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Abstract

We say a family of geometric objects C has the (l, k)-
property if every subfamily C ′ ⊆ C of cardinality at
most l is k-piercable. In this paper we investigate the
existence of g(k, d) such that if any family of objects C
in Rd has the (g(k, d), k)-property, then C is k-piercable.
Danzer and Grünbaum showed that g(k, d) is infinite for
families of boxes and translates of centrally symmetric
convex hexagons. In this paper we show that any fam-
ily of pseudolines with the (k2 + k + 1, k)-property is
k-piercable and extend this result to certain families of
objects with discrete intersections. This is the first posi-
tive result for arbitrary k for a general family of objects.
We also pose a relaxed version of the above question and
show that any family of boxes in Rd with the (k2d, k)-
property is 2dk-piercable.

1 Introduction

A family of geometric objects C in Rd is said to be
k-piercable if there exists a set of points P ⊂ Rd of
cardinality k such that every object in C contains (is
pierced by) at least one of the points of P .

Definition 1 We say a family of geometric objects C
has the (l, k)-property if every subfamily C ′ ⊆ C of car-
dinality at most l is k-piercable.

The classical Helly’s theorem [8] stated in this notation
is as follows: Any family of convex objects C in Rd
having the (d+ 1, 1)-property is 1-piercable.

Helly-type theorems have been widely studied for
different settings (see surveys [5, 6]). Danzer and
Grünbaum [4] considered the following generalised
version of Helly’s theorem:

For every positive integer k, does there exist a fi-
nite g(k, d) such that if any family of convex objects
C in Rd has the (g(k, d), k)-property, then C is k-
piercable?

They showed that g(k, d) is infinite even for fami-
lies of boxes in Rd. Specifically, they gave a generic
construction and showed that g(k, d) is infinite for all
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k ≥ 3, d ≥ 2 and (k, d) 6= (3, 2). The same construction
also works as a counterexample for hypercubes in Rd.
Katchalski et al [9] showed that g(k, d) is infinite for
translates of a symmetric convex hexagon.

Positive results are known for small values of k (i.e.
k = 2). Danzer and Grünbaum [4] showed that for
a family of boxes in Rd, g(2, d) = 3d − 1 if d is even
and g(2, d) = 3d if d is odd. They also proved that
g(3, 2) = 16 for a family of rectangles in R2. Katchalski
et al [9] showed that for a family of homothetic triangles
in R2, g(2, 2) = 9.

In this paper, we obtain the first positive results for
general k. We show that for a family of pseudolines in
R2, g(k, 2) is finite for all k ≥ 2. Specifically, we prove
the following:

Theorem 1 Let C be a family of pseudolines in R2 with
|C| ≥ k2 + k + 1. For any integer k ≥ 2, if C has the
(k2 + k + 1, k)-property then C is k-piercable.

We extend the above theorem for families of objects
C with the following property: any subfamily of p + 1
distinct objects in C intersect in at most one point. Note
that p = 1 for a family of pseudolines.

Theorem 2 Let C be a family of objects with the prop-
erty that any subfamily of p+ 1 distinct objects in C in-
tersect in at most one point. Let |C| ≥ k(kp+1)+1. For
any integer k ≥ 2, if C has the (k(kp + 1), k)-property
then C is k-piercable.

The proof of Theorem 1 and 2 are combinatorial and
exploit only the intersection property. In fact, Theorem
2 is true for set systems with the property that any
subfamily of p + 1 distinct sets intersect in at most
one element. Also the proofs lead naturally to a FPT
algorithm for the minimum piercing problem on these
objects. Note that the minimum piercing problem is
NP-hard and APX-hard even for lines in R2 [12, 3].

Since g(k, d) is infinite for most families of geometric
objects in the above problem, we define the following
relaxed variant, which we refer to as the k-Helly
problem:

k-Helly problem: For every positive integer k,
determine the smallest f(k, d) such that if any family
of convex objects C in Rd has the (g(k, d), k)-property
for some g(k, d), then C is f(k, d)-piercable.
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The k-Helly problem is related to the weak ε-net [1]
and Hadwiger-Debrunner (p, q)-problem [7] as follows:

Weak ε-nets are a special case of the k-Helly problem
: In the weak ε-net problem, we ask for a piercing set
for objects containing > εn points. By the pigeon hole
principle, in any subcollection of 1

ε + 1 objects, two will
intersect. Therefore the objects satisfy the ( 1

ε + 1, 1ε )-
property.

The k-Helly problem is a special case of the Hadwiger-
Debrunner (p, q)-problem since the (g(k, d), k)-property
implies the Hadwiger-Debrunner (p, q)-property for
p = g(k, d), q = g(k, d)/k. Also, the finiteness of
g(k, d), f(k, d) is implied by the Hadwiger Debrunner
(p, q) theorem [2], which shows a finite piercing set.
However, the bounds given by the Hadwiger Debrunner
(p, q) theorem are large (roughly O(p6) for convex
objects in R2).

We show the following result for boxes in Rd:

Theorem 3 Let C be a family of boxes in Rd. For any
k ≥ 2, if C has the (k2d, k)-property, then C is 2dk-
piercable.

Note that for boxes in Rd, f(k, d) > k since otherwise
g(k, d) is infinite. The proof of Theorem 3 directly leads
to a 2d-approximate FPT algorithm for the minimum
piercing problem on boxes. We note that the minimum
piercing problem for boxes is NP-hard as well as W[1]-
hard [11].

2 Lines and Pseudolines

Any two lines in R2 intersect in at most one point. This
can be generalized in the following way.

Definition 2 A family of geometric objects C in R2 is
called a family of pseudolines if for every li, lj ∈ C, li
and lj intersect in at most one point.

Let C be a finite family of pseudolines in R2.

Definition 3 Let a point x lie in the intersection of
a set of pseudolines l1, l2, · · · , ls ∈ C. We call x k-
degenerate in C if s > k.

Lemma 4 Let H be a set of points that pierces C. If x
is k-degenerate in C and x /∈ H, then |H| ≥ k + 1.

Proof. If x /∈ H then we need at least s points to hit
the s pseudolines passing through x. Since s > k the
lemma follows. �

Lemma 5 Let |C| ≥ (k2 +k+1) and G be the set of all
k-degenerate points in C. If C has the (k2 + k + 1, k)-
property, then 1 ≤ |G| ≤ k

Proof. Let S be a subset of C such that |S| = k2+k+1.
S is k-piercable. By pigeon hole principle, there exists
a point x that pierces at least k + 1 pseudolines in S.
Hence |G| ≥ 1. Also if G ≥ k + 1, there exists S′ ⊂ C
which contains k + 1 pseudolines passing through each
of the first k points in G and one pseudoline passing
through the (k+1)th point which does not pass through
the first k points. Clearly |S′| ≤ k2 +k+1 and S′ is not
k-piercable, a contradiction. Hence 1 ≤ |G| ≤ k. �

Proof of Theorem 1. Let G be the set of all k-
degenerate points in C. From Lemma 5, we know that
1 ≤ |G| ≤ k. Let C ′ be the set of pseudolines not pierced
by any of the points in G. We claim that if |G| = k then
C ′ = ∅. For if C ′ 6= ∅ then there is a l ∈ C ′ such that it
is not pierced by any point in G. For each point in G,
pick k+1 pseudolines passing through it. This together
with l gives a set C ′′ of at most k(k+1)+1 = k2 +k+1
pseudolines which is not k-piercable, a contradiction.

Hence let |G| = k−r where k > r ≥ 1 and C ′ 6= ∅. We
claim |C ′| ≤ rk. Assume, for contradiction, that |C ′| >
rk. Then, for each point in G, pick k + 1 pseudolines
passing through it. This together with rk+1 lines from
C ′ to give a set C ′′ of (at most) (k−r)(k+1)+rk+1 =
k2 + (k − r) + 1 < k2 + k + 1 pseudolines. C ′′, being
a subset of C, has the (k2 + k, k)-property and hence
can be pierced by k points. Any point in G can pierce
only k + 1 pseudolines in C ′′ and no r points outside
G can pierce the remaining rk + 1 pseudolines in C ′′, a
contradiction.

Now as before we pick k + 1 pseudolines from each
of the k − r k-degenerate points together with at most
rk pseudolines from C ′ to get a system of (at most)
(k−r)(k+1)+rk = k2 +k−r < k2 +k+1 pseudolines.
This can be pierced by k points. We have to choose
each of the k−r k-degenerate points in a piercing set for
this system. This means that the rk pseudolines from
C ′(none of them are pierced by the degenerate points)
have to be pierced by r points. This implies that C is
k-piercable.

Lemma 6 Let C be a family of pseudolines with |C| ≥
6. If C has the (6, 2)-property then C is 2-piercable.

Proof. As C has the (6, 2)-property, there exist two
cases. There exist some 6 pseudolines out of which 5 do
not intersect or out of every 6 pseudolines 5 intersect.

In the first case there are two sub cases. There ex-
ist l1, . . . , l6 ∈ C such that l1, l2, l3, l4 intersect or in
the second sub case l1, l2, l3 and l4, l5, l6 intersect re-
spectively. Let l ∈ C. If l1, l2, l3, l4 intersect, then l is
incident on the intersection of l1, l2, l3 or on the inter-
section of l5, l6. Otherwise l1, l2, l3, l5, l6, l is a set of 6
pseudolines which are not 2-piercable. If l1, l2, l3 and
l4, l5, l6 intersect, then l is incident on the intersection
of l1, l2, l3 or l5, l6. Otherwise l1, l2, l3, l5, l6, l is a set of
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Figure 1: A family of 6 lines with the (5, 2)-property
which is not 2-piercable.

6 lines which are not 2-piercable. Hence in both sub
cases C is 2-piercable.

In the second case when out of every 6 pseudolines 5
intersect, all the lines except one have a common inter-
section and hence C is 2-piercable.

Hence in either case C is 2-piercable. �

The above result is tight since there is a family of 6 lines
with the (5, 2)-property which is not 2-piercable (shown
in Figure 1).

Consider a collection of pseudolines C. We wish to
determine if C is k-piercable or not. There is a naive
FPT algorithm which is implied by the above combina-
torial result which takes O(n2 + k3k4k) time. However
one can use the techniques given in [10] to get a faster
FPT algorithm which takes O(n2 + k2k+2) time.

3 Objects with discrete intersection

We extend the results of the previous section to a more
general family of objects. We consider families of ob-
jects C with the following property : any subfamily of
p + 1 distinct objects intersect in at most one point.
This is a notion similar to the one in [10]. Unit circles,
curves in the plane obtained by polynomial equations of
bounded degree are some examples of objects with the
above property.

Definition 4 Let a point x lie in the intersection of a
set of objects c1, c2, · · · , cs ∈ C. We call x k-degenerate
in C if s > kp.

Lemma 7 Let H be a set of points that pierces C. If x
is k-degenerate in C and x /∈ H, then |H| ≥ k + 1.

Proof. Any point y 6= x can pierce at most p−1 of the
objects passing through x. Hence we need at least k+1
points to pierce kp+ 1 objects passing thorugh x. �

Consider a set of objects C with |C| ≥ k(kp + 1) + 1
which has the (k(kp + 1) + 1, k)-property. Consider a

subset S ⊆ C with |S| = k(kp+ 1). Note that it can be
pierced by a set H of size k. Then there is some point
x1 ∈ H which pierces at least kp + 1 objects in C. We
construct a set of degenerate points as follows. Let C1 =
C, G1 = {x1} where x1 is obtained as before. Construct
Gi+1, i ≥ 1, as long as possible, in the following way:
Ci+1 = Ci \ {c ∈ Ci : c pierced by xi}. Let xi+1 be any
k-degenerate point in Ci+1. Now Gi+1 = Gi ∪ xi+1.

Lemma 8 Consider a family of objects C with |C| ≥
k(kp+ 1) + 1 which has the (k(kp+ 1), k) property. Let
G be a set of k-degenerate points in C with maximum
cardinality. Then 1 ≤ |G| ≤ k.

Proof. Clearly |G| ≥ 1 . Suppose |G| ≥ k + 1. Let Ci

be a subset of objects pierced by xi ∈ G with |Ci| =
kp+ 1. Consider X = ∪1≤i≤kCi ∪ {c} where c ∈ Ck+1.
Clearly |X| ≤ k(kp + 1) + 1. Hence X is k-piercable.
Any k-piercing set for C ′ must contain {x1, · · ·xk} (by
Lemma 7). This is a contradiction as ∀xi ∈ G, 1 ≤ i ≤
k, xi cannot pierce c. �

Proof of Theorem 2. Let G be a set of k-degenerate
points in C with maximum cardinality and let |G| =
k − r where k > r ≥ 0 (by Lemma 8). Let Ci be a
subset of objects pierced by xi ∈ G with |Ci| = kp+ 1.

Let C ′ be the set of remaining objects not pierced by
any of these points. If C ′ = ∅ then C is k-piercable.
Hence let us assume C ′ 6= ∅. We claim that |C ′| ≤
r(kp+ 1).

Assume, for contradiction, that |C ′| = r(kp+ 1) + 1.
Then a subset of objects X = C1 ∪ · · ·Ck−r ∪ C ′ is k-
piercable since |X| ≤ k(kp+ 1) + 1. Any k-piercing set
for X must contain all k − r points in G. If r = 0 this
means that a object in C ′ is not pierced, a contradiction.
Else if r > 0 this implies r(kp + 1) objects in C ′ is
pierced by r points, all of which are not k-degenerate, a
contradiction.

Hence |C ′| ≤ r(kp + 1). Again as before a subset
of objects X = C1 ∪ · · ·Ck−r ∪ C ′ is k-piercable since
|X| ≤ k(kp + 1) + 1. Any k-piercing set for X must
contain all k − r points in G. This implies C ′ is
r-piercable(if r = 0 this means C ′ = ∅). Hence C is
k-piercable.

We extend the result on lines in the previous sec-
tion to hyperplanes in 3 dimensions. The idea of
replacing degenerate hyperplanes by a line is from [10].

Lemma 9 Let C be a family of hyperplanes in R3 with
the (k(k + 1)3, k) property. Then C is k-piercable.

Proof. We obtain a family of objects C ′ from C as
follows. If at least k + 1 hyperplanes intersect in a line
then we replace them with the line.

It is obvious that if C ′ is k-piercable then C is k-
piercable. We note that if any k + 1 hyperplanes in C
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intersect in a line l then any k-piercing set must contain
a point from l. Hence C ′ is k-piercable if and only if C
is k-piercable.

We claim that any set of k+ 2 objects in C ′ intersect
in at most 1 point. There are two cases - the set contains
at least two lines or the set contains at most one line.
The claim is true if there are at least two lines in this
set of k + 2 objects. In the other case, the set contains
at least k+ 1 hyperplanes and these cannot intersect in
a line. Hence the k+2 objects intersect at most 1 point.

From Theorem 2 if C ′ has the (k(k(k + 2) + 1), k)
property then C ′ is k-piercable. Any line in C ′ can be
realized as the intersection of at most k+1 hyperplanes
in C. Hence if C has the ((k+1)k(k(k+2)+1), k) prop-
erty then C is k-piercable which proves the claim. �

This result can be extended to higher dimensions.

4 Boxes in Rd

In this section we consider the k-Helly problem for fam-
ilies of boxes in Rd.

Lemma 10 Let I be a family of intervals in R with the
(k + 1, k) property. Then I is k-piercable.

Proof. We note that I satisfies the Hadwiger Debrun-
ner HD(k + 1, 2) property. Hence I has a piercing set
of size k [7]. �

Lemma 11 Let S be a family of vertical and horizontal
slabs with the (k + 1, k)-property. S is k-piercable.

Proof. Let S1 be the set of vertical slabs and S2 the
set of horizontal slabs. Clearly from Lemma 10, S1

and S2 are k-piercable. Without loss of generality
let S1 and S2 be ’pierced’ by k points on the x axis
v1, . . . , vk and k points on the y axis h1, . . . , hk respec-
tively. (v1, h1), . . . , (vk, hk) is a k-piercing set for S. �

Proof of Theorem 3. Let C be a family of boxes in Rd
with the (k2d, k)-property. Figure 2 provides an illus-
tration of the proof for rectangles in the plane(the case
d = 2). We orthogonally project each box r ∈ C to the
coordinate axes. For each axis i, 1 ≤ i ≤ d, we get a set
of intervals Ci with the (k2d, k)-property. Hence Ci has
the (k + 1, k)-property and is k-piercable (Lemma 10).
LetHi, |Hi| ≤ k, be such a piercing set (the small hollow
points on the x and y axes in Figure 2). Consider the
grid points H = {(x1, . . . , xd) : x1 ∈ H1, . . . , xd ∈ Hd}
(the small hollow circles in Figure 2). For r ∈ C,
let ri be the projection of r on axis i. There exist
x1 ∈ H1, . . . , xd ∈ Hd, such that xi pierces ri. Thus
(x1, . . . , xd) ∈ H pierces r. Hence every r ∈ C can be
pierced by one of the (at most kd) grid points in H.

Figure 2: Grid points, representative rectangles and
piercing set for a collection of rectangles.

For X ⊆ H we define SX ⊆ C as follows:

SX = {r ∈ C : r ∩H = X}

We note that C is partitioned into the sets SX , i.e.
C =

⋃̇
X⊆HSX .

The subset of H ’induced’ by a box r ∈ C will be
of the form of a ’rectangular sub block’ of H. Any
rectangular sub block of H is uniquely determined by

its diagonal endpoints. Hence there are at most
(
kd

2

)
distinct subsets of H induced by boxes. Therefore there

are at most
(
kd

2

)
≤ k2d distinct nonempty SX .

Let S′ ⊆ C be a set of representative boxes obtained
by picking exactly one box from each of the nonempty
sets SX , X ⊆ H (the bold rectangles in Figure 2). Note
that |S′| ≤ k2d. Since C has the (k2d, k) property, S′

can be pierced by a set of points W ⊂ Rd, |W | ≤ k (the
filled points in Figure 2). For p ∈ W , let N(p) denote
the set of (at most 2d) grid points of H which form the
gridcell containing p. Let P = ∪p∈WN(p), |P | ≤ 2dk
(the big hollow points in Figure 2). If p pierces some
box r ∈ SX , then the points in N(p) pierce all boxes in
SX . Since points in W pierce all the boxes in S′, points
in P pierce all the boxes in C =

⋃̇
X⊆HSX . Thus C is

2dk-piercable.

The proof of Theorem 3 directly leads to a 2d-
approximate FPT algorithm for the minimum piercing
problem on boxes. Given a collection of boxes C Algo-
rithm 1 returns no if C is not k-piercable and returns a
piercing set of size atmost 2dk otherwise.

Obtaining Ci takes O(dn) time. Checking if each Ci is
k-piercable takes O(dn log n) time. Obtaining S′ takes
O(dn log k) time. The bruteforce check takes O(k4k)
time. Hence the whole algorithm takes O(dn log n+k4k)
time.
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Algorithm 1 FPT algorithm to give a 2d approxima-
tion for piercing boxes in Rd

Orthogonally project each box r ∈ C to the d axes to
get a set of intervals Ci for each axis i
if All the Ci are k-piercable then

Obtain S′

Bruteforce check if S′ is k-piercable

if S′ is k-piercable then
return Grid neighbours of piercing set

else
return false

end if
else

return false
end if

5 Conclusion

In this paper we prove that any family of pseudolines
with the (k2 + k + 1, k)-property is k-piercable. We ex-
tend this result for other families of geometric objects
with discrete intersection, i.e., polynomial curves and
hyperplanes. It is an interesting question to fully chara-
terise such families of objects for which g(k, d) is finite.
We also pose a relaxed variant of this problem as the
k-Helly problem and show non-trivial bounds for a fam-
ily of boxes in Rd. An interesting open problem is to
obtain tight bounds on the k-Helly problem for other
families of geometric objects in Rd.
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