete point

prev ->next = next;

next ->prev = prev;

}

}

};

// GPU Algorithm act () function call

act(pointIndex );

// GPU Algorithm act () function

void act(int pointIndex) {

if (P[P[pointIndex ].prev].next

!= pointIndex) {

// insert point

P[P[pointIndex ].prev].next

= P[P[pointIndex ].next].prev

= pointIndex;

}

else {

// delete point

P[P[pointIndex ].prev].next

= P[pointIndex ].next;

P[P[pointIndex ].next].prev

= P[pointIndex ].prev;

}

}

Figure 4: Differences in act() functions.

// CPU Algorithm time [0] calculation

t[0] = time(B[i]->prev ,

B[i],

B[i]->next);

// GPU Algorithm time [0] calculation

t[0] = time(P[B[i]].prev ,

B[i],

P[B[i]]. next);

Figure 5: Differences in time calculations.

dataOffsetValue = 2;

totalMergesLeft = numberOfPoints /2;

do {

numberOfThreads = totalMergesLeft;

runGPUkernels ();

swap(A, B);

dataOffsetValue = dataOffsetValue *2;

totalMergesLeft = totalMergesLeft /2;

} while(totalMergesLeft > 1);

Figure 6: Main outer loop ran on the CPU to handle
the execution of threads on the GPU.

mented as its own data type with the x, y, and z values
along with indices to represent the next and previous
pointers to reference other points based on their array
index. Also, instead of having two pointer lists, A and
B, we have two arrays of indices that reference a master
list P of points.

Another significant change we made to the design is
the conversion from a top-down design to a bottom-
up design. Instead of using recursion, the heart of the
algorithm is placed within one while loop as shown in
Figure 6. Before implementing this routine as OpenCL
kernel code, we wrote a simulation to run on the serial
CPU to ensure validity of the algorithm. The ultimate
goal of writing a simulation is to avoid the troublesome
task of debugging GPU kernel code. This simplified the
task of converting the simulation code to GPU kernel
code and required only minimal modifications.

Figure 6 shows pseudocode for the main outer loop
which runs on the CPU. The main loop uses two movie
array structures, both of which exist on the GPU. The
two structures alternate between serving as the input
and output of a merge step. This approach makes it
possible to avoid transferring point data between the
GPU and CPU inside the loop, which is desirable as
that is an expensive operation. The dataOffsetValue

is used to calculate the location of where the head of
the leftGroupIndex and rightGroupIndex exist on
the globally accessed master list of points P as shown
in Figure 7. To handle the way the CPU algorithm
swaps lists A and B in each divide routine, we swap
the kernel arguments of A and B in the swap(A, B)

function after each iteration of merges. Following the
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// the index of where the head of the

// left group of the list can be found

// on the globally accessed array

leftGroupIndex

= global_ID*dataOffsetValue;

// the index of where the head of the

// right group of the list can be found

// on the globally accessed array

rightGroupIndex

= [leftGroupIndex +(( global_ID +1)

*dataOffsetValue )]/2;

// the index of where the globally

// accessed event list begins for the

// group of merges based on the global_ID

eventListOffset = leftGroupIndex *2;

Figure 7: GPU kernel code: how the GPU knows which
hulls should be merged and which parts of the global
data to access.

swap(A, B) function, dataOffsetValue is updated to
tie into the next set of group index calculations. Fi-
nally, totalMergesLeft is cut in half to represent the
number threads to take place in the next iteration of
merges. When totalMergesLeft reaches less than 2,
the algorithm exits the main while loop as there is no
pair of hulls left to be merged together; only one hull is
left which represents the final solution.

The C++ and OpenCL source code for our imple-
mentation is freely available on the web [19].

4 Experimental Results

The GPU algorithm shows significant improvements
over the CPU algorithm. Peak performance of the GPU
algorithm reaches a roughly 8x speedup over the CPU
algorithm (see Figure 10). Figures 8, 9 and 11 summa-
rize the runtime of both algorithms expressed in mil-
liseconds.

The runtime data was collected on a 2009 Apple
MacBook Pro running Mac OS X 10.7.4 and OpenCL
1.2. The CPU is an Intel Core 2 Duo with two cores
each running at a clock rate of 2.26 gigahertz, and
together achieving approximately 13.6 gigaFLOPS ac-
cording to the LINPACK benchmark tool. The CPU
results are for Chan’s own C++ implementation of the
minimalist algorithm, which runs in a single thread.
The test machine’s GPU is an NVIDIA GeForce 9400M
with 16 stream pipelines running at 450 megahertz, for
a manufacturer-claimed throughput of 54 gigaFLOPS
[12]. This CPU and GPU combination is relatively low-
performance by contemporary standards.

The inputs to each algorithm are four families of point
sets with various statistical properties, generated proce-
durally via a pseudorandom number generator. Each
coordinate in the Uniform point set is selected from

n Uniform Normal 3 Clusters Cube Surface
212 3.58 4.12 4.06 5.08
213 4.60 5.30 4.91 5.07
214 5.57 5.68 5.66 5.68
215 6.10 6.00 5.93 5.91
216 6.01 5.94 5.89 5.49
217 6.32 6.25 6.34 6.29
218 6.40 6.47 6.45 6.27
219 6.84 6.89 6.74 6.48
220 6.98 6.83 6.98 6.86
221 7.21 7.23 7.10 7.00
222 7.63 7.71 7.28 7.43
223 7.92 7.97 7.99 8.07

Figure 10: GPU speedup factor.
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Figure 11: Runtime graph for n data points.

a uniform distribution, yielding a cube-shaped point
cloud. Each coordinate in the Normal point set is an off-
set from 0 drawn from a normal distribution, yielding a
dense cluster around the origin with a small proportion
of outliers. The points in the 3 Clusters set are offset in
the same way from one of three centroids; each point’s
centroid is chosen uniformly at random. The points in
the Cube Surface set are uniform-distributed points on
the surface of a cube, with a small normally-distributed
inward or outward perturbation. Unlike the other dis-
tributions, a high proportion of the points in the Cube
Surface are members of the convex hull.

The runtime results are the mean and standard devi-
ation of 50 repeated trials. Elapsed times are measured
with the gettimeofday system call which is precise to
microseconds.

Originally, a hybrid approach to the GPU algo-
rithm seemed to be a more attractive solution to solv-
ing the problem. The hybrid GPU algorithm would
perform nearly all of the merge steps on the GPU,
then perform the last few steps on the CPU after the
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n
Uniform Normal 3 Clusters Cube Surface

Mean σ Mean σ Mean σ Mean σ
212 1.16× 10 1.76 1.05× 10 0.885 1.14× 10 0.951 1.18× 10 0.616
213 2.12× 10 0.591 1.95× 10 0.544 2.11× 10 0.580 2.31× 10 0.495
214 4.35× 10 1.01 3.98× 10 0.340 4.33× 10 0.803 4.72× 10 0.800
215 8.74× 10 .978 8.03× 10 1.11 8.72× 10 0.571 9.36× 10 0.787
216 1.77× 102 1.97 1.63× 102 1.43 1.77× 102 1.24 1.91× 102 1.13
217 3.63× 102 1.86 3.32× 102 2.66 3.63× 102 2.32 3.97× 102 3.31
218 7.12× 102 3.94 6.47× 102 2.17 7.13× 102 6.86 7.98× 102 2.70
219 1.35× 103 13.1 1.24× 103 6.33 1.35× 103 4.26 1.54× 103 7.08
220 2.31× 103 12.0 2.12× 103 16.3 2.31× 103 6.14 2.87× 103 8.54
221 3.76× 103 80.6 3.46× 103 13.0 3.75× 103 14.3 4.90× 103 12.9
222 6.17× 103 14.1 5.77× 103 23.1 7.64× 103 55.7 8.12× 103 62.1
223 8.31× 103 69.0 7.95× 103 30.6 8.08× 103 118.7 8.72× 103 33.3

Figure 8: CPU algorithm runtimes.

n
Uniform Normal 3 Clusters Cube Surface

Mean σ Mean σ Mean σ Mean σ
212 3.24 1.60 2.54 0.908 2.82 1.37 2.32 0.551
213 4.12 1.37 3.68 0.683 4.30 0.995 4.56 1.28
214 7.80 1.73 6.88 1.75 7.64 1.95 8.30 1.05
215 1.43× 10 0.768 1.33× 10 3.26 1.47× 10 1.46 1.58× 10 1.46
216 2.94× 10 3.13 2.74× 10 7.51 3.00× 10 4.65 3.48× 10 5.34
217 5.73× 10 3.32 5.32× 10 5.31 5.73× 10 4.44 6.32× 10 1.65
218 1.11× 102 7.59 1.00× 102 6.91 1.11× 102 6.56 1.27× 102 10.1
219 1.97× 102 6.57 1.80× 102 9.78 2.00× 102 10.4 2.38× 102 9.02
220 3.31× 102 12.9 3.11× 102 34.5 3.31× 102 14.5 4.19× 102 17.1
221 5.22× 102 14.3 4.78× 102 11.8 5.27× 102 45.4 7.00× 102 20.4
222 8.08× 102 31.4 7.49× 102 21.3 1.03× 103 24.9 1.11× 103 34.9
223 1.05× 103 24.7 9.97× 102 23.4 1.00× 103 37.7 1.09× 103 31.1

Figure 9: GPU algorithm runtimes.
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Figure 12: Speedup graph for n data points.

totalMergesLeft variable reached a certain value. The
premise of this approach is that the last few iterations
are poorly parallelizable and could be more quickly per-
formed by a serial CPU. To accomplish this, the par-
tially computed data would need to be copied from GPU
memory to memory that the CPU has access to. On
the CPU side, there would be a similar algorithm which
would finish the rest of the computation using that same
bottom-up style algorithm.

Surprisingly, our experimental results showed that
those last few merge iterations take an insignificant
amount of time – less than one millisecond. So the
hybrid approach is overly-complex, and implementing
it would have been an instance of premature optimiza-
tion. The final design of the GPU algorithm takes place
entirely on the GPU rather then on both GPU and CPU
hardware. The GPU algorithm just requires the use of
the CPU for the required OpenCL setup routines and
ultimately to read in the data and output the data; the
GPU completes all the extensive computations.

Something we found interesting is the ratio of speedup
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improvements over the CPU algorithm as the data set
increases. For smaller data sets, the speedup is only
about 4x. As the data set increases, the speedup in-
creases to about 8x (see Figure 12).

Our roughly 8x speedup is notable since it approaches
the maximum potential improvement achievable on our
hardware. According to LINPACK and NVIDIA, our
GPU is capable of roughly 8 times more gigaFLOPS
than one of our CPU cores. Our implementation real-
izes practically all of this potential despite the obstacles
inherent in parallelizing the 3D convex hull problem.

5 Conclusion

We have shown that bottom-up adaptation of the mini-
malist divide-and-conquer algorithm for 3D convex hulls
is fast, practical, and reasonably straightforward. The
approach is faster than CPU implementations and com-
petitive with hybrid GPU/CPU implementations.

In performing this exercise, we did make two counter-
intuitive conclusions. First, while OpenCL and CUDA
are intended to be high-level abstractions of GPU hard-
ware, we nonetheless faced many obstacles related to
low-level concerns such as memory management, mem-
ory hierarchies, and thread scheduling. Second, our in-
tuition was that the overhead of starting and scheduling
kernel applications would become a major bottleneck in
the later steps of the algorithm. However, empirical
results demonstrated this to be a non-issue.

The following are potential areas for future work:

• Higher-level libraries or tools for implementing
divide-and-conquer algorithms on the GPU.

• A suite of compatible, parallel GPU implementa-
tions of fundamental computational geometry al-
gorithms.

• In particular, an arrangement data structure, e.g.
doubly connected edge list, is a prerequisite to im-
plementing many well-motivated algorithms.
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