
CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Finding a Lost Treasure in Convex Hull of Points From Known Distances

Bahman Kalantari∗

Abstract

Given a set of points S = {v1, . . . , vn} ⊂ R
m, and

a set of positive numbers ri, i = 1, . . . , n, we wish
to determine if there exists p ∈ Conv(S) such that
d(p, vi) = ri for all i = 1, . . . , n, where d(·, ·) denotes the
Euclidean distance. We refer to this as the ambiguous
convex hull problem. Given ǫ > 0, we describe an al-
gorithm that in O(mnǫ−2 ln ǫ−1) arithmetic operations
computes pǫ ∈ Conv(S) such that one of the three con-
ditions hold; (1): |d(pǫ, vi)− ri| < ǫ, for all i = 1, . . . , n;
(2): d(pǫ, vi) < ri, for all i = 1, . . . , n; (3): d(pǫ, vi) > ri,
for all i = 1, . . . , n. In case of (2), no point p with pre-
scribed distances belongs to Conv(S). In case of (3),
no point p with prescribed distances exists. In case of
(1), we give an estimate on d(pǫ, p). The algorithm is a
variation of the Triangle Algorithm in [8] for the convex
hull decision problem where p is given explicitly.

1 Introduction

The convex hull decision problem is to test if a given
point p ∈ R

m lies in the convex hull of a given set of
points S = {v1, . . . , vn} ⊂ R

m, denoted by Conv(S).
This problem is a very special case of the convex hull
problem, a problem that represents various descriptions
of a polytope that is either specified as the convex hull
of a finite point set or the intersection of a finite num-
ber of halfspaces, see Goodman and O’Rourke [5]. For
more general convex hull problems and corresponding
algorithms see, [5], Clarkson [4], Chan [1], Chazelle [2].

The convex hull decision problem is a fundamental
problem in computational geometry and in linear pro-
gramming (LP). A general LP problem can be formu-
lated as a single LP feasibility problem, see e.g. Chvátal
[3]. Then, given a bound on the norm of the vertices,
a number that can be estimated for integer inputs, the
latter problem in turn can be converted into the convex
hull decision problem. Any LP algorithm can be applied
to solve the convex hull decision problem. It can be ar-
gued that several polynomial-time algorithms for LP are
in fact specifically designed to solve the convex hull de-
cision problem with p = 0. These include, the ellipsoid
algorithm of Khachiyan [11], the projective algorithm
of Karmarkar[9], and the positive semidefinite diagonal

∗Department of Computer Science, Rutgers University,

kalantari@cs.rutgers.edu

matrix scaling algorithm of Khachiyan and Kalantari
[12]. See [6] and also [7].
In a recent article, [8], we offered characterization

theorems and a simple fully polynomial-time approxi-
mation algorithm, called the Triangle Algorithm for the
convex hull decision problem having the following prop-
erties: Given ǫ ∈ (0, 1), in O(mnǫ−2) arithmetic oper-
ations the algorithm computes a point pǫ ∈ Conv(S),
where either d(pǫ, p) ≤ ǫd(p, vj) for some j; or for all
i = 1, . . . , n, d(pǫ, vi) < d(p, vi). The following charac-
terization theorem in [8] plays an important role in the
development and correctness of the Triangle Algorithm.

Theorem 1 Let S = {v1, . . . , vn} ⊂ R
m be a given

set of points and let p ∈ R
m be given. Then exclu-

sively, either p ∈ Conv(S) and for any p′ ∈ Conv(S)
there exists vj ∈ S such that d(p′, vj) ≥ d(p, vj), or
p 6∈ Conv(S) and there exists p′ ∈ Conv(S) such that
d(p′, vi) < d(p, vi), for all i = 1, . . . , n.

Each p′ ∈ Conv(S) that satisfies d(p′, vi) < d(p, vi),
for all i = 1, . . . , n, acts as a witness to the infeasibility
of p. The set Wp of all such witnesses is the intersection
of Conv(S) and open balls Bi of radius d(p, vi) centered
at vi, i = 1, . . . , n and forms a convex open set in the
relative interior of Conv(S). A corollary of Theorem 1
reveals a property of a set of intersecting open balls:
If a set of n open balls in R

m has a common boundary
point p, their intersection is empty, if and only if p lies
in the convex hull of their centers.
This property suggests we can define a geometric

“dual” problem to the convex hull decision problem, the
intersecting open balls problem:
Given a set of n open balls in R

m that are known
to have a common boundary point p, determine if they
have a nonempty intersection.
The Triangle Algorithm in particular is capable of

solving the intersecting open balls problem. It can be
used to solve some other versions of the convex hull
problem, e.g. the irredundancy problem where all the
vertices are to be determined. The Triangle Algorithm
can also be used to solve a linear programming problem
(see [8]) and as such offers an alternative to polynomial-
time algorithms for linear programming, as well as the
simplex method whose randomized version is shown to
run in polynomial-time, see [10]. All known polynomial-
time LP algorithms for integer inputs have operation
complexity that is polynomial in m, n, and the size of

24th Canadian Conference on Computational Geometry, 2012

encoding of the input data, often denoted by L, see [11].
As approximation schemes, polynomial-time algorithms
for LP have complexity polynomial in the dimension of
the data and ln(ǫ−1). As is well-known, for integral
inputs, by rounding, any approximate solution having
sufficient precision can be turned into an exact solution.
It is likely the Triangle Algorithm performs better than
its worst-case analysis. Its average case or randomized
versions could prove to give much better complexity.
For fixed ǫ it produces approximate solutions in O(mn)
operations.

In this article we consider the ambiguous convex hull
problem. It differs with the convex hull decision prob-
lem in that we do not know p explicitly, but we are
given a set of distances ri, i = 1, . . . , n, presumed to
equal d(p, vi). In particular, the distances may not even
be valid distances of any point p in Conv(S), or in its
complement. Thus there is ambiguity to the problem.
Two scenarios where the ambiguous convex hull prob-
lem applies well are as follows. The first, where we
are given claimed distances of a hidden treasure from
a set of known sites. The second, where we wish to
determine the feasibility of building a site at prescribed
distances in the convex hull of a given set of sites. Anal-
ogous to the Triangle Algorithm itself, the variation
to be described here, called Blindfold Triangle Algo-
rithm, is geometric in nature, simple in description, and
very easy to implement, having worst-case complexity
of O(mnǫ−2 ln ǫ−1) arithmetic operations.

If a subset of m + 1 points in S that are in general
position are identifiable, we can determine the coordi-
nates of p by solving anm×m linear system, see Section
5. Doing so will reduce the problem to the convex hull
decision problem. However, our goal is to avoid solving
such linear systems. Furthermore, as will be seen in the
final section of the article, we wish to argue that, at least
in some cases, solving a linear system corresponds to an
ambiguous convex hull problem. Thus such linear sys-
tems can be solved approximately in O(m2ǫ−2 ln(ǫ−1))
(see Section 6).

While the complexity analysis of the Blindfold Tri-
angle Algorithm is independent of Triangle Algorithm
itself, it makes use of Theorem 1. For the sake of com-
pleteness, we will first give a proof of this theorem,
somewhat different than the proof presented in [8].

2 A Voronoi Diagram-Based Proof of Theorem 1

In this section we present a simple proof of Theorem
1. Suppose p ∈ Conv(S). Let p′ be any point in
Conv(S)−{p}. Consider V (p) = {x ∈ R

m : d(p, x) <
d(p′, x)}, i.e. the Voronoi cell of p with respect to the
two point set {p, p′}. We wish to show V (p) = {x ∈
R

m : d(p, x) ≤ d(p′, x)} intersects S. If not, then S
is a subset of V (p′) = {x ∈ R

m : d(p′, x) < d(p, x)}.

Since V (p′) is convex, it follows that it must contain
Conv(S). This contradicts that p ∈ Conv(S).
Conversely, suppose p 6∈ Conv(S). Let p′ be the point

in Conv(S) that is closest to p. We claim p′ is a witness,
i.e. d(p′, vi) < d(p, vi) for all i. For any vi 6= p′, the
angle ∠pp′vi cannot be acute since otherwise this would
contradict p′ being the closest point of Conv(S) to p.
This implies that d(p′, vi) < d(p, vi). If p′ = vj for
some j, then clearly the inequality is also satisfied for
vj . Hence the proof of the Theorem 1.
Remark This simple proof also implies the separat-

ing hyperplane theorem for the convex hull of a finite
point set. The converse is however not true, that is, the
separating hyperplane theorem does not imply Theo-
rem 1. In this sense Theorem 1 is a stronger separation
theorem. Theorem 1 can also be stated for a polytope
that is described by the intersection of halfspaces. The
proof however would have to rely on a further result:
any point in the polytope can be written as the convex
combination of its vertices.

3 Getting Closer to The Treasure

Given a point p′ ∈ Conv(S), as the current estimate
to the location of p, we wish to compute a new point
p′′ ∈ Conv(S) that reduces the current distance d(p′, p),
referred here as the gap. However, since the location of
p is unknown we must select p′′ in such a way that guar-
antees improvement. The following theorem describes
how this can be achieved.

Theorem 2 Let ǫ > 0 be given. Consider three given
points p, p′, v ∈ R

m satisfying the following conditions:
(i) r′ = d(p′, v) ≥ r = d(p, v).
(ii) δ = d(p′, p) ≥ ǫ.
Let p′′ be the point on the line segment p′v such that

d(p′, p′′) =
ǫ2

2r′
. (1)

Then if d(p′′, p) = δ′, we have

δ′

δ
≤

√

1− ǫ2

2(r′2 + r2)
. (2)

In particular, if r′ ≤ 2r, then

δ′

δ
≤

√

1− ǫ2

10r2
. (3)

Proof. Without loss of generality we may assume that
p, p′, v lie in a Euclidean plane, where v = (0, 0),
p′ = (r′, 0) and p = (x, y), see Figure 1. Consider the
concentric circles of radii r and r′ centered at v. Let
q be a point lying on the circle of radius r′, satisfying
d(p′, q) = ǫ. See Figure 1 where one of the two such

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Figure 1: Reduction of δ = d(p′, p) to δ′ = d(p′′, p).

points are shown. Draw the line from q perpendicular
to the line p′v and let p′′ be the base of this line. We
claim that this point coincides with p′′ as defined in (1).
We do so by computing d(p′, p′′) = ǫ′. Let q′ be the
midpoint of the chord qp′. By a property of a circle,
the line vq′ is perpendicular to the line qp′. Consider
the right triangles △qp′p′′ and △q′p′v. They are similar
since they have a common angle, ∠qp′p′′. Therefore, we
have

d(p′, p′′)

d(p′, q)
=

d(p′, q′)

d(v, p′)
. (4)

Substituting, equivalently we have,

ǫ′

ǫ
=

ǫ/2

r′
. (5)

This gives (1). From this, that p = (x, y), and since by
assumption (ii) δ ≥ ǫ, it follows that

x ∈ [−r, ρ], ρ = min{r, r′ − ǫ′}. (6)

Now consider x as a variable ranging in the interval
[−r, ρ]. Since y2 = r2 − x2, the corresponding ratio,
δ′/δ can be written explicitly as a function of x:

δ′

δ
=

√

(r′ − ǫ′ − x)2 + (r2 − x2)

(r′ − x)2 + (r2 − x2)
. (7)

We will compute a bound on the maximum of the above
ratio for x ∈ [−r, ρ]. It is more convenient to consider

f(x) =
(r′ − ǫ′ − x)2 + (r2 − x2)

(r′ − x)2 + (r2 − x2)
. (8)

We will prove that for x ∈ [−r, ρ] we have

f(x) ≤
(

1− ǫ′r′

r′2 + r2

)

. (9)

We will consider two cases.
Case I. r ≤ r′ − ǫ′. We first claim that in this case

for any x ∈ (0, ρ], we have

f(−x) ≥ f(x). (10)

It is easy to verify that the above is true if and only if

ǫ′x

(

r′(r′ − ǫ′)− r2
)

≥ 0. (11)

This holds true under the given assumption of the case.
Thus it suffices to consider the maximum of f(x) in the
interval [−r, 0]. Differentiating f(x) and simplifying its
numerator, we get

2ǫ′
(

ǫ′r′ − (r′2 − r2)

)

. (12)

This quantity never vanishes unless,

ǫ′ =
(r′2 − r2)

r′
. (13)

It can be shown for this value of ǫ′ both the numerator
and the denominator of f(x) have the same root,

x =
r2 + r′2

2r′
≥ r, (14)

a value outside of the interval [−r, 0]. Thus, we only
need to compare f(0) and f(−r). In fact since ǫ′ ≤
r′ − r, the quantity in (12) is negative, thus f(x) is
decreasing. Hence the maximum value of f(x) on [−r, ρ]
is

f(−r) =
(r′ + r − ǫ′)2

(r′ + r)2
=

(

1− ǫ′

r′ + r

)2

. (15)

We claim

f(−r) ≤
(

1− ǫ′r′

r′2 + r2

)

. (16)

Equivalently, we claim

(

1− ǫ′r′

r′2 + r2

)

≥
(

1− ǫ′

r′ + r

)2

=

1 +
ǫ′2

(r′ + r)2
− 2ǫ′

r′ + r
. (17)

Simplifying, this amounts to showing

2

r′ + r
≥ r′

r′2 + r2
+

ǫ′

(r′ + r)2
. (18)

24th Canadian Conference on Computational Geometry, 2012

It is easy to show that

2r′

(r′ + r)2
≥ r′

r′2 + r2
. (19)

Finally, we can verify the following

2

r′ + r
≥ 2r′

(r′ + r)2
+

ǫ′

(r′ + r)2
. (20)

Thus we have proved (16).
Case II. r > r′ − ǫ′. By our previous statement on a

root of f ′(x) and (14), and since in this case ρ = r′− ǫ′,
f ′(x) does not vanish on [−r, ρ], so we only need to
bound f(r′ − ǫ′). We claim

f(r′ − ǫ′) = 1− ǫ′2

r2 − r′2 + 2r′ǫ′
< (1− ǫ′r′

r′2 + r2
). (21)

This is equivalent to proving

r′

r′2 + r2
<

ǫ′

r2 − r′2 + 2r′ǫ′
. (22)

After simplification this is equivalent to

r′(r2 − r′2) < ǫ′(r2 − r′2). (23)

This is valid. Finally, substituting ǫ′ = ǫ2/2r′, we have
proved (2), and using r′ ≤ 2r in (2) we get (3). �

Corollary 3 Let p, p′, p′′, v be as in Theorem 2 and set
R = max{d(p, vi), i = 1, . . . , n}. If r′ ≤ 2r, we have

δ′ ≤ δ

√

1− ǫ2

10R2
≤ δ exp

(−ǫ2

20R2

)

. (24)

Proof. The first inequality follows from Theorem 2 and
the definition of R. To prove the next inequality, we use
that 1 + x ≤ exp(x), and set x = −ǫ2/10R2. �

4 The Blindfold Triangle Algorithm

In this section we describe a variation of the Triangle
Algorithm described in [8] for solving the convex hull de-
cision problem. As the Triangle Algorithm itself, given
p′ ∈ Conv(S) − {p}, the algorithm searches for a tri-
angle △pp′vj where vj ∈ S such that d(p′, vj) ≥ rj .
Given such a triangle, the algorithm uses vj as a pivot
point to compute a new iterate p′′ ∈ Conv(S) such that
d(p′′, p) < d(p′, p). It replaces p′′ with p′ and repeats.
Since the coordinates of p are not known, nor do we
know if such prescribed distances correspond to an ac-
tual point, we will need to adjust the Triangle Algorithm
to take conservative, but improving steps while making
use of Theorem 2. For this reason we refer to this ver-
sion as the Blindfold Triangle Algorithm.
The input to the algorithm is a prescribed tolerance

ǫ > 0, and a set of distances ri, i = 1, . . . , n, assumed

to correspond to d(p, vi) for some point p. We assume
to have selected an initial point p′ ∈ Conv(S). The
Blindfold Triangle Algorithm is described as follows.

• Step 1. Pick any p′ ∈ Conv(S) (e.g. p′ =
1

n

∑n

i=1
vi), check if

|d(p′, vi)− ri| ≤ ǫ, ∀i = 1, . . . , n.

If the above holds, stop. We shall refer ro p′ as an
ǫ-approximate solution. Otherwise, go to Step 2.

• Step 2. Check if d(p′, vi) > ri, ∀i = 1, . . . n. If the
above holds, stop. Otherwise, go to Step 3.

• Step 3. Check if there exists vj such that
d(p′, vj) ≥ rj . We shall refer to such vj as the pivot
point. If no such vj exists, then d(p′, vi) < d(p, vi),
for all i = 1, . . . , n. Stop. Otherwise, go to Step 4.

• Step 4. If r′j = d(p′, vj) ≥ 2rj , then set p′′ = vj .
Replace p′ with p′′, go to Step 1. Otherwise, set p′′

to be the point that takes a step of size ǫ′ = ǫ2/2r′j
from p′ in the direction of vj . Replace p′ with p′′,
go to Step 1. We refer to p′′ as the iterate.

When p′′ is not equal to vj it is given by

p′′ = αp′ + (1− α)vj , α = 1− ǫ′

r′j
. (25)

Since p′′ is a convex combination of p′ and vj , it will
remain in Conv(S). First, we state a result that char-
acterizes the stopping conditions in the algorithm.

Theorem 4 The algorithm termination is categorized
as follows:
(1): If the algorithm terminates in Step 1, it has de-

termined an ǫ-approximate solution.
(2): If the algorithm terminates in Step 2, no point p

with prescribed distances exists.
(3): If the algorithm terminates in Step 3, no point p

with prescribed distances belongs to Conv(S).

Proof. Part (1) is clear from definition. The proof of
(2) follows from the fact that if such point p existed, by
Theorem 1 it could not belong to Conv(S). Consider
the Voronoi cell V (p′) with respect to the two point
set {p, p′}. Analogous to the proof of Theorem 1 in the
present article we can argue that V (p′) = {x : d(x, p′) ≤
d(x, p)} must necessarily contain a vj , hence d(p

′, vj) ≤
d(p, vj). But this contradicts the termination criterion
of Step 2. Part (3), follows from Theorem 1. �

Next we state some basic properties of the algorithm
to be used in its complexity analysis. The proof is omit-
ted as it is straightforward and analogous to that in [8].

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Proposition 5 The algorithm satisfies:
(i) In each iteration the step-size α lies in (0, 1].
(ii) Given an explicit representation of p′ as a convex

combination of vi’s, p
′′ can also be explicitly written as

a convex combination of vi’s.
(iii) Each iteration of the algorithm uses at most

O(mn) arithmetic operations and comparisons.
(iv) Each vi can be selected as an iterate p′′ at most

once (see definition of iterate in Step 4).
(v) If the point p exists, and if vj is selected as a pivot

point more than once, then except possibly for its first
selection as an iterate, in any subsequent selection of vj
as a pivot point the iterate p′′ will satisfy d(p, p′′) ≤ rj .

By part (iv) of Proposition 5, the number of iterations
where an element vj ∈ S is selected as an iterate is
at most n. Therefore, except for n iterations, in any
other iteration of the algorithm the inequality r′ ≤ 2r
holds and thus inequality (3) in Theorem 2 holds so that
(24) in Corollary 3 applies. The analysis of complexity
of the Blindfold Triangle Algorithm will make repeated
use of (24). For the sake of simplicity in the forgoing
complexity analysis we will exclude the occurrence of
exceptional iterations where r′ > 2r so that we assume
(24) applies in every iteration.

Theorem 6 Assume p is in Conv(S). Pick p0 ∈
Conv(S) − {p}, let δ0 = d(p0, p) ≥ ǫ. Set R =
max{d(p, vi), i = 1, . . . , n}. Then the algorithm com-
putes an ǫ-approximate solution in a finite number of
iterations kǫ satisfying,

kǫ =

⌈

20R2

ǫ2
ln

(

δ0
ǫ

)⌉

= O

(

ǫ−2 ln(
1

ǫ
)

)

.

Proof. From Corollary 3, given p′ ∈ Conv(S) in an
iteration, if the algorithm gets to compute p′′, then if p
with prescribed distances exists, we must have d(p, p′) >
ǫ. Otherwise, from the triangle inequality we would
have

|d(p′, vi)− d(p, vi)| ≤ ǫ, ∀i = 1, . . . , n.

Thus, Corollary 3 applies and from its repeated appli-
cation we have

δk ≤ δk−1 exp

(

− ǫ2

20R2

)

≤ · · · ≤ δ0 exp

(

− k
ǫ2

20R2

)

.

In order to satisfy δk ≤ ǫ, it suffices to solve for the
smallest k = kǫ satisfying

δ0 exp

(

− k
ǫ2

20R2

)

≤ ǫ.

This gives the claimed kǫ. �

Remark. In each iteration we can continue to use the
same pivot point vj so long as d(p′, vj) ≥ rj , making the
search for a pivot as efficient as possible.

5 Estimation of the Gap

Suppose we have computed a point p′ in the convex
hull of a subset of m + 1 points in S, forming a full-
dimensional simplex in R

m. Without loss of generality
assume these points are v0, . . . , vm. Thus p′ can be writ-
ten as a convex combination of these points in a unique
fashion. Also, the set of vectors vi − v0, i = 1, . . . ,m
forms a linearly independent set in R

m. We wish to
represent p and p′ in terms of v0, . . . , vm and use it to
estimate the gap d(p, p′), given the following

d(vi, p) = ri, d(vi, p
′) = r′i, i = 0, . . . ,m, (26)

|ri − r′i| ≤ ǫ, i = 0, . . . ,m. (27)

Squaring the equations in (26), subtracting the first
from the remaining m equations gives,

d2(vi, p)− d2(v0, p) = r2i − r2
0
, i = 1, . . . ,m, (28)

d2(vi, p
′)− d2(v0, p

′) = r′2i − r′2
0
, i = 1, . . . ,m. (29)

Equivalently, for i = 1, . . . ,m this gives

(v0 − vi)
T p = γi, (v0 − vi)

T p′ = γ′

i, (30)

where for i = 1, . . . ,m we have

γi =
1

2

(

r2i − r2
0
− d2(vi, 0) + d2(v0, 0)

)

,

γ′

i =
1

2

(

r′2i − r′2
0
− d2(vi, 0) + d2(v0, 0)

)

. (31)

Let W be the m×m matrix whose i-th row is

vT
0
− vTi , i = 1, . . . ,m.

Let γ = (γ1, . . . , γm)T , and γ′ = (γ′

1
, . . . , γ′

m)T . Then
we have

Wp = γ, Wp′ = γ′.

This implies

p− p′ = W−1(γ − γ′).

From (27), and assuming ∆ is the diameter of Conv(S),
we have

|r2i − r′2i | ≤ ǫ(ri + r′i) ≤ 2ǫ∆, i = 0, . . . ,m.

Thus for i = 1, . . . ,m we have

|γi − γ′

i| ≤
1

2

(

|r2i − r′2i |+ |r′2
0
− r′2

0
|
)

≤ 2ǫ∆.

Hence we conclude

d(γ, γ′) ≤ 2
√
m∆ǫ,

implying the following bound on the gap

d(p, p′) ≤ ‖W−1‖2
√
m∆ǫ, (32)

where ‖ · ‖ denotes the 2-norm of a matrix.
Remark. When the data is integral, there exists an

ǫ∗ such that if d(p, p′) ≤ ǫ∗, p also lies in the convex hull
of v0, . . . , vm. This follows from the usual LP sensitivity.
Thus, the algorithm can correctly solve the ambiguous
convex hull problem when viewed as a decision problem.

24th Canadian Conference on Computational Geometry, 2012

6 Solving a Linear System as an Ambiguous Convex

Hull Problem

Theorem 7 Consider a linear system Ax = b, where
A is an m ×m invertible matrix. Let p be the solution
to the equation. Assume we are given v0 ∈ R

m and
r0 such that d(p, v0) = r0. Let e = (1, . . . , 1)T ∈ R

m,
let vi be the i-th row of the matrix V = evT

0
− A, and

let ri = d(vi, p), i = 1, . . . ,m. Then p is the unique
solution to the set of equations

d(vi, p) = ri, i = 0, . . . ,m.

Moreover, for i = 1, . . . ,m we have,

r2i = 2bi + r2
0
+ d2(vi, 0)− d2(v0, 0).

In particular, if p ∈ Conv{v0, . . . , vm}, the Blindfold
Triangle Algorithm can give an ǫ-approximate solution
to Ax = b in O(m2ǫ−2 ln(ǫ−1)) arithmetic operations.

Proof. From the relationship between A, V, v0, b, p, the
definition of W and γ in (31) we have

Ap = b = Wp = (evT
0
− V)p =

1

2
γ.

This completes the proof. �

Theorem 7 suggests interesting computational pos-
sibilities in using the Blindfold Triangle Algorithm to
solve a linear system, given that the distance of the solu-
tion to a single point is known, e.g. given the Euclidean
norm of the solution as is the case when A is an or-
thogonal matrix. Such an approach would compute an
approximate solution faster than the traditional method
of computing LU factorization.

7 Remarks

In this article we have presented a variation of the
Triangle Algorithm for the convex hull decision prob-
lem, called the Blindfold Triangle Algorithm. It tries
to determine if there exists a point p in the convex
hull of a given set of points S, knowing only a set of
distances, presumably corresponding to the points in
S. In contrast with the Triangle Algorithm it takes
smaller steps because it does not know the coordinates
of p, nor does it know if such a point exists. Despite the
conservative steps it is only slower than the Triangle
Algorithm by a factor of ln(ǫ−1). This could also mean
that the Triangle Algorithm itself should have a better
complexity (see [8]). An interesting application of the
Blindfold Triangle Algorithm is in solving certain linear
systems (e.g. orthogonal coefficient matrix), offering a
new approach for solving this problem (see Theorem
7). We are optimistic that both the Triangle Algorithm
as well as the Blindfold Triangle Algorithm will offer

alternative algorithms for the convex hull decision
problem, its variations, linear programming, and more.
These algorithms suggest new lines of research in
several different areas. We hope to carry out some
computational testing as well as pursue theoretical and
practical applications of the results.

Acknowledgements. I am grateful to three anony-
mous reviewers for a very careful reading of this article
and for their helpful comments and suggestions that re-
sulted in improvements. I also thank Iraj Kalantari for a
discussion on the use of a bisecting hyperplane to prove
Theorem 1, resulting in a simpler geometric proof than
the one given in [8]. As suggested by a reviewer, it is
also possible to give a direct proof Theorem 1, removing
the embedded contradiction.

References

[1] T. M. Chan. Output-sensitive results on convex hulls,
extreme points, and related problems. Discrete Comput.

Geom., 16(4):369–387, 1996.

[2] B. Chazelle. An optimal convex hull algorithm in any
fixed dimension. Discrete Comput. Geom., 10:377–409,
1993.

[3] V. Chvátal. Linear Programming. W.H. Freeman and
Company, New York, 1983.

[4] K.L. Clarkson. More output-sensitive geometric algo-
rithm. In Proceedings of the 35th Annual IEEE Sym-
posium on Foundations of Computer Science, 695–702,
1994.

[5] J. E. Goodman, J. O’Rourke (Editors). Handbook of

Discrete and Computational Geometry, 2nd Edition
(Discrete Mathematics and Its Applications), Chapman
& Hall Boca Raton, 2004.

[6] Y. Jin and B. Kalantari. A procedure of Chvátal for
testing feasibility in linear programming and matrix
scaling. Linear Algebra and its Applications, 416:795–
798, 2006.

[7] B. Kalantari. Canonical problems for quadratic pro-
gramming and projective methods for their solution.
Contemporary Mathematics, 114:243–263, 1990.

[8] B. Kalantari. A characterization theorem and an al-
gorithm for a convex hull problem. arXiv:1204.1873v1,
2012.

[9] N. Karmarkar. A new polynomial time algorithm for
linear programming, Combinatorica, 4:373-395, 1984.

[10] J. A. Kelner and D. A. Spielman. A randomized
polynomial-time simplex algorithm for linear program-
ming. Proceedings of the 38th Annual ACM Symposium
on Theory of Computing, 2006.

[11] L. G. Khachiyan. A polynomial algorithm in linear pro-
gramming. Doklady Akademia Nauk SSSR, 1093–1096,
1979.

[12] L. Khachiyan and B. Kalantari. Diagonal matrix scaling
and linear programming. SIAM J. Optim., 4:668–672,
1992.

