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On Piercing (Pseudo)Lines and Boxes

Subramanya Bharadwaj B. V*

Abstract

We say a family of geometric objects C has the (I, k)-
property if every subfamily C’ C C of cardinality at
most [ is k-piercable. In this paper we investigate the
existence of g(k,d) such that if any family of objects C
in R has the (g(k, d), k)-property, then C' is k-piercable.
Danzer and Griinbaum showed that g(k, d) is infinite for
families of boxes and translates of centrally symmetric
convex hexagons. In this paper we show that any fam-
ily of pseudolines with the (k* + k + 1, k)-property is
k-piercable and extend this result to certain families of
objects with discrete intersections. This is the first posi-
tive result for arbitrary k for a general family of objects.
We also pose a relaxed version of the above question and
show that any family of boxes in R? with the (k2?, k)-
property is 2%¢k-piercable.

1 Introduction

A family of geometric objects C' in R? is said to be
k-piercable if there exists a set of points P C R? of
cardinality k such that every object in C contains (is
pierced by) at least one of the points of P.

Definition 1 We say a family of geometric objects C
has the (1, k)-property if every subfamily C' C C of car-
dinality at most | is k-piercable.

The classical Helly’s theorem [8] stated in this notation
is as follows: Any family of convex objects C' in R?
having the (d 4+ 1,1)-property is 1-piercable.

Helly-type theorems have been widely studied for
different settings (see surveys [5, 6]). Danzer and
Griinbaum [4] considered the following generalised
version of Helly’s theorem:

For every positive integer k, does there exist a fi-
nite g(k,d) such that if any family of convex objects
C in R? has the (g(k,d),k)-property, then C is k-
piercable?

They showed that g(k,d) is infinite even for fami-
lies of boxes in RY. Specifically, they gave a generic
construction and showed that g(k,d) is infinite for all
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k>3,d>2and (k,d) # (3,2). The same construction
also works as a counterexample for hypercubes in R9.
Katchalski et al [9] showed that g(k,d) is infinite for
translates of a symmetric convex hexagon.

Positive results are known for small values of k (i.e.
k = 2). Danzer and Griinbaum [4] showed that for
a family of boxes in R%, g(2,d) = 3d — 1 if d is even
and ¢(2,d) = 3d if d is odd. They also proved that
g(3,2) = 16 for a family of rectangles in R?. Katchalski
et al [9] showed that for a family of homothetic triangles
in R?, g(2,2) = 9.

In this paper, we obtain the first positive results for
general k. We show that for a family of pseudolines in
R?, g(k,2) is finite for all k& > 2. Specifically, we prove
the following:

Theorem 1 Let C be a family of pseudolines in R? with
|C| > k? + k + 1. For any integer k > 2, if C has the
(k? + k + 1, k)-property then C is k-piercable.

We extend the above theorem for families of objects
C with the following property: any subfamily of p 4 1
distinct objects in C' intersect in at most one point. Note
that p = 1 for a family of pseudolines.

Theorem 2 Let C be a family of objects with the prop-
erty that any subfamily of p+ 1 distinct objects in C' in-
tersect in at most one point. Let |C| > k(kp+1)+1. For
any integer k > 2, if C has the (k(kp + 1), k)-property
then C is k-piercable.

The proof of Theorem 1 and 2 are combinatorial and
exploit only the intersection property. In fact, Theorem
2 is true for set systems with the property that any
subfamily of p 4+ 1 distinct sets intersect in at most
one element. Also the proofs lead naturally to a FPT
algorithm for the minimum piercing problem on these
objects. Note that the minimum piercing problem is
NP-hard and APX-hard even for lines in R? [12, 3].

Since g(k,d) is infinite for most families of geometric
objects in the above problem, we define the following
relaxed variant, which we refer to as the k-Helly
problem:

k-Helly problem: For every positive integer k,
determine the smallest f(k,d) such that if any family
of convex objects C' in R has the (g(k,d), k)-property
for some g(k,d), then C is f(k,d)-piercable.
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The k-Helly problem is related to the weak e-net [1]
and Hadwiger-Debrunner (p, ¢)-problem [7] as follows:

Weak e-nets are a special case of the k-Helly problem
: In the weak e-net problem, we ask for a piercing set
for objects containing > en points. By the pigeon hole
principle, in any subcollection of % + 1 objects, two will
intersect. Therefore the objects satisfy the (% + 1, %)—
property.

The k-Helly problem is a special case of the Hadwiger-
Debrunner (p, q)-problem since the (g(k, d), k)-property
implies the Hadwiger-Debrunner (p,q)-property for
p = glk,d),q = g(k,d)/k. Also, the finiteness of
g(k,d), f(k,d) is implied by the Hadwiger Debrunner
(p,q) theorem [2], which shows a finite piercing set.
However, the bounds given by the Hadwiger Debrunner
(p,q) theorem are large (roughly O(p®) for convex
objects in R?).

We show the following result for boxes in R%:

Theorem 3 Let C be a family of boxes in R®. For any
k > 2, if C has the (k*3,k)-property, then C is 29k-
piercable.

Note that for boxes in RY, f(k,d) > k since otherwise
g(k, d) is infinite. The proof of Theorem 3 directly leads
to a 2%approximate FPT algorithm for the minimum
piercing problem on boxes. We note that the minimum
piercing problem for boxes is NP-hard as well as W[1]-
hard [11].

2 Lines and Pseudolines

Any two lines in R? intersect in at most one point. This
can be generalized in the following way.

Definition 2 A family of geometric objects C in R? is
called a family of pseudolines if for every l;,l; € C, I;
and l; intersect in at most one point.

Let C be a finite family of pseudolines in R2.

Definition 3 Let a point x lie in the intersection of
a set of pseudolines ly,ls,--+ ,ls € C. We call x k-
degenerate in C if s > k.

Lemma 4 Let H be a set of points that pierces C. If x
is k-degenerate in C and x ¢ H, then |H| >k + 1.

Proof. If © ¢ H then we need at least s points to hit
the s pseudolines passing through x. Since s > k the
lemma follows. U

Lemma 5 Let |C| > (k*+k+1) and G be the set of all
k-degenerate points in C. If C has the (k* + k + 1,k)-
property, then 1 < |G| <k

Proof. Let S be a subset of C such that |S| = k%2 +k+1.
S is k-piercable. By pigeon hole principle, there exists
a point x that pierces at least k 4+ 1 pseudolines in S.
Hence |G| > 1. Also if G > k + 1, there exists S' C C
which contains k 4 1 pseudolines passing through each
of the first k points in G and one pseudoline passing
through the (k+1)th point which does not pass through
the first & points. Clearly |S’| < k% +k+1 and S’ is not
k-piercable, a contradiction. Hence 1 < |G| < k. O

Proof of Theorem 1. Let G be the set of all k-
degenerate points in C. From Lemma 5, we know that
1 < |G| < k. Let C’ be the set of pseudolines not pierced
by any of the points in G. We claim that if |G| = k then
C’ = (. For if C" # () then there is a I € C’ such that it
is not pierced by any point in G. For each point in G,
pick k41 pseudolines passing through it. This together
with [ gives a set C” of at most k(k+1)+1=k?+k+1
pseudolines which is not k-piercable, a contradiction.

Hence let |G| = k—r where k > r > 1 and C’ # (. We
claim |C’| < rk. Assume, for contradiction, that |C’| >
rk. Then, for each point in G, pick k + 1 pseudolines
passing through it. This together with 7k + 1 lines from
C’ to give a set C" of (at most) (k—r)(k+1)+rk+1=
k* + (k —r) +1 < k? + k + 1 pseudolines. C”, being
a subset of C, has the (k? + k, k)-property and hence
can be pierced by k points. Any point in G can pierce
only k + 1 pseudolines in C” and no r points outside
G can pierce the remaining 7k + 1 pseudolines in C”, a
contradiction.

Now as before we pick k + 1 pseudolines from each
of the k£ — r k-degenerate points together with at most
rk pseudolines from C’ to get a system of (at most)
(k—r)(k+1)+rk =k?*+k—r < k*+k+1 pseudolines.
This can be pierced by k points. We have to choose
each of the k—r k-degenerate points in a piercing set for
this system. This means that the rk pseudolines from
C’(none of them are pierced by the degenerate points)
have to be pierced by r points. This implies that C is
k-piercable.

Lemma 6 Let C be a family of pseudolines with |C| >
6. If C has the (6,2)-property then C is 2-piercable.

Proof. As C has the (6,2)-property, there exist two
cases. There exist some 6 pseudolines out of which 5 do
not intersect or out of every 6 pseudolines 5 intersect.
In the first case there are two sub cases. There ex-
ist l1,...,lg € C such that [{,ls,l3,l4 intersect or in
the second sub case [lq,ls,l3 and l4,l5,ls intersect re-
spectively. Let [ € C. If [1,1s,13,14 intersect, then [ is
incident on the intersection of I1,1ls,l3 or on the inter-
section of I5,lg. Otherwise lq,ls,13,15,l,1 is a set of 6
pseudolines which are not 2-piercable. If [y,l5,l3 and
ls, 15,1 intersect, then [ is incident on the intersection
of ll, 127 lg or l5, l6- Otherwise ll, lg, lg, l5, l6,l is a set of
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Figure 1: A family of 6 lines with the (5,2)-property
which is not 2-piercable.

6 lines which are not 2-piercable. Hence in both sub
cases C' is 2-piercable.

In the second case when out of every 6 pseudolines 5
intersect, all the lines except one have a common inter-
section and hence C' is 2-piercable.

Hence in either case C' is 2-piercable. O

The above result is tight since there is a family of 6 lines
with the (5, 2)-property which is not 2-piercable (shown
in Figure 1).

Consider a collection of pseudolines C'. We wish to
determine if C' is k-piercable or not. There is a naive
FPT algorithm which is implied by the above combina-
torial result which takes O(n? + k*k**) time. However
one can use the techniques given in [10] to get a faster
FPT algorithm which takes O(n? + k%+2) time.

3 Objects with discrete intersection

We extend the results of the previous section to a more
general family of objects. We consider families of ob-
jects C' with the following property : any subfamily of
p + 1 distinct objects intersect in at most one point.
This is a notion similar to the one in [10]. Unit circles,
curves in the plane obtained by polynomial equations of
bounded degree are some examples of objects with the
above property.

Definition 4 Let a point x lie in the intersection of a
set of objects c1,ca,-+- ,cs € C. We call x k-degenerate
in Cif s > kp.

Lemma 7 Let H be a set of points that pierces C. If x
is k-degenerate in C and x ¢ H, then |H| >k + 1.

Proof. Any point y # x can pierce at most p— 1 of the
objects passing through x. Hence we need at least k+ 1
points to pierce kp + 1 objects passing thorugh . 0O

Consider a set of objects C with |C| > k(kp +1) + 1
which has the (k(kp + 1) + 1, k)-property. Consider a

subset S C C with |S| = k(kp + 1). Note that it can be
pierced by a set H of size k. Then there is some point
x1 € H which pierces at least kp + 1 objects in C. We
construct a set of degenerate points as follows. Let C; =
C, G1 = {z1} where z is obtained as before. Construct
Git1, © > 1, as long as possible, in the following way:
Cit1 =C;\{c € C;: cpierced by z;}. Let 2;41 be any
k-degenerate point in Cj41. Now Gip1 = G; Uxiqq.

Lemma 8 Consider a family of objects C with |C| >
k(kp+1) + 1 which has the (k(kp+1),k) property. Let
G be a set of k-degenerate points in C with mazximum
cardinality. Then 1 < |G| < k.

Proof. Clearly |G| > 1. Suppose |G| >k + 1. Let C*
be a subset of objects pierced by x; € G with |C!| =
kp + 1. Consider X = U;<;<xC" U {c} where c € C*+1.
Clearly |X| < k(kp+ 1) +1. Hence X is k-piercable.
Any k-piercing set for C’ must contain {z1,- -z} (by
Lemma 7). This is a contradiction as Vz; € G,1 < i <
k, x; cannot pierce c. O

Proof of Theorem 2. Let G be a set of k-degenerate
points in C' with maximum cardinality and let |G| =
k —r where k > r > 0 (by Lemma 8). Let C? be a
subset of objects pierced by z; € G with |C?| = kp + 1.

Let C’ be the set of remaining objects not pierced by
any of these points. If C' = ) then C is k-piercable.
Hence let us assume C’ # ). We claim that |C’'| <
r(kp +1).

Assume, for contradiction, that |C'| = r(kp+ 1) + 1.
Then a subset of objects X = C'U---Ck T U is k-
piercable since |X| < k(kp+ 1) + 1. Any k-piercing set
for X must contain all £ — r points in G. If r = 0 this
means that a object in C” is not pierced, a contradiction.
Else if » > 0 this implies 7(kp + 1) objects in C’ is
pierced by r points, all of which are not k-degenerate, a
contradiction.

Hence |C'| < r(kp + 1). Again as before a subset
of objects X = C'U---C*¥ " U (' is k-piercable since
|X| < k(kp+ 1) + 1. Any k-piercing set for X must
contain all & — r points in G. This implies C’ is
r-piercable(if 7 = 0 this means ¢’ = )). Hence C is
k-piercable.

We extend the result on lines in the previous sec-
tion to hyperplanes in 3 dimensions. The idea of
replacing degenerate hyperplanes by a line is from [10].

Lemma 9 Let C be a family of hyperplanes in R with
the (k(k + 1)3,k) property. Then C' is k-piercable.

Proof. We obtain a family of objects C’ from C as
follows. If at least k + 1 hyperplanes intersect in a line
then we replace them with the line.

It is obvious that if C’ is k-piercable then C is k-
piercable. We note that if any k + 1 hyperplanes in C
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intersect in a line [ then any k-piercing set must contain
a point from [. Hence C” is k-piercable if and only if C
is k-piercable.

We claim that any set of k+ 2 objects in C’ intersect
in at most 1 point. There are two cases - the set contains
at least two lines or the set contains at most one line.
The claim is true if there are at least two lines in this
set of k 4+ 2 objects. In the other case, the set contains
at least k 4+ 1 hyperplanes and these cannot intersect in
a line. Hence the k+2 objects intersect at most 1 point.

From Theorem 2 if C’ has the (k(k(k + 2) + 1), k)
property then C’ is k-piercable. Any line in C’ can be
realized as the intersection of at most k+ 1 hyperplanes
in C. Hence if C has the ((k+1)k(k(k+2)+1), k) prop-
erty then C' is k-piercable which proves the claim. O

This result can be extended to higher dimensions.

4 Boxes in R

In this section we consider the k-Helly problem for fam-
ilies of boxes in R<.

Lemma 10 Let I be a family of intervals in R with the
(k+ 1,k) property. Then I is k-piercable.

Proof. We note that I satisfies the Hadwiger Debrun-
ner HD(k + 1,2) property. Hence I has a piercing set
of size k [7]. O

Lemma 11 Let S be a family of vertical and horizontal
slabs with the (k + 1, k)-property. S is k-piercable.

Proof. Let S; be the set of vertical slabs and Sy the
set of horizontal slabs. Clearly from Lemma 10, S;
and S; are k-piercable. Without loss of generality
let S; and S5 be ’pierced” by k points on the = axis
v1,...,V; and k points on the y axis hq, ..., hx respec-
tively. (v1,h1),..., (vg, hi) is a k-piercing set for S. O

Proof of Theorem 3. Let C be a family of boxes in R?
with the (k2?, k)-property. Figure 2 provides an illus-
tration of the proof for rectangles in the plane(the case
d = 2). We orthogonally project each box r € C to the
coordinate axes. For each axis i, 1 < i < d, we get a set
of intervals C; with the (k2¢, k)-property. Hence C; has
the (k + 1, k)-property and is k-piercable (Lemma 10).
Let H;, |H;| < k, be such a piercing set (the small hollow
points on the z and y axes in Figure 2). Consider the
grid points H = {(z1,...,24) : ®1 € Hy,...,xq € Hg}
(the small hollow circles in Figure 2). For r € C,
let r; be the projection of r on axis i. There exist
xr1 € Hy,...,xq € Hg, such that x; pierces r;. Thus
(z1,...,24) € H pierces r. Hence every r € C' can be
pierced by one of the (at most k%) grid points in H.

Figure 2: Grid points, representative rectangles and
piercing set for a collection of rectangles.

For X C H we define Sx C C as follows:
Sx={reC:rNnH=X}

We note that C' is partitioned into the sets Sx, i.e.
C= UXQHSX :

The subset of H ’induced’ by a box r € C will be
of the form of a ’rectangular sub block’ of H. Any
rectangular sub block of H is uniquely determined by

d
its diagonal endpoints. Hence there are at most (k’Q)

distinct subsets of H induced by boxes. Therefore there
are at most (k;) < k%@ distinct nonempty Sx.

Let S’ C C be a set of representative boxes obtained
by picking exactly one box from each of the nonempty
sets Sx, X C H (the bold rectangles in Figure 2). Note
that |S’| < k??. Since C has the (k*? k) property, S’
can be pierced by a set of points W C R%, |[W| < k (the
filled points in Figure 2). For p € W, let N(p) denote
the set of (at most 2%) grid points of H which form the
gridcell containing p. Let P = Up,ew N(p), |P| < 2%
(the big hollow points in Figure 2). If p pierces some
box r € Sx, then the points in N(p) pierce all boxes in
Sx. Since points in W pierce all the boxes in ', points
in P pierce all the boxes in C = |JycySx. Thus C is
2%k-piercable.

The proof of Theorem 3 directly leads to a 2¢-
approximate FPT algorithm for the minimum piercing
problem on boxes. Given a collection of boxes C' Algo-
rithm 1 returns no if C is not k-piercable and returns a
piercing set of size atmost 2%k otherwise.

Obtaining C; takes O(dn) time. Checking if each Cj is
k-piercable takes O(dnlogn) time. Obtaining S’ takes
O(dnlogk) time. The bruteforce check takes O(k**)
time. Hence the whole algorithm takes O(dn log n+k**)
time.
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Algorithm 1 FPT algorithm to give a 2¢ approxima-
tion for piercing boxes in R¢
Orthogonally project each box r € C to the d axes to
get a set of intervals C; for each axis i
if All the C; are k-piercable then
Obtain S’
Bruteforce check if S’ is k-piercable

if S’ is k-piercable then
return Grid neighbours of piercing set
else
return false
end if
else
return false
end if

5 Conclusion

In this paper we prove that any family of pseudolines
with the (k? + k + 1, k)-property is k-piercable. We ex-
tend this result for other families of geometric objects
with discrete intersection, i.e., polynomial curves and
hyperplanes. It is an interesting question to fully chara-
terise such families of objects for which g(k, d) is finite.
We also pose a relaxed variant of this problem as the
k-Helly problem and show non-trivial bounds for a fam-
ily of boxes in R?. An interesting open problem is to
obtain tight bounds on the k-Helly problem for other
families of geometric objects in R<.
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