
CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

The Cover Contact Graph of Discs Touching a Line

Stephane Durocher∗ Saeed Mehrabi∗ Matthew Skala∗ Mohammad Abdul Wahid∗

Abstract

We answer a question of Atienza et al. [4] by showing
that the circular CCG+ problem is NP-complete. If we
cover a set of objects on the plane with discs whose in-
teriors are pairwise disjoint, then we can form a cover
contact graph (CCG) that records which of the cover-
ing discs touch at their boundaries. When the input
objects are themselves discs, and both input and cover-
ing discs are constrained to be touching and above the
x-axis, then the circular CCG+ problem is to decide the
existence of a covering with a connected CCG. We also
define an approximate version of this problem by allow-
ing a small overlap between covering discs, and give an
algorithm that in polynomial time finds an approximate
solution for any yes-instance of the exact problem.

1 Introduction

Given a set S of n disjoint input discs in the plane, a
covering C of S consists of n covering discs such that
each covering disc covers exactly one input disc and no
two covering discs intersect except on their boundaries.
In general, the radii of the covering discs need not all be
the same. The cover contact graph (CCG) induced by
C is a graph G = (V,E) such that each input disc corre-
sponds to a vertex in V and two vertices are connected
by an edge if and only if their corresponding covering
discs are tangent. In other words, G is the intersection
graph of a set of discs in the plane whose interiors are
pairwise disjoint. Koebe’s theorem [6] states that every
planar graph can be represented as a coin graph. The
coin graph of a set of discs in the plane is in fact the
CCG of that set of discs. Problems related to these
graphs arise in many application areas, such as wireless
communication networks [5] and facility location [7].

Given a set of discs in the plane, the circular CCG
problem asks if the given set admits a covering whose
CCG is connected. Atienza et al. [4] show that the cir-
cular CCG problem is NP-hard using a reduction from
Planar3Sat, a constrained version of 3Sat in which
the corresponding variable-clause graph must be pla-
nar. They also explore a variant in which the input
discs are reduced to distinct points, with different kinds
of connectivity required for the contact graph. They

∗Department of Computer Science, University of Manitoba,
{durocher, mehrabi, mskala, wahid}@cs.umanitoba.ca

give algorithms with O(n log n) worst-case running time
for 1-connectivity, and with O(n2 log n) expected run-
ning time for 2-connectivity. They also study variants
in which the covering discs are required to touch the x-
axis. While they extensively examine the axis-touching
case when the input is limited to distinct points, they
leave open the case where the input is a set of discs and
both the input and the covering discs are required to
touch the x-axis. This is the circular CCG+ problem,
for which we show NP-hardness in this paper. Our
proof depends on very precise differences in the radii
of the discs, and we show that such differences are es-
sential to the hardness of the problem. We define an
ε-approximate version of the circular CCG+ problem
and give a polynomial-time algorithm such that if the
circular CCG+ problem has an exact solution, then our
algorithm produces an ε-approximate solution.

Many related problems are known. One is that of
realizability. In addition to the set of input discs, we
can be given an unlabeled planar graph G and the goal
of deciding whether there exists a covering for the given
input set whose CCG is G. Atienza et al. [4] show, again
by reduction from Planar3Sat, that this realizability
problem is also NP-hard, even if the input is a set of
points.

Notwithstanding Koebe’s theorem that every planar
graph is realizable as a coin graph (without constraining
the centres of the discs), if we fix the coordinates of the
vertices to make a geometric graph and require the discs
to be centred on their respective vertices, then not every
geometric graph can be so realized. Under the further
constraint that the geometric graph is a tree, Abellanas
and Moreno-Jiménez [3] present an O(n log n)-time al-
gorithm that decides if a given tree can be realized as a
coin graph with coins centred at the vertices of the tree.
For a graph that may not be a tree, they find a spanning
tree and adapt their tree algorithm to solve the prob-
lem in polynomial time. Moreover, if the answer to this
decision problem is affirmative, then the algorithm also
computes all possible coin sets.

Abellanas et al. [1] show that given n points and n
discs in the plane, it is NP-complete to decide whether
the discs can be placed in such a way that each disc
is centred at one of the points and no two discs over-
lap. Abellanas et al. (with a different set of authors)
show that the following problem isNP-complete: Given
a set of points in the plane, determine whether there
are disjoint discs centred at the points such that the



24th Canadian Conference on Computational Geometry, 2012

x

a b

x

a+ b
a− b

Figure 1: The constraint between two discs. See (1).

CCG of the discs is connected [2]. Note that if we re-
lax the constraint that the discs must be centred at
the given points, then the problem is polynomial-time
tractable [4].

2 Proof of NP-hardness

In this section, we show that the following problem is
NP-hard.

Given n distinct real numbers x1 < x2 < · · · < xn,
and n nonnegative real numbers r1, r2, . . . , rn, the circu-
lar CCG+ problem is to decide whether there exist real
numbers y1, y2, . . . , yn such that if C is the set of closed
discs C1, C2, . . . , Cn where Ci is centred at (xi, yi) and
has radius yi (implying that Ci touches the x axis) with
yi ≥ ri, then the interiors of the discs in C are pairwise
disjoint and the CCG induced by C is connected.

Consider two discs in the circular CCG+ problem
whose radii are a and b with the horizontal distance
between their centres equal to x (see Figure 1). The
constraint between the radii corresponds to the right
triangle shown. We have:

(a+ b)2 ≤ (a− b)2 + x2

⇔ ab ≤ x2/4 .
(1)

The constraint holds as an inequality for every pair
of discs. It achieves equality if and only if the discs
touch, corresponding to an edge in the CCG+. Taking
the logarithm, we have:

log a+ log b ≤ 2 log x− log 4 .

The logarithmic form of the constraint provides intu-
ition for the hardness of the problem. Finding a circu-
lar CCG+ means solving a linear program on the log-
arithms of the disc radii, subject to an additional con-
straint that the graph formed by the constraints that
reach equality is a connected graph. It is intuitively
reasonable that linear programming with a connectiv-
ity constraint should be NP-hard, because if we could

2a 2a
2b 2 2b

Figure 2: A non-convexity gadget.

constrain linear programming variables to represent a
connected graph, then we could constrain them to rep-
resent a 2-regular connected graph, which would be a
Hamiltonian cycle.

Our proof, however, reduces from 3Sat. We will have
gadgets and ways to combine them so that different val-
ues of the radius of the leftmost disc in the problem will
correspond to different assignments of values to boolean
variables; then we will manipulate the sets of radii that
could satisfy the CCG+ problem so that they corre-
spond to exactly the assignments that satisfy the 3Sat
problem.

The first step to create a hard instance of the circular
CCG+ problem is to create a non-convex solution set in
the related linear programming problem.

2.1 A Non-convex Gadget

Figure 2 shows a gadget for creating non-convexity. The
two discs in the middle are constrained to a minimum
radius a slightly less than 1; their proximity to each
other also gives them a maximum radius slightly greater
than 1. Then in order to form a connected contact
graph, the two outer discs must touch each other as
shown; they cannot both touch the inner discs, but one
must, and there is a choice as to which one that is. The
radius y1 of the leftmost disc is constrained to be in
one of two non-overlapping intervals depending on that
choice. The following lemma describes the behavior and
existence of the non-convexity gadget.

Lemma 1 We can choose the dimensions of a gadget
like that shown in Figure 2 to constrain the radius y1 of
the leftmost disc such that the circular CCG+ problem
is satisfiable if and only if (c ≤ y1 ≤ d)∨(e ≤ y1 ≤ f) is
true, for any positive c, d, e, and f such that 1 ≤ d/c =
f/e < 16/9 and 1 < e/c < (9/7)2.

Proof. Consider the non-convex gadget shown in Fig-
ure 2 and let C1, C2, C3, and C4 be the four discs, left
to right. Their minimum radii are given by r1 = r4 = 0
and r2 = r3 = a for some a slightly less than 1, which
we will choose later. The horizontal distances are as
shown: 2b from C1 to C2, 2 from C2 to C3, and 2b from
C3 to C4, for some b we will choose later.



CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

C1 C4 C1 C4

C2 C3 C2 C3

Figure 3: Allowable contact graphs for the non-convex
gadget.

Each pair of discs in the gadget corresponds to an
inequality constraint, which will achieve equality if and
only if the discs touch.

y1y2 ≤ b2 for (C1, C2) (2)

y1y3 ≤ (b+ 1)2 for (C1, C3) (3)

y1y4 ≤ (2b+ 1)2 for (C1, C4) (4)

y2y3 ≤ 1 for (C2, C3) (5)

y2y4 ≤ (b+ 1)2 for (C2, C4) (6)

y3y4 ≤ b2 for (C3, C4) (7)

We also have, as a consequence of (5) and the mini-
mum radii r2 = r3 = a ≤ 1, the constraints a ≤ y2 ≤
1/a and a ≤ y3 ≤ 1/a. For the gadget to work as in-
tended, we must ensure that the only connected contact
graphs allowed are those shown in Figure 3. Requiring
one of those graphs implies that (4), (5), and either of
(2) or (7) can achieve equality, but (3) and (6) cannot,
nor (2) and (7) simultaneously.

We can prevent C1 and C3 from touching by mak-
ing C2 big enough. We have y2 ≥ a. That gives
y1 ≤ b2/a from (2), and y3 ≤ 1/a from (5). Therefore
y1y3 ≤ b2/a2. Substituting into (3), C1 and C3 will be
prevented from touching if a > b/(b+ 1). This relation
will hold if we choose a large enough and b small enough;
a ≥ 3/4 and b < 3 are sufficient. These conditions also
make (6) strict, by symmetry.

It remains to prevent (2) and (7) from both achieving
equality at once. Suppose they did that. Then we would
have y1y2 = b2 and y3y4 = b2, so y1y2y3y4 = b4, but
by (5), we can eliminate y2 and y3 and get y1y4 ≥ b4.
That will contradict (4) if b4 > (2b + 1)2, or b2 > 2b +
1. Solving the quadratic, (2) and (7) cannot both be
equalities if b > 1 +

√
2 = 2.414 . . .. Therefore if 3/4 <

a ≤ 1 and 1+
√

2 < b < 3, the connected contact graphs
that can be achieved are exactly the ones in Figure 3.

Assume we choose 3/4 < a ≤ 1 and 1 +
√

2 < b <
3, and consider the possible values for y1 in a solution
to the problem. It must fall in one of two intervals,
depending on whether C1 touches C2, or C3 touches
C4. One and only one of those conditions must hold,
as described above. If C1 touches C2, then because a ≤

y2 ≤ 1/a, we have:

ab2 ≤ y1 ≤ b2/a . (8)

Symmetrically, if C3 touches C4, then ab2 ≤ y4 ≤
b2/a, and then since C1 and C4 must touch each other,
(4) is an equality and we have:

a(2b+ 1)2

b2
≤ y1 ≤

(2b+ 1)2

ab2
. (9)

Note that in both (8) and (9), the ratio between the
upper and lower limits is equal to 1/a2. By choosing
an a > 3/4, we can choose any value less than 16/9 =
1.777 . . . for that ratio. Dividing the lower limits in
(8) and (9) gives the ratio b4/(2b + 1)2. Note that a
cancels out and so the ratio between the lower ends of
the intervals is independent of a. By choosing b between
1+
√

2 and 3, we can choose this ratio anywhere between
1 and (9/7)2 = 1.653 . . .. Also note that we can scale
the entire gadget arbitrarily, with the effect of scaling
all the interval bounds by the same factor. The result
follows. �

2.2 Coupling Gadgets and Interval Duplication

The next step is to combine several such gadgets into a
chain, by placing them side by side in such a way that
they are forced to touch. Then the radius of the left-
most disc is constrained by all the constraints of all the
gadgets; we have taken the intersection of the solution
sets of the individual gadgets. Figure 4 illustrates the
technique.

But linking gadgets side by side is not the only way
to apply one gadget’s constraints to another; we can
also take one gadget, or a chain of them, scale it down
to be arbitrarily small, and tuck it underneath another
disc as shown in Figure 5. Making it arbitrarily small
means we can prevent any other discs in the problem
from interfering with the contact. Moving the small
disc closer to the large disc cancels out the effect of
scaling them smaller, so the effect on the large disc’s
radius is, if we so choose, no different from placing the
gadgets side by side. The difference is that because
it does not require access from the sides, only from the
bottom arbitrarily close to the centre, we can apply this
technique to the inner discs of the gadget from Figure 2;
and whatever we do to one of those is done twice to the
leftmost disc of the gadget. The set of allowed radii for
the leftmost disc becomes the union of two copies of the
set of allowed radii we apply to the inner disc, separated
by an adjustable scaling factor. The following lemma
states this property precisely.

Lemma 2 Given a chain of discs that constrains its
leftmost member’s radius to be in a set R ⊆ R with
supR ≤

√
2 inf R, and positive reals c and d with



24th Canadian Conference on Computational Geometry, 2012

C1

C4
C ′

1

C ′
4

C ′′
1

C ′′
4

Figure 4: Gadgets coupled into a chain.

Figure 5: Hiding a chain of discs under a large disc
(scale distorted for clarity).

c < d < (9/7)2c, by adding five more discs we can
construct a gadget in which the leftmost disc’s radius
is constrained to be an element of the set {cy | y ∈
R} ∪ {dy | y ∈ R}.

That construction can be repeated a linear number
of times to create an exponential number of disjoint in-
tervals, giving the following corollary. The radius of the
leftmost disc in the problem is constrained to be in one
of the intervals, but so far unconstrained as to which
one.

Corollary 3 For any nonnegative integer k and posi-

tive reals c and d with c > 1, d ≥ 1, and c2
k

d ≤
√

2, we
can construct a gadget using a number of discs linear in
k that constrains the radius of its leftmost disc to be in
the set {y | ci ≤ y ≤ dci for some i ∈ {0, 1, . . . , 2k−1}}.

2.3 Encoding a 3Sat Instance

Choose any instance of 3Sat. We may add a polynomial
number of extra variables to it for technical reasons to
be described later, but suppose that after adding those
it contains n boolean variables v1, v2, . . . , vn. There are
2n ways to assign values to all the variables. We will
associate those with 2n intervals, disjoint but arbitrarily
close to each other and proportionally equally sized and
spaced. That is, the ratios between the upper and lower
bound of each interval, and between the lower bound of
each interval and the lower bound of the next, are the
same for all intervals. All the intervals will be contained
in (1,

√
2). The intervals are associated with variable

y0

1
√
2

v3 F F F F T T T T
v2 F F T T F F T T
v1 F T F T F T F T

v1 ∨ ¬v2 ∨ v3

Figure 6: Satisfying a 3-clause.

assignments from all-false to all-true in binary counting
order with v1 as the least significant bit and vn as the
most significant bit. Figure 6 illustrates the encoding.

Figure 6 also illustrates how we can enforce a 3-literal
disjunctive clause constraint on this encoding. Provided
the clause only involves the three most significant vari-
ables, it corresponds to the negation of a single one of
the eight intervals. For a clause of the form (¬a∨¬b∨¬c)
or (a∨b∨c), we just increase the minimum radius of the
leftmost disc in the problem, or increase the minimum
radius of the rightmost in order to have the effect of
decreasing the maximum for the leftmost, and we can
require the clause to be satisfied. For any other 3-clause
over the three most significant variables, we can require
satisfaction by intersecting with a union of two intervals
that satisfy the numerical requirements of Lemma 1; so
adding one more gadget to the right can have the effect
of enforcing the clause as a constraint.

The clause constraint gadget only works for clauses in
the three most significant variables, so we need all our
clauses to be of that form when we apply it. Although
other approaches more economical of variables might be
possible, we will introduce three new variables for ev-
ery clause, forcing them equal to the existing variables
the clause is intended to constrain. This technique is
illustrated in Figure 7. Here v3 is the new variable be-
ing set equal to v1. Observe that the set of intervals
corresponding to v1 = v3 consists of two halves, and to
equate vi and vj , i < j, each half is a set of 2j−i−1 inter-
vals with equal proportional size and equal proportional
spacing. Only the gap in the middle is different. We can
create one of the halves with the gadget of Corollary 3,
and then combine two copies of it with the appropriate
spacing in the middle using the more general form of
Lemma 2. The following lemma states precisely the ap-



CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

y0

1
√
2

v3 F F F F T T T T
v2 F F T T F F T T
v1 F T F T F T F T

v1 = v3

¬v3 ∧ (v1 = v3) v3 ∧ (v1 = v3)

Figure 7: Duplicating a variable.

proach that we use to add a new variable and make it
equal to an existing variable.

Lemma 4 Given that n boolean variables v1, v2, . . . , vn
are encoded by the radius of a disc in a CCG+ instance
using a range from 1 to r ≤

√
2 according to our en-

coding scheme, for any integer 1 ≤ i < n we can, with
a number of discs linear in n, create a gadget that con-
strains the radius of its leftmost disc to enforce the con-
straint vi = vn.

Proof. First we apply Corollary 3 with

log c =
log r

2n−i
,

log d =
log r

2n−i+1
, and

k = n− i− 1

to create a gadget that enforces vi = vn when vn is false.
Then we apply Lemma 2 to that gadget using

c = 1, and

log d =

[
1

2
+

1

2n−i+1

]
log r .

�

The key observation is that the set of intervals cor-
responding to the statement vi = vn may include an
exponential number of intervals, but it is of a special
form regardless of i and n: it is the union of two copies
of a collection of proportionally equally spaced and sized
intervals, and we can create it by applying Corollary 3
followed by Lemma 2.

Then we have all the pieces necessary to construct
an instance of the circular CCG+ problem equivalent to
an instance of 3Sat. First, we calculate the number of
variables we will add, which is equal to three times the
number of 3-clauses. That gives us the size we need for
the smallest intervals in our encoding. Note that this
size comes from starting at a constant and scaling down
by at most a constant amount, a linear number of times;
we can represent the numbers involved in a polynomial
number of bits.

We represent the variables from the original problem
in a suitably narrow range of radii using Corollary 3. For
each clause, we add three new variables with Lemma 4,
doubling the number of variable assignments in the en-
coding with each one. We enforce the 3-clause. Then
we proceed to the next. When we are done, we have a
polynomial-sized instance of the circular CCG+ prob-
lem whose leftmost disc is constrained to have a radius
that represents a satisfying assignment for the original
3Sat instance; this is satisfiable if and only if the 3Sat
instance was satisfiable. Therefore the following holds:

Theorem 5 The circular CCG+ problem is NP-hard.

3 An Approximation Algorithm

The NP-hardness proof depends on high numeric pre-
cision. The constraints on disc radii create intervals
that are exponentially small, although represented by a
number of bits polynomial in the problem size. In this
section we show that that precision is essential to the
hardness of the problem: if we relax the problem def-
inition in such a way as to permit imprecise solutions,
then it becomes tractable.

First, discs cannot grow arbitrarily large or small.
This follows from doing two rounds of simple constraint
propagation (detailed proof omitted).

Lemma 6 Any instance of the circular CCG+ problem
either is trivially satisfiable, or contains at least two
discs with nonzero minimum size, and in the latter case
we can in polynomial time compute a nonzero minimum
and finite maximum size for every disc in the problem,
which must be satisfied by any exact solution.

Recall that the circular CCG+ problem requires, for
each pair of discs whose radii are a and b and whose
horizontal distance is x, the constraint ab ≤ x2/4; and
this holds as an equality if and only if the discs are
touching each other and correspond to an edge in the
contact graph. Let us relax the constraint to say that
for any ε > 0 two discs are ε-approximately touching if
x2/4 ≤ ab ≤ (1+ε)x2/4. Then other definitions arise by
analogy: the ε-approximate contact graph is the graph
with a vertex for each disc and an edge between any
two discs that are ε-approximately touching, and the ε-
approximate CCG+ problem is like the CCG+ problem
but requires a choice of radii for the discs such that
the ab ≤ (1 + ε)x2/4 constraint is obeyed by every pair
of discs, instead of ab ≤ x2/4, and the ε-approximate
contact graph is connected instead of the exact contact
graph necessarily being connected.

Allowing ε-approximate contacts means that we can
reduce the precision of all the disc radii. If we start
from an exact solution and round up each disc radius
to the next larger integer power of

√
1 + ε, we still have

an ε-approximate solution, giving the following lemma.



24th Canadian Conference on Computational Geometry, 2012

Lemma 7 If there exists an exact solution to an in-
stance of the CCG+ problem, then there exists a solu-
tion to the corresponding instance of the ε-approximate
CCG+ problem in which every disc radius is an integer
power of

√
1 + ε.

Therefore we can search for a solution with the radii
limited to powers of

√
1 + ε, and still be assured of find-

ing an ε-approximate solution if an exact solution exists.
We can prove the following approximate result.

Theorem 8 There exists an algorithm such that given
a circular CCG+ instance for which an exact solution
exists, it finds an ε-approximate solution. If no exact so-
lution exists, it may produce an ε-approximate solution
or fail. Where R is the greatest ratio, for any disc in
the problem, between the maximum and minimum radii
of Lemma 6, the algorithm runs (unconditionally on so-
lution existence) in time polynomial to the instance size
and to logR/ log(1 + ε).

Note that this is a one-sided test: when an exact so-
lution exists, our algorithm guarantees to find an ap-
proximate solution, but if there exists an approximate
solution and no exact solution, the algorithm does not
guarantee finding the approximate solution.

The approximation algorithm performs dynamic pro-
gramming on intervals of the left-to-right sequence of
discs, using the following observation: if we have three
discs left to right and we know that the one in the mid-
dle is the largest (possibly tying with either of the other
two), then the one on the left and the one on the right
cannot touch each other. Thus if we know which disc
is largest in the entire problem and its radius, then we
can split the problem into two smaller ones whose solu-
tions are independent, which is the necessary structure
for dynamic programming. We can try all possibilities
for the largest disc, and recurse on each side, memoizing
the answers to the recursive subproblems.

Each recursive subproblem corresponds to an inter-
val of the sequence of discs, with specified sizes for the
discs on either end, an assumption that no disc in be-
tween is larger than either of those, and a choice be-
tween a small constant number of cases for whether this
subproblem is the leftmost or rightmost in the entire
problem and whether or not the two endmost discs are
already connected by larger discs outside the subprob-
lem. Lemma 7’s limitation on the number of radii we
need to consider forces the number of subproblems, and
thus the algorithm’s time complexity, to be polynomial.

4 Conclusion

In this paper, we considered a circular cover contact
graph problem defined by Atienza et al. [4]. We showed
that when the input discs and the covering discs are all

constrained to touch a line, then the problem of deciding
whether the input set has a connected CCG isNP-hard.

We also defined an approximate variation of the prob-
lem, where the covering discs are allowed to overlap by
a small amount. We gave a polynomial-time algorithm
such that if there exists an exact solution to the prob-
lem, then the algorithm returns an ε-approximate solu-
tion. However, if there is no exact solution, then the
algorithm does not guarantee to return an approximate
solution that might exist. Our algorithm provides an
approximate answer to the decision problem of exact
solution existence. The decision problem of approxi-
mate solution existence is a different problem, and the
complexity of that problem remains open.

References

[1] M. Abellanas, S. Bereg, F. Hurtado,
A. Garćıa Olaverri, D. Rappaport, and J. Tejel.
Moving coins. Computational Geometry: Theory
and Applications (CGTA), 34:35–48, 2006.

[2] M. Abellanas, N. de Castro, G. Hernández,
A. Máarquez, and C. Moreno-Jiménez. Gear sys-
tem graphs. Manuscript, 2006.

[3] M. Abellanas and C. Moreno-Jiménez. Geometric
graphs realization as coin graphs. In International
Conference on Computational Science and Its Appli-
cations, volume 3045, pages 1–10, Assisi, Italy, 2004.
Springer.

[4] N. Atienza, N. de Castro, C. Cortés, M. A. Garrido,
C. I. Grima, G. Hernández, A. Márquez, A. Moreno-
González, M. Nöllenburg, J. R. Portillo, P. Reyes,
J. Valenzuela, M. T. Villar, and A. Wolff. Cover
contact graphs. In S.-H. Hong, T. Nishizeki, and
W. Quan, editors, Graph Drawing, volume 4875 of
Lecture Notes in Computer Science, pages 171–182.
Springer, 2007.

[5] B. N. Clark, C. J. Colbourn, and D. S. Johnson.
Unit disk graphs. Discrete Mathematics, 86:165–
177, 1990.

[6] P. Koebe. Kontaktprobleme der konformen abbil-
dung. Ber. Sachs. Akad. Wiss. Leipzig Math.-Phys.
Kl., 88:141–164, 1936.

[7] J.-M. Robert and G. T. Toussaint. Computational
geometry and facility location. In International
Conference on Operations Research and Manage-
ment Sciences, pages B–1–B–19, Manila, Philip-
pines, 1990.


