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Hardness Results for Computing Optimal Locally Gabriel Graphs
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Abstract

Delaunay and Gabriel graphs are widely studied geo-
metric proximity structures. Motivated by applications
in wireless routing, relaxed versions of these graphs
known as Locally Delaunay Graphs (LDGs) and Lo-
cally Gabriel Graphs (LGGs) have been proposed. We
propose another generalization of LGGs called Gener-
alized Locally Gabriel Graphs (GLGGs) in the context
when certain edges are forbidden in the graph. Unlike
a Gabriel Graph, there is no unique LGG or GLGG
for a given point set because no edge is necessarily in-
cluded or excluded. This property allows us to choose
an LGG/GLGG that optimizes a parameter of interest
in the graph. We show that computing an edge max-
imum GLGG for a given problem instance is NP-hard
and also APX-hard. We also show that computing an
LGG on a given point set with dilation ≤ k is NP-hard.
Finally, we give an algorithm to verify whether a given
geometric graph G = (V,E) is a valid LGG.

1 Introduction

A geometric graph G = (V,E) is an embedding of
the set V as points in the plane and the set E
as line segments joining two points in V . Delau-
nay graphs, Gabriel graphs and Relative neighborhood
graphs (RNGs) are classic examples of geometric graphs
that have been extensively studied and have applica-
tions in computer graphics, GIS, wireless networks, sen-
sor networks, etc (see survey [7]). Gabriel and Sokal [5]
defined the Gabriel graph as follows:

Definition 1 A geometric graph G = (V,E) is called a
Gabriel graph if the following condition holds: For any
u, v ∈ V , an edge (u, v) ∈ E if and only if the circle
with uv as diameter does not contain any other point of
V .

Gabriel graphs have been used to model the topology
in a wireless network [3]. Motivated by applications in
wireless routing, Kapoor and Li [8] proposed a relaxed
version of Delaunay/Gabriel graphs known as k-locally
Delaunay/Gabriel graphs. The edge complexity of these
structures has been studied in [8, 11]. In this paper, we
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focus on 1-locally Gabriel graphs and call them Locally
Gabriel Graphs (LGGs).

Definition 2 A geometric graph G = (V,E) is called a
Locally Gabriel Graph if for every (u, v) ∈ E, the circle
with uv as diameter does not contain any neighbor of u
or v in G.

The above definition implies that in an LGG, two edges
(u, v) ∈ E and (u,w) ∈ E conflict with each other and
cannot co-exist if ∠uwv ≥ π

2 or ∠uvw ≥ π
2 . Con-

versely if edges (u, v) and (u,w) co-exist in an LGG,
then ∠uwv < π

2 and ∠uvw < π
2 . We call this condi-

tion an LGG constraint.

Study of these graphs was initially motivated by de-
sign of dynamic routing protocols for ad hoc wireless
networks [10]. Like Gabriel Graphs, LGGs are also
proximity-based structures that capture the interference
patterns in wireless networks. An interesting point to
be noted is that there is no unique LGG on a given
point set since no edge in an LGG is necessarily in-
cluded or excluded. Thus the edge set of the graph
(used for wireless communication) can be customized to
optimize certain network parameters depending on the
application. While a Gabriel graph has a linear number
of edges (planar graph), an LGG can be constructed
with a super-linear number of edges [4]. A dense net-
work can be desirable for applications like broadcast-
ing or multicasting. The dilation or spanning ratio of a
graph is an important parameter in wireless network de-
sign. Graphs with small spanning ratios are important
in many applications and motivate the study of geo-
metric spanners. In this paper, we initiate the study of
dilation on LGGs. We show that there exists a point set
such that the Gabriel Graph on it has dilation Ω(

√
n)

whereas there exists an LGG on the same point set with
dilation O(1).

In many situations, certain links are forbidden in a
network due to physical barriers, visibility constraints
or limited transmission radius. Thus, all pairs of nodes
might not induce edges and this effect can be consid-
ered in LGGs. Thus, it is natural to study LGGs in
the context when the network has to be built only with
a set of predefined links. In this context, we define a
generalized version of LGGs called Generalized locally
Gabriel Graphs (GLGGs). Edges in a GLGG can be
picked only from the edges in a given predefined geo-
metric graph.
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Definition 3 For a given geometric graph G = (V,E)
we define G′ = (V,E′) as GLGG if G′ is a valid LGG
and E′ ⊆ E.

Previous results on LGGs have focused on obtaining
combinatorial bounds on the maximum edge complex-
ity. In [8], it was shown that an LGG has at most O(n

3
2 )

edges since K2,3 is a forbidden subgraph. Also, it was
observed in [11] that any unit distance graph is also a
valid LGG. Hence there exist LGGs with Ω(n1+ c

log log n )
edges [4]. It is not known whether an edge maximum
LGG can be computed in polynomial time.

Our Contribution: We present the following results in
this paper.

1. We show that computing a GLGG with at least
m edges on a given geometric graph G = (V,E)
is NP-complete (reduction from 3-SAT) and also
APX-hard (reduction from MAX-(3,4)-SAT).

2. We show that the problem of determining whether
there exists an LGG with dilation ≤ k is NP-hard
by reduction from the partition problem motivated
by [6]. We also show that there exists a point set P
such that any LGG on P has dilation Ω(

√
n) that

matches with the best known upper bound [2].

3. For a given geometric graph G = (V,E), we give an
algorithm with running time O(|E| log |V |+ |V |) to
verify whether G is a valid LGG.

2 Hardness of computing an edge maximum GLGG

In this section we show that deciding whether there ex-
ists a GLGG on a given geometric graph G = (V,E)
with at least m edges for a given value of m is NP-
complete by a reduction from 3-SAT. We further show
that computing edge maximum GLGG is APX-hard by
showing a reduction from MAX-(3,4)-SAT.
A 3-SAT instance is a conjunction of several clauses

and each clause is a disjunction of exactly 3 variables.
Let I be an instance of the 3-SAT problem with k
clauses C1, C2, . . . , Ck and n variables y1, y2, . . . , yn. A
geometric graph G = (V,E) is constructed from I such
that there exists a GLGG on G with at least m edges
if and only if I admits a satisfying assignment. We
construct a vertex set V (points in the plane) of size
(k + 3)n + k that is partitioned into 2n literal vertices
denoted by V1 = {xi, x

′
i | i ∈ {1, . . . , n}}, (k + 1)n vari-

able vertices denoted by V2 = {zij | i ∈ {1, . . . , n}, j ∈
{1, . . . , k + 1}} and k clause vertices denoted by V3 =
{cj | j ∈ {1, . . . , k}}. Thus, V = V1∪V2∪V3. Two literal
vertices xi and x′

i corresponding to the same variable are
called conjugates of each other.
Now let us discuss the placement of these vertices on

the plane as shown in Figure 1. All literal vertices are

placed closely on a vertical line l and the distance be-
tween two consecutive vertices is 10−5. Two conjugate
literal vertices corresponding to the same variable are
kept next to each other. Let l1 and l2 be two horizontal
lines passing through the highest and the lowest literal
vertex respectively. Let b0 be the center point of the
line segment containing all the literal vertices. With b0
as center, a circle is drawn with radius d1 = n4. All
clause vertices c1, c2, . . . , ck are placed along an arc a0
of this circle (with a distance of n

2 between two consec-
utive vertices) with the additional restriction that these
vertices cannot lie between lines l1 and l2. b0c1 and b0ck
make an angle less than α = π

4 with the horizontal axis.
Now k+ 1 variable vertices are placed for each variable
in the 3-SAT instance. Consider two horizontal lines
lxi and lx′

i
passing through literal vertices xi and x′

i.
With center at the mid point of xi and x′

i (call it bi)
a circle is drawn with radius d2 = 10n4. Variable ver-
tices are placed on an arc ai of this circle on the same
side of l where clause vertices are placed. These vertices
zi1 , . . . , zi(k+1)

are placed a distance of n
4 apart with the

restriction that no vertex should be placed between lines
lxi and lx′

i
. Any line connecting these vertices with xi

and x′
i makes an angle less than α with the horizontal

axis. For all the variables in I, corresponding variable
vertices are placed similarly. For simplicity variable ver-
tices are shown corresponding to only one variable in
Figure 1. For each clause Cj , there are 3 edges between

l

c2

c1

ck

α

α

a0

x′ixi
l2

l1

zi(k+1)

ai
zi1

lx′

i

lxi

Figure 1: Placement of vertex set V

clause vertex cj and the corresponding literal vertices.
Let E1 be the set of these edges from all the clause
vertices to three corresponding literal vertices. For ex-
ample, if a clause Cj has literals ya, yb and y′c, then the
edges (cj , xa), (cj , xb) and (cj , x

′
c) are included in E1.

Another set of edges between literal vertices and vari-
able vertices is defined

E2 = {(xi, zi1), . . . , (xi, zik+1
), (x′

i, zi1), . . . , (x
′
i, zik+1

)

| 1 ≤ i ≤ n}

Now, E = E1 ∪ E2. Let G = (V,E) be the geomet-
ric graph over which an edge maximum GLGG is to be
computed. Let us analyze the conflicts among the edges
in G. It should be noted that since a GLGG is also an
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LGG, it suffices to look at the LGG constraints to deter-
mine whether two edges conflict. Consider any GLGG
G′ = (V,E′) with E′ ⊆ E on the geometric graph G.
The following constraints are observed on the edge set
E′.
Since the edges (xi, zij ) and (x′

i, zij ) conflict with each
other (∠zijxix

′
i or ∠zijx

′
ixi is greater than π

2 by con-
struction), a variable vertex zij can have an edge inci-
dent to only xi or x

′
i.

Remark 1 A variable vertex zij can have only one edge
((xi, zij ) or (x′

i, zij )) incident to it in E′.

Similarly, we can infer Remark 2 due to LGG con-
straints.

Remark 2 Any clause vertex cj can be incident to at
most one literal vertex in E′.

It can be observed that two LGG edges that are the
radii of the same circle do not conflict with each other.
Here, bi (the center of arc ai) is close enough to both the
literal vertices (xi and x′

i) and the radius d2 is chosen
large enough so that no two edges from a literal vertex
to the corresponding variable vertices conflict with each
other.

Remark 3 A literal vertex xi (or x′
i) can have edges

incident to all the corresponding variable vertices zij in
E′ where j ∈ {1, . . . , k + 1}.

Since a literal vertex is placed sufficiently close to b0
(the center of arc a0) and the radius d1 is chosen large
enough, no two edges from a literal vertex to the clause
vertices conflict with each other.

Remark 4 In E′, a literal vertex xi can have edges in-
cident to all the clause vertices that have edges incident
to xi in E1.

Since d2 is chosen large enough compared to d1, if a
literal vertex xi is connected to a variable vertex zij ,
the circle with xizij as diameter would contain all the
clause vertices. Therefore, xi cannot be connected to
any clause vertex due to the LGG constraint.

Remark 5 In E′, if a literal vertex has an edge inci-
dent to a variable vertex, it cannot have an edge incident
to any clause vertex.

Lemma 1 If there exists a GLGG G′ on G with at
least (k + 1)n + k edges, then there exists a satisfying
assignment to the given 3-SAT instance.

Proof. Since each variable vertex can have at most one
edge incident to it (refer to Remark 1), at most (k+1)n
edges of E′ can be selected from E2. Similarly each
clause vertex can have at most one edge incident to it
(refer to Remark 2), so in E′ at most k edges can be

selected from E1. If there are (k + 1)n+ k edges in E′,
then one edge is incident to each variable vertex and
clause vertex. If there is an edge between a clause ver-
tex cj and the literal vertex xi (resp. x

′
i), assign yi = 1

(resp. yi = 0) as it satisfies the clause Cj . By this rule
assign a truth value to a variable in each clause. If one
clause vertex is incident to xi, no other clause vertex can
be incident to x′

i as x
′
i is connected to the corresponding

k + 1 variable vertices (refer to Remark 5). Therefore,
this rule would yield a consistent assignment satisfying
all the clauses. Hence, the given 3-SAT instance is sat-
isfiable. �

Lemma 2 If there is a satisfying assignment to the
given 3-SAT instance, then there exists a GLGG G′ over
G with at least (k + 1)n+ k edges.

Proof. A GLGG with (k + 1)n + k edges can be con-
structed based on the satisfying assignment to the given
3-SAT instance. If a variable yi = 1 (resp. yi = 0) then
connect x′

i (resp. xi) to the corresponding k + 1 vari-
able vertices (zi1 , zi2 , . . . , zik+1

). Applying this rule to
each variable we get (k + 1)n edges in E′ from E2 and
these edges do not conflict with each other (refer to Re-
mark 3). Since all the clauses will have at least one lit-
eral satisfied in this assignment, every clause vertex can
have an edge incident to some literal vertex that has no
edges incident to any of the variable vertices. Consider
a clause Cj which is satisfied by the assignment yi = 1
(resp. yi = 0). Add the edge (cj , xi) (resp. (cj , x

′
i))

to E′. Since all the clauses are satisfied, k edges from
E1 can be added to E′. Therefore, G′ has (k + 1)n+ k
edges and it is a valid GLGG. �

Theorem 3 Deciding whether there exists a GLGG
with at least m edges for a given value of m is NP-
complete.

Proof. By Lemma 1 and Lemma 2, this problem is NP-
hard. Given a geometric graph G′, it can be verified in
polynomial time whether G′ is a valid GLGG with at
least m edges. Thus, this problem is NP-complete. �

This reduction to argue NP-hardness can be extended
further to show inapproximability for computing an
edge maximum GLGG. Let us consider the optimiza-
tion version of 3-SAT known as MAX-3-SAT. Here the
objective is to find a binary assignment satisfying the
maximum number of clauses. MAX-(3,4)-SAT is a spe-
cial case of MAX-3-SAT with an additional restriction
that a variable is present in exactly four clauses. MAX-
(3,4)-SAT is shown to be APX-hard in [1].
Now we enhance our existing construction such that

for each variable there are 5 variable vertices instead
of k + 1 as described in the previous reduction. Let
G = (V,E) be this new geometric graph on which an
optimal GLGG has to be computed. Again edge sets
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E1 and E2 are defined as earlier. Now, we present the
following lemma that helps to prove that computing an
edge maximum GLGG is APX-hard.

Lemma 4 If a GLGG G′
1 computed over G has less

than 5n edges from E2 then we can obtain another
GLGG G′

2 over G with 5n edges from E2 and |E′
2| ≥

|E′
1|.

Proof. Initially let G′
2 = G′

1. In G′
2 if a variable vertex

zij , 1 ≤ j ≤ 5 has an edge incident to an associated
literal vertex xi, then xi cannot have an edge incident
to a clause vertex (refer to Remark 5). Now xi can have
edges incident to all the five variable vertices (refer to
Remark 3). Therefore, if a variable vertex zij has an
edge incident to xi and some other variable vertex zij′
corresponding to the same variable has no edge incident
to it, then an edge (xi, zij′ ) can be added to E′

2 without
conflicting with any existing edge.
If no vertex zij , 1 ≤ j ≤ 5 has an edge incident to

xi, the solution can be improved locally. Add the edges
{(xi, zij )|1 ≤ j ≤ 5} to E′

2 and remove any edges con-
necting xi to the clause vertices from E′

2. Note that a
variable occurs only in four clauses in a MAX-(3,4)-SAT
instance, so a literal vertex cannot have edges incident
to more than four clause vertices. Therefore, this trans-
formation implies |E′

2| ≥ |E′
1|. Applying this argument

to all the variable vertices, it can be ensured that in G′
2

every variable vertex has an edge incident to it. Thus,
E′

2 has 5n edges from E2 and |E′
2| ≥ |E′

1|. �

Theorem 5 Computing an edge maximum GLGG on
a given geometric graph G = (V,E) is APX-hard.

Proof. Let OPTG and OPTS denote the optimum for
the GLGG instance and the MAX-(3,4)-SAT instance
respectively. A clause vertex can have only one edge in-
cident to it (refer to Remark 2) and a GLGG maximiz-
ing the edges will have 5n edges from E2 (edges between
variables vertices and literal vertices, refer to Lemma 4).
Therefore, OPTG = 5n+OPTS . Let an algorithm max-
imizing the number of edges selects m edges from E1

(edges between clause vertices and literal vertices) along
with 5n edges from E2. Each of these m edges implies a
satisfied clause in the original MAX-(3,4)-SAT instance.
Since MAX-(3,4)-SAT cannot be approximated beyond
0.99948 [1], m < 0.99948 ∗ OPTS . Let c be the best
approximation bound for the edge maximum GLGG.
Therefore, c ≤ 5n+0.99948∗OPTS

5n+OPTS
. Since any binary as-

signment or its complement would necessarily satisfy at
least half of the clauses in any given 3-SAT formula,
OPTS ≥ k

2 . Here n = 3
4k implying c ≤ 0.999939. Thus,

it is NP-hard to approximate edge maximum GLGG
within a factor of 0.999939. �

Consider the maximum weight LGG problem where
the edges are assigned weights and we have to compute

an LGG maximizing the sum of the weights of the se-
lected edges. The edge maximum GLGG problem is a
special case of the maximum weight LGG problem (edge
weights are either 0 or 1).

Corollary 1 Computing a maximum weight LGG is
APX-hard.

3 Dilation of LGG

Let us define dilation of a geometric graph G = (V,E).
Let DG(u, v) be the distance between two vertices in
the geometric graph (sum of length of the edges in the
shortest path) and D2(u, v) be the Euclidean distance

between u and v. Let δ(u, v) = DG(u,v)
D2(u,v)

. The dilation

of G is defined as δ(G) = maxu,v∈V,u6=v δ(u, v). In this
section, we focus on computational and combinatorial
questions on dilation for LGGs.

3.1 Computation of a minimum dilation LGG

In this section we show that the problem of determin-
ing whether there exists an LGG on a given point set
with dilation ≤ 7 is NP-hard. The reduction from the
partition problem is motivated by a technique in [6],
where it was shown that computing the minimum di-
lation geometric graph with bounded number of edges
is NP-hard. Since our problem requires us to construct
an LGG instead of any geometric graph with bounded
number of edges, the construction needs to be substan-
tially modified.
The partition problem is defined as follows: Given a

set S of positive integers ri, 1 ≤ i ≤ s s.t.
∑

r∈S r = 2R,
can it be partitioned into two disjoint sets S1 and S2

such that
∑

r∈S1
r =

∑
r∈S2

r = R? Given an instance
of the partition problem, we construct a point set V
such that the instance of the partition problem is a yes
instance if and only if there exists an LGG on V with
dilation ≤ 7. Define a parameter λ s.t. 2sr2max < 10λ

where rmax is the largest element of S. For each ri ∈ S,
there is a gadgetGi. Define a parameter ηi = 10−(λ+1)ri
to be used in gadget Gi. Note that ηi ≤ 1

10 .

3

1 + 2ηi

y2

xi yi

yi3
zixi2

xi1xi3 yi1

Figure 2: Structure of
a basic gadget

25/4

3

>13
4

1 + 2ηi+1

rr

Gi

Gi+1

r = 1/2 + ηi+1

1 + 2ηi

yi+1xi+1

y′ix′

i

yi2
xi2

Figure 3: Basic frame struc-
ture
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Now we explain the structure of a gadget Gi. Each
gadget comprises of 9 points as shown in Figure 2.
Points xi and yi are placed a distance of 1 + 2ηi apart.
xi1 and yi1 are placed at the same distance such that
xixi1 and yiyi1 are parallel to each other and per-
pendicular to xi1yi1 . Vertex zi is placed at the mid-
point of the line segment xi1yi1 . xi1xi3 is perpen-
dicular to xixi1 and the distance of xi1 from xi3 is

10ηi. For ǫ1 = 10−3

s2102λ
, xi2 and xi3 are placed at a

distance of c1ǫ1 along x-axis and c2ǫ1 along y-axis for
suitable constants c1 and c2, s.t. ∠xi1xi2xi3 ≥ π

2 .
Vertices yi2 and yi3 are placed similarly. We call
edges (xi3 , xi2), (xi2 , xi1), (xi1 , zi), (zi, yi1), (yi1 , yi2) and
(yi2 , yi3) basic edges. It can be verified that an LGG
over the vertices of a gadget must contain all the basic
edges to keep dilation bounded by 7. It can be ob-
served that any other edge will conflict with at least
one basic edge with the exception that the point xi can
be connected to yi, xi1 or xi3 and similarly yi can be
connected to xi, yi1 or yi3 . Edges (xi, xi1 ) and (yi, yi1)
are called vertical edges while (xi, xi3 ) and (yi, yi3) are
called slanted edges. Note that the vertical edge and
the slanted edge emerging from the same point xi or yi
conflict with each other in an LGG. Additional points
to be described later will ensure that there cannot exist
a direct edge between xi and yi. Though both vertices
xi and yi can have independently either a vertical or
a slanted edge incident to them, if both vertices have
slanted edges then δ(xi, yi) > 7.

Remark 6 In a gadget Gi, there can be only one
slanted edge if δ(xi, yi) ≤ 7.

l

t1

t
′

1 t
′

2

t2

yi

yj

xj3
yj3

xi

xi3
yi3

xj

Figure 4: Layout of complete structure for s = 2

A frame Fi is used to connect two gadgets Gi and
Gi+1 as shown in Figure 3. It connects Gi at ver-
tices xi2 and yi2 and connects Gi+1 at vertices xi+1

and yi+1. A frame also provides two symmetric paths
((xi+1, x

′
i, xi2) and (yi+1, y

′
i, yi2)) between two consecu-

tive gadgets. Let us denote this path length between
ith and i+ 1th gadget as pi,i+1. All edges shown in the
figure are part of the basic skeleton of a frame and these
edges are included in the set of basic edges. Here we use

a technique of placing vertices at very short distance
(0.01 in our construction) from each other along a line.
The purpose of this technique is to ensure that all these
small edges are selected in the LGG. If such an edge
is not selected then any alternate path does not bound
the spanning ratio within limit. We call this technique
vertex closing. It will ensure that in a frame, edges are
taken only according to our layout. Such a sequence of
vertices is called a vertex chain. An additional auxiliary
vertex is placed in each gadget Gi at a distance of ǫ1ηi

10s

from xi2 and yi2 along the lines xi2x′
i, xi2xi1 , yi2y

′
i and

yi2yi1 .
A frame also provides a convex cap on (xi, yi) in a

gadget Gi. This is a convex point set with all the points
above xiyi (it need not be a regular curve). There is
a small edge incident to both xi and yi from this cap
conflicting with the edge (xi, yi) and it ensures that xi

and yi are not directly connected by an edge. It provides
a path between xi and yi with spanning ratio just above
7 and for any other pair of vertices in it spanning ratio
is bounded by 7. On the first gadget G1, such a cap
is placed explicitly as shown in Figure 4. Now the full
structure is constructed as shown in Figure 4. There is
a central vertical line l and all the gadgets are placed
along it keeping vertex z of a gadget on l s.t. xi1yi1 is
perpendicular to l and a frame is placed between two
gadgets. The vertical span for a frame Fi is

25
4 . There

is a total of four extended arms, each of length h with
vertex closing from G1 and Gs, each making an angle
sin−1(220221 ) w.r.t. l (refer Figure 4). Here,

h =
221

148
(18s+(s−1)

175

4
)− k

2
+
1

2
10−λR− 1

2
10−2λsr2max

where k =
∑s−1

i=1 pi.i+1 + 10
∑s

i=1 ηi.
Let V be the set of all points introduced above.

Clearly |V | = O(s). It can be verified that the descrip-
tion complexity of point set V is polynomial in the size
of the partition instance.

Lemma 6 If the partition problem S is solvable then
there exists an LGG on V with dilation not exceeding
7.

Lemma 7 If there exists an LGG on V with dilation
less than or equal to 7 then there exists a solution for
the partition problem over S.

Refer to full version [9] for the proofs of Lemma 6 and
Lemma 7.

Theorem 8 Given a point set P , it is NP-hard to find
whether there exists an LGG with dilation less than or
equal to a given value k.

Proof. The proof can be inferred by Lemma 6 and
Lemma 7. �
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Let us present some simple combinatorial bounds on
the dilation of LGGs.

Lemma 9 There exists a point set P such that any
LGG on P has dilation Ω(

√
n).

Lemma 10 There exists a point set P such that the
Gabriel Graph on P has dilation Ω(

√
n) whereas there

exists an LGG on P with dilation O(1).

Refer to full version [9] for the proofs of Lemma 9 and
Lemma 10.

4 Verification Algorithm for LGG

Given a geometric graph G = (V,E), let us consider the
problem of deciding whether G is a valid LGG. It has to
be verified that no two edges conflict with each other.
For any u ∈ V , let Lu be a circular list storing all

u

vi

vj
vi+1

Figure 5: Checking for conflicts in an LGG

neighbors of vertex u in counterclockwise order. G is
a valid LGG if edges from a vertex u to any two con-
secutive members in Lu do not conflict with each other
∀u ∈ V . This claim follows directly from the Lemma
stated below.

Lemma 11 Let u be any vertex in G and Lu =
{v1, v2, . . . , vl}. If edges (u, vi) and (u, vj) conflict with
each other such that i ≤ j− 2, then there exist a k such
that i ≤ k ≤ j− 1 and the edge (u, vk) conflicts with the
edge (u, vk+1).

Proof. We give a proof by contradiction. Assume that
the edges (u, vi) and (u, vj) conflict with each other
and (u, vk) does not conflict with (u, vk+1) for any k,
s.t i ≤ k < j. Let us assume w.l.o.g. that (u, vi)
and (u, vj) are the closest pair of conflicting and non-
successive edges s.t. i ≤ j − 2, i.e. if two edges (u, v′i)
and (u, v′j) conflict with each other and i ≤ i′ < j′ ≤ j
then j′ = i′ + 1. Since (u, vi) and (u, vj) conflict with
each other, let us assume w.l.o.g. that vj lies within
the circle with diameter uvi as shown in Figure 5. By
assumption (u, vi) and (u, vi+1) do not conflict, so vi+1

must lie outside this circle and similarly vi will lie out-
side the circle with diameter uvi+1. Recall that two
circles can intersect only at two points. Now it can be
trivially observed that the circle with diameter uvi+1

will contain vj . Thus, (u, vi+1) and (u, vj) conflict with
each other. This implies that either (u, vi) and (u, vj)
are not the closest pair of conflicting edges or (u, vi+1)
and (u, vj) are successive edges and they do conflict with
each other. In either case we have a contradiction of the
original assumption. �

The argument above directly implies a verification al-
gorithm for LGG. It involves computing Lu, ∀u ∈ V
that can be done by angular sorting of the neighbors
of each vertex. It can be implemented in O(|E| log |V |)
time. Scanning each vertex u and verifying that edges
to two consecutive members in Lu do not conflict takes
O(|V | + |E|) time. Therefore, this algorithm has time
complexity of O(|E| log |V |+ |V |).
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