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Near-Linear-Time Deterministic Plane Steiner Spanners
and TSP Approximation for Well-Spaced Point Sets

Glencora Borradaile∗ David Eppstein†

Abstract

We describe an algorithm that takes as input n points
in the plane and a parameter ε, and produces as out-
put an embedded planar graph having the given points
as a subset of its vertices in which the graph distances
are a (1 + ε)-approximation to the geometric distances
between the given points. For point sets in which the
Delaunay triangulation has bounded sharpest angle, our
algorithm’s output has O(n) vertices, its weight is O(1)
times the minimum spanning tree weight, and the algo-
rithm’s running time is bounded by O(n

√
log log n). We

use this result in a similarly fast deterministic approxi-
mation scheme for the traveling salesperson problem.

1 Introduction

A spanner of a set of points in a geometric space [13] is
a sparse graph having those points as its vertices, and
with its edge lengths equal to the geometric distance
between the endpoints, such that the graph distance
between any two points accurately approximates their
geometric distance. More precisely, the dilation of a
spanner is the smallest number δ for which the graph
distance of every pair of points is at most δ times their
geometric distance. It has long been known that very
good spanners exist: for every constant ε > 0 and con-
stant dimension d, it is possible to find a spanner for
every set of n points in O(n log n) time such that the
dilation of the spanner is at most 1 + ε, its weight is
at most a constant times the weight of the minimum
spanning tree, and its degree is constant [4].

A spanner is plane if no two of its edges (represented
as planar line segments) intersect except at their shared
endpoints [10]. Plane spanners with bounded dilation
are known; for instance, the Delaunay triangulation is
a spanner in this sense [9]. However, it is not possible
for these spanners to have dilation arbitrarily close to
one. For instance, for four points at the corners of a
square, any plane graph must avoid one of the diago-
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nals and have dilation at least
√

2. However, the addi-
tion of Steiner points allows smaller dilation for pairs of
original points. For instance, the plane graph formed by
overlaying all possible line segments between pairs of in-
put points has dilation exactly one, although its Θ(n4)
combinatorial complexity is high. Less trivially, in the
pinwheel tiling, a certain aperiodic tiling of the plane,
any two vertices of the tiling at geometric distance D
from each other have graph distance D+ o(D) [18]. We
define a plane Steiner δ-spanner for a set of points to
be a graph that contains the points as a subset of its
vertices, is embedded with straight line edges and no
crossings in the plane, and achieves dilation δ for pairs
of points in the original point set. We do not require
pairs of points that are not both original to be connected
by short paths.

Arikati et al. [2] show how to construct a plane Steiner
spanner in O(n log n) time, but do not bound the to-
tal weight of the graph. Of course, spanners may also
be constructed by forming an arrangement of line seg-
ments [12] representing the edges of a nonplanar span-
ner graph; this planarization does not change the span-
ner’s weight, but may add a large number of edges and
vertices. A paper of Klein [15] on graph spanners pro-
vides an alternative basis for plane Steiner spanner con-
struction. Generalizing a previous result of Althöfer
et al. [1], Klein shows that any n-vertex planar graph
with a specified subset of vertices may be thinned to
provide a planar Steiner (1 + ε)-spanner for the graph
distances on the specified subset, with weight O(1/ε4)
times the weight of the minimum Steiner tree of the
subset, in time O((n log n)/ε). Klein combined this re-
sult with methods from another paper [16] to provide a
polynomial time approximation scheme for the traveling
salesperson problem in weighted planar graphs. Using
Klein’s method to reduce the weight of the geometric
spanner formed by the arrangement of all line segments
connecting pairs of a given point set would lead to a low
weight plane (1 + ε) Steiner spanner for the point set,
but again with a large number of vertices and edges.
Ideally, we would prefer plane Steiner spanners that not
only have low weight, but also have a linear number of
edges and vertices.

Small and low-weight plane Steiner spanners in turn
could be used with Klein’s planar graph algorithms to
derive a deterministic polynomial time approximation
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scheme for the Euclidean TSP. The previous randomly
shifted quadtree approximation scheme of Arora [3]
and guillotine subdivision approximation scheme of
Mitchell [17] have runtimes that are polynomial for fixed
ε but with an exponent depending on ε; in contrast,
Klein’s method takes time linear in the spanner size
for any fixed ε. However, combining Klein’s method
with the nonlinear-size Steiner spanners described above
would not improve on a different deterministic TSP ap-
proximation scheme announced by Rao and Smith [19].
Their method is based on banyans, a generalized type
of spanner that must accurately approximate all Steiner
trees, and it takes O(n log n) time for any fixed ε and
any fixed dimension, although its details do not appear
to have been published yet.

These past results raise several questions. Are
banyans necessary for fast TSP approximation, or is it
possible to make do with more vanilla forms of span-
ners? How quickly may low-weight plane Steiner span-
ners be constructed, and how quickly may the TSP be
approximated? And how few vertices are necessary in a
plane Steiner spanner?

In this work we provide some partial answers, for pla-
nar point sets that are well-spaced in the sense that
their Delaunay triangulation avoids sharp angles. We
show that, when both ε and the sharpest angle in the
Delaunay triangulation are bounded by fixed constants,
then there exist plane Steiner (1+ε)-spanners with O(n)
vertices whose weight is O(1) times the minimum span-
ning tree weight (with a near-linear dependence on ε,
improving the quartic dependence in Klein’s construc-
tion). The dependence on ε and the sharpest angle is
given in Theorem 8. Our spanners may be constructed
in linear time given the Delaunay triangulation, or (by
combining a fast Delaunay triangulation algorithm of
Buchin and Mulzer [11] with fast integer sorting algo-
rithms [14]) in time O(n

√
log log n) for points with in-

teger coordinates. Combining these spanners with the
methods from Klein [16] leads to near-linear-time TSP
approximation for the same class of point sets.

2 Delaunay triangulations without sharp angles

The Delaunay triangulation DT of a set S of points
(called sites) is a triangulation in which the circumcircle
of each triangle does not contain any sites in its inte-
rior. For points in general position (no four cocircular)
the Delaunay triangulation is uniquely defined and its
sharpest angle α is at least as large as the sharpest angle
in any other triangulation. As we show in this section,
Delaunay triangulations that do not have any triangles
with sharp angles have two key properties: their total
weight w(DT) is small relative to the weight w(MST)
of the minimum spanning tree, and every point in the
plane is covered by only a few circumcircles.

Lemma 1

w(DT) = fw(α)w(MST) where fw(α) =
1 + cosα

1− cosα
.

Proof. The proof follows closely that of Lemma 3.1 of
Klein [15]. Let T be the MST. (Recall T ⊆ DT.) Let
H0 be the non-self-crossing Euler tour of T . We consider
the edges of DT \ T in a leaf-to-root order with respect
to the dual tree T ∗: e1, e2, . . . , ek. e1 makes a triangle
with edges a1 and b1 of H0. Recursively define Hi as the
tour resulting from removing ai and bi from Hi−1 and
adding ei: w(Hi) = w(Hi−1) + w(ei)− w(ai)− w(bi).

Since the α is the smallest angle of triangle eiaibi
and ei is longest when w(ai) = w(bi), we get w(ei) ≤
(w(ai) + w(bi)) cosα.

Combining, we get:
w(Hi) ≤ w(Hi−1) + (1− 1/ cosα)w(ei).
Summing:
w(Hk) ≤ w(H0) + (1− 1/ cosα)

∑
i w(ei).

By rearranging and using the facts w(Hk) ≥ 0 and
w(H0) = 2w(MST), the lemma follows. �

Lemma 2 The number of Delaunay circumdisks whose
interiors contain a given point in the plane is at most

fe(α) = 2π/α. (1)

Proof. The lemma trivially holds for points that are
sites. Let x be a non-site point in the plane. Then
the Delaunay triangles whose circumcircles contain x
are exactly the ones that get removed from the Delau-
nay triangulation if we add x to S and re-triangulate.
Therefore, the number of Delaunay circumcircles that
contain x is the same as the degree of x in the Delaunay
triangulation, DTx of S ∪ {x}.

Let d be the degree of x in DTx. Then, one of the
triangles, xqr, in DTx incident to x has an angle at x
of at most 2π/d. Edge qr must be a side of a triangle
qrs in DT replacing triangle xqr, because after the re-
moval of x, line segment qr is still a chord of the empty
circle that circumscribed xqr; however, triangle qrs has
a circumcircle that extends at least as far from qr on
the side of the triangle as the circumcircle of xqr, and
therefore angle qsr is at least as sharp as angle qxr. So
it must be that 2π/d > α or d < 2π/α, proving the
lemma. �

3 Portals for chords

As we now show, it is possible to space a set of portals
along an edge of a Delaunay triangulation in such a way
that any chord of a Delaunay circumcircle must pass
close to one of the portals, relative to the chord length.

Lemma 3 Let AD be a chord of a circle O, let B and C
be points interior to segment AD, and let EF be another
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Figure 1: Figure for Lemma 3

chord of O, crossing AD between B and C. Then the
distance from chord EF to the nearer of the two points
B and C is at most |EF | · |BC|/2 min(|AB|, |CD|).

Proof. The points of the lemma are illustrated in Fig-
ure 1. We assume without loss of generality that F is on
the side of AD that contains the center of O, as drawn in
the figure; let Y be the point of O farthest from X, lying
on the line throughX and the center ofO. Note that the
distance from line EF to the closer ofB and C is at most
min(|BX|, |CX|) ≤ |BC|/2, so it remains to prove that
|EF | ≥ min(|AB|, |CD|). But if F lies on the arc be-
tween A and Y , then |EF | ≥ |FX| ≥ |AB|, and if F lies
on the arc between Y and D then |EF | ≥ |FX| ≥ |CD|.
In either case the result follows. �

Lemma 4 Let s be a line segment in the plane, and let
ε > 0. Then there exists a set Ps,ε of O( 1

ε log 1
ε ) points

on s with the property that, for every circle O for which
s is a chord, and for every chord t of O that crosses s,
t passes within distance ε|t| of a point in Ps,ε.

Proof. Our set Ps,ε includes both endpoints of s and its
midpoint. In the subset of s from one endpoint p0 to the
midpoint, we add a sequence of points pi, where p1 is at
distance O(ε2s) from p0 with a constant of proportion-
ality to be determined later and where for each i > 1, pi
is at distance ε d(p0, pi−1) from pi. Because the distance
from p0 increases by a (1 + ε) factor at each step, the
set formed in this way contains O( 1

ε log 1
ε ) points.

If chord t crosses s between some two points pi and
pi+1 for i ≥ 1, or between the last of these points and
the midpoint of s, then Lemma 3 ensures that the nearer
of these two points is within distance ε|t| of the chord.

Otherwise, t crosses s between p0 and p1. Let r be the
radius of O, necessarily at least |s|/2, and suppose that
t passes within distance δr of p0. Because of the choice
of p1, δ = O(ε2). By the Pythagorean theorem, |t| ≥
r
√

2δ − δ2 = Ω(|r|
√
δ), and combining this information

with the definition of δ shows that t is within distance
O(
√
δ|t|) = O(ε|t|) of p0. By choosing the constant of

proportionality in the placement of p1 appropriately we
can ensure that this distance is at most ε|t|. �

We call the points in Ps,ε portals.

4 Spanning the portals within each triangle

Within each triangle of the Delaunay triangulation, we
will use a plane Steiner spanner that connects the por-
tals that lie on the triangle edges. For this special case,
we use a construction that generalizes to an arbitrary
set P of points on the boundary of an arbitrary planar
convex set K. Given a range of angles θ±δ, we say that
a path is (θ ± δ)-angle-bounded if it is piecewise linear
and each linear segment remains within this range of
angles, and we say that a point p on the boundary of K
is (θ± δ)-extreme if there does not exist a (θ± δ)-angle-
bounded path from p to a point interior to K.

Lemma 5 Every (θ± δ)-angle-bounded path has length
1 +O(δ2) times the distance between its endpoints.

Proof. The most extreme case is a path that follows
two sides of an isosceles triangle having the endpoints
of the path as base, for which the length is the length
of the base multiplied by 1/ cos δ = 1 +O(δ2). �

Lemma 6 Let P be a set of n points on the boundary of
a convex set K with perimeter `, let θ be an angle, and
let δ > 0 be a positive number. Then in time O(n log n)
we can construct a set S of O(n) line segments within
K, with total length O((` log n)/δ), with the property
that for every point p in P there exists a (θ ± δ)-angle-
bounded path in S from p to a (θ ± δ)-extreme point
of K.

Proof. We consider the points of P in an order we will
later define; for each such point p that is not itself (θ±δ)-
extreme, we extend two line segments with angles θ− δ
and θ+δ until reaching either an extreme point of K or
one of the previously constructed line segments. Thus, a
(θ±δ)-angle-bounded path from p may be found by fol-
lowing either of these two line segments, and continuing
to follow each line segment hit in turn by the previ-
ous line segment on the path, until reaching an extreme
point.

The non-extreme points of P , because K is convex,
form a contiguous sequence along the boundary of K.
We extend segments from the two endpoints of this se-
quence, then from its median, and then finally we con-
tinue recursively in the two subsequences to the left and
right of the median, as shown in Figure 2.

The segments from the first two points of P contribute
a total length of ` to S. For each subsequent point p,
the length of each added segment is at most proportional
to 1/δ times the length of the part of the boundary of
K that extends from p to the most recently previously
considered point in the same direction. Because of the
ordering of the points, each point along the boundary is
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Figure 2: Figure for Lemma 6

charged in this way for O(log n) segments, so adding this
quantity over all points, the total length of the segments
is O((` log n)/δ) as claimed. We may construct S in
O(n log n) time by using binary search to determine the
endpoint on K of each segment. �

Lemma 7 Let P be a set of n points on the boundary of
a convex set K with perimeter `, and let ε > 0 be a pos-
itive number. Then in time O(n2/ε) we can construct
a plane Steiner (1 + ε)-spanner for P , with all spanner
edges in K, with O(n2/ε) edges and vertices, and with
total length O((` log n)/ε).

Proof. We choose δ = O(
√
ε) (with a constant of pro-

portionality determined later), partition the circle into
O(1/δ) arcs of angle 2δ, let θi be the angle at the center
of the ith arc, and apply Lemma 6 to each of the arcs
θi ± δ. We overlay the resulting system of O(n/δ) line
segments; when two line segments from different arcs
both have the same angle and starting point, we choose
the longer of the two to use in the overlay. The result-
ing arrangement of line segments has O(n2/ε) edges and
vertices and total length O((` log n)/ε) as required, and
can be constructed in time O(n2/ε) using standard line
segment arrangement construction algorithms [12].

To see that this is a spanner, we must show that every
pair (p, q) of points in P may be connected by a short
path. Let θ be the angle formed by the segment from
p to q, choose i such that θ + δ ≤ θi ≤ θ + 3δ, and
use Lemma 6 to find a (θi ± δ)-angle-bounded path pp′

in the spanner from p to a (θi ± δ)-extreme point p′.
Because of the angle bound, p′ must be clockwise of q.
Similarly, we may choose θj within O(δ) of π + θ, and
find a (θj ± δ)-angle-bounded path qq′ to a (θj ± δ)-
extreme point q′ that is counterclockwise of p. These
two paths (depicted in Figure 3) must cross at at least
one point x, and the combination of the path from p to x
and from x to q lies within the spanner and is (θ±O(δ))-
angle-bounded. By Lemma 5, this path has length at
most 1+O(δ2) times the distance between its endpoints,
and by choosing the constant of proportionality in the
definition of δ appropriately we can cause this factor to
be at most 1 + ε. �

p

qṕ

q´

Figure 3: Figure for Lemma 7

5 Spanner construction

We now have all the pieces for our overall spanner con-
struction.

Theorem 8 Let P be a planar point set whose
Delaunay triangulation is given and has sharpest
angle α, and let ε > 0 be given. Then in
time O(n log2(1/(αε))/(α2ε3)) we can construct
a plane Steiner (1 + ε)-spanner for P with
O(n log2(1/(αε))/(α2ε3)) vertices and edges, and
with total length O(w(MST) log(1/(αε))/(α2ε)).

Proof. We apply Lemma 3 to place portals along the
edges of the triangulation, such that each chord s of
a Delaunay circle passes within distance O(αε|s|) of a
portal on each Delaunay edge that it crosses. We then
apply Lemma 7 within each Delaunay triangle to con-
struct a 1+O(ε)-spanner for the portals on the boundary
of that triangle.

The construction time is bounded by the time to
construct the spanners within each triangle. Since
there are O(log(1/(αε))/(αε)) portals on each triangle,
the time to construct the spanner for a single triangle
is O(log2(1/(αε))/(α2ε3)) and the total time over the
whole graph is O(n log2(1/(αε))/(α2ε3)). This bound
also applies to the number of vertices and edges in the
constructed spanner. By Lemma 1, the total perimeter
of the Delaunay triangles is O(w(MST)/α2), and com-
bining this bound with the length bound of Lemma 7
gives total length O(w(MST) log(1/(αε))/(α2ε)) for the
spanner edges.

To show that this is a spanner, we must find a short
path between any two of the input points p and q. By
Lemma 3, the line segment pq passes within distance
O(αε|s|) of a portal on every Delaunay edge that it
crosses, where s is the chord of one of the Delaunay cir-
cles for the crossed edge. By Lemma 2, the total length
of all of these chords is O(|pq|/α), so we may replace
pq by a polygonal path that contains a portal on each
crossed Delaunay edge, expanding the total length by a
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factor of at most 1 + O((αε)/α) = 1 + O(ε). Then, by
Lemma 7 we may replace each portal-to-portal segment
in this path by a path within the spanner for the por-
tals in a single Delaunay triangle, again expanding the
total length by a factor of at most 1 +O(ε). By choos-
ing constants of proportionality appropriately, we may
make the total length expansion be at most 1 + ε. �

6 Approximating the TSP

An algorithm of Klein [16] provides a linear time ap-
proximation scheme for the traveling salesperson prob-
lem in a planar graph. Its first step is to find a low-
weight spanner of the graph. A subsequent paper, also
by Klein [15] describes an algorithm that, given a planar
graph G and a subset S of the nodes, finds a subgraph
of G whose weight is O(ε−4) times that of the minimum-
weight tree spanning S and that is a (1 + ε)-spanner for
the shortest-path metric on S [15]. This subset span-
ner construction can be substituted for the first step of
Klein’s approximation scheme, resulting in an algorithm
for approximating the TSP on the subset S. However, in
this more general result, the spanner construction takes
time O(n log n), so the total time for the approximation
scheme is O(n log n) for any fixed ε > 0.

For points in the plane, we may substitute our own
faster low-weight spanner construction for the first step
of the approximation scheme. The remaining steps of
the approximation use only the facts that the points
we are seeking to connect into a tour are vertices in a
planar graph, and that the whole graph has total weight
proportional to the minimum spanning tree of the given
points. Thus, we obtain the following result:

Theorem 9 For any fixed α and ε, the optimal travel-
ing salesman tour of sets of n points in the plane with
sharpest Delaunay triangulation angle at most α may be
approximated to within a 1 + ε factor in time O(n) plus
the time needed to construct the Delaunay triangulation.

It would also be possible to design a TSP approxima-
tion scheme more directly using a framework used by
Borradaile, Klein and Mathieu [8] to solve the Steiner
tree problem; details on how this framework applies to
TSP were given by Borradaile, Demaine and Tazari [7]
in generalizing the planar framework to bounded-genus
graphs. Their algorithm, as interpreted for point sets
in the Euclidean plane, would partition the triangles
of the Delaunay triangulation into layers according to
their depth from the infinite face in the dual graph so
that the boundary between layers is an ε fraction of
the optimal solution. This can be achieved with depth
fw(α)/ε = O

(
1
α2ε

)
; each layer has tree-width polyno-

mial in this depth. The problem is then solved using
dynamic programming, where the dynamic programs
are additionally indexed by the portals. The base cases

are made to correspond to the triangles in which the
intersection with any tour can be enumerated. The size
of the dynamic program is therefore bounded singly-
exponentially in 1/ε and 1/α. This task is slightly eas-
ier in the geometric setting than in the planar graph
setting as computing shortest paths is trivial.

7 Looking ahead

The most obvious question posed by this work is: how
do we remove the dependence on α? The dependence on
α appears in two places: in the number of circumcircles
that enclose a point and in the weight of the Delaunay
triangulation. We believe that it should be possible to
remove these dependencies on α by treating groups of
skinny triangles as a single region. In fact, using this
idea, we are able to remove each dependency separately,
but not together.

An alternative approach to removing this dependence
would be to augment the input to remove all sharp an-
gles from its Delaunay triangulation, but this may some-
times need a number of added points that cannot be
bounded by a function of n [5]. A construction based on
quadtrees shows that every point set may be augmented
with O(n) points so that the Delaunay triangulation has
no obtuse angles [5]; the resulting triangulation may
also be modified to have the bounded circumcircle en-
closure property, despite having some sharp angles, and
may be constructed as efficiently as sorting [6]. Apply-
ing our spanner construction method to the augmented
input would allow us to completely eliminate the de-
pendence on α in the time and output complexity of
our spanners, but at the expense of losing control over
their total weight. Once a spanner is constructed in this
way, Klein’s subset spanner [15] can be used to reduce
its weight, allowing it to be used in an algorithm to
approximate the TSP for arbitrary planar point sets in
time O(n log n) for any fixed ε > 0, but this does not
improve on the time bound of Rao and Smith [19].

Unlike in the methods of Arora [3], Mitchell [17], Rao
and Smith [19] and Borradaile, Klein and Mathieu [8],
the approximation error in our method is charged locally
as opposed to globally. In the quad-tree based approx-
imation schemes, the error incurred is charged to the
dissection lines that form the quad tree. In the planar
approximation-scheme framework for Steiner tree, the
error incurred is charged to an O(MST)-weight sub-
graph called the mortar graph which acts much like
the quad-tree decomposition. Our charging scheme is
much more similar to that used by Klein for the subset
tour problem in planar graphs [15]. However, in ap-
plying the planar approximation-scheme frameworks of
either Klein or Borradaile, Klein and Mathieu, some er-
ror is incurred in partitioning the graph into pieces of
bounded treewidth. This error is proportional to the
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graph that is partitioned, which in our case is either
the spanner (for Klein’s scheme) or the triangulations
(for Borradaile et. al.’s scheme). This error is indirectly
related to OPT by way of the O(MST) weight of the
spanner and triangulation. By current techniques, this
source of error does not seem avoidable.

Finally, our spanner construction more closely ties
Euclidean and planar distance metrics together. By uni-
fying the approximation schemes in these two related
metrics, it may be possible to generalize these methods
to other two dimensional metrics.
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