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3D Skeletonization as an Optimization Problem

Denis Khromov*

Abstract

We present a novel approach to 1D curve-skeletonization
of 3D objects. The skeletonization process is reduced to
a numerical optimization problem. The method pro-
vides a strict way to evaluate and compare various 1D
skeletons of the same 3D object. We describe a particu-
lar implementation of our approach and discuss experi-
ment results.

1 Introduction

A skeleton of a shape is a graph that captures major
topological and metrical properties of the shape. It may
be considered as a 1D thinning of the original shape.
Skeletons are useful in computer vision since it is much
easier to extract a shape’s features from a graph rather
than from its boundary description. The skeleton of a
two-dimensional shape is usually defined as a shape’s
medial axis. The medial axis is the set of all points hav-
ing more than one closest point on the shape’s boundary.
The medial axis of a 2D shape is always a 1D set. Such
a set can be computed efficiently. However, a 3D medial
axis contains 2D sheets and therefore is not a graph.

A curve-skeleton is a 1D skeleton of a 3D shape. It is
known to be an ill-defined object [3]. There is no com-
mon strict definition recognized by a significant number
of papers on curve-skeletons. A curve-skeleton is usually
defined as an object produced by some particular algo-
rithm. Different algorithms produce different skeleton
graphs; those graphs have different properties. Exam-
ples of such algorithms can be found in [3, 11]. There-
fore it is almost impossible to compare different algo-
rithms with each other. It is only possible to evaluate
the computational performance and the visual quality
of different skeletons.

On the other hand, there is an intuitive idea of what
a correct curve-skeleton should be. It is clear that dif-
ferent curve-skeletons of the same 3D object are visually
similar, even if they are defined differently. Our goal is
a mathematical formalization of this intuitive idea.

In this article we present a method to evaluate the
quality of a curve-skeleton. We define a curve-skeleton
as a continuous thinning of the original object. We also
describe the procedure of reconstruction which allows to
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produce a 3D shape from a 1D skeleton. The shape pro-
duced from a curve-skeleton is called a silhouette. The
measure of similarity between the original shape and
the skeleton’s silhouette is an evaluation of the skele-
ton’s quality. Thus the problem of skeletonization can
be formulated as a numerical optimization problem. To
construct a skeleton of the object means to find the best
approximation of the object by the skeleton’s silhou-
ette. We describe our implementation of this idea. The
implementation includes the measure of similarity, the
first approximation algorithm, and numerical methods
for the minimization process.

The key feature of our method is the numerical evalu-
ation of the curve-skeleton’s quality. However, our work
shares some common ideas with the recent papers on the
subject. We use Reeb graphs to compute the first ap-
proximation of our skeletons. Reeb graphs are widely
used in topological shape analysis [1, 4, 5, 10, 14]. The
primitives we use to approximate the original object are
very similar to the sphere swept volumes (SSV). There
are papers presenting the usage of SSV for 3D shape
approximation [2, 7]. In [9] a deformable model is used
to describe the object’s shape; the curve-skeleton itself
is obtained from this deformable model. There are very
few methods involving the optimization of a skeleton’s
quality. One example is the paper [12], where an iter-
ative least squares optimization is performed to shrink
the model and obtain its accurate thinned representa-
tion.

2 Definitions

As mentioned above, there are many definitions of a 3D
curve-skeleton. The common idea of these definitions is
that the curve-skeleton is a thinned 1D representation
of the 3D object [3]. It can be formalized in terms of
homotopy.

Let © be a connected open set embedded in R? with
boundary 0. Let  be its closure:

0 =0QuUo. (1)

Let I' C Q be a 3D representation of some graph G such
that every edge of G is mapped onto a smooth curve
v € R3. We denote the Euclidean distance between
points z,y € R3 by p(x,y).

Definition 1 T" is a curve-skeleton of Q if there is a
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continuous function

H:[0;1] x 900 — Q (2)
such that
H(0,2) =2,H(1,09Q) =T. (3)
The function
o(x)=H(1,z) (4)

is called a skeleton mapping.

A skeleton mapping describes the correspondence be-
tween the surface of the object and its skeleton.

One of the advantages of a 2D skeleton is the ability
to recover the original shape from a skeleton. That is
possible due to a distance transform function (DTF).
A DTF defines "width” of the shape for every skeleton
point. Then the shape is a union of discs: the centers
of these discs are situated on the skeleton branches, and
the radii are defined by the DTF. We need some ana-
logue of a 2D distance transform in order to preserve
the reconstruction possibility for 3D curve-skeletons.

Definition 2 A radial function r is a non-negative
real-valued function defined on a curve-skeleton:

r:I = R,r(x) >0Ve el. (5)

Definition 3 A silhouette of a curve-skeleton T' with a
radial function v is a set

S(er) = U Br(z)(x)v (6)

zel

where B,y (x) is a ball with the center in x and the
radius r(x):

B@y(z) = {y € R : p(z,y) < r(z)}. (7)

A single curve with its silhouette is called a fat curve
[8]. Fat curves can be used for an approximation of
tubular objects [6]. An example of a silhouette of a
skeleton is shown in Figure 1.

Figure 1: A 3D graph (left) and its silhouette produced
by some radial function (right).

A silhouette can be considered as a reconstruction of
the original 3D object. Unlike 2D skeletons, a 3D sil-
houette is merely an approximation of 2. So we need
a numerical measure of similarity between the original
shape Q and the silhouette S(I',r). It is possible to
define it as a distance between two sets in R? (for ex-
ample, the Hausdorff distance). But this approach may
produce skeletons that do not correspond to the intu-
itive idea of what a correct curve-skeleton is. An ex-
ample is shown in Figure 2. The graph I' consists of
one parabola, and the radial function r is such that the
silhouette S(T', ) looks like a straight tubular object be-
cause of its self-intersection. It can be considered as an
ordinary subset of R3. In that case its curve-skeleton is
expected to look like a single straight line segment, not
a parabola. But the silhouette of the parabola is a per-
fect approximation for this object if we use something
like the Hausdorff distance.

Figure 2: A silhouette of the parabola (red): solid (left)
and wireframe (right).

In this paper we propose the following function.

Definition 4 Let I' be a curve-skeleton of Q) with a ra-
dial function r. An approximation error of (I',r) is a
value

EQ,T,r)= /xes_aﬂ (pQ(x,a(z:))—r2 (o(a:))>2d5. (8)

This function takes into account the correspondence
o between 002 and I'. It takes small values when the dis-
tance between z € 99 and o(z) € I is close to r(o(x)).
It is satisfied when the skeleton’s curve gives the right
representation of the approximated shape. Thus Equa-
tion 8 gives a mathematical meaning to the intuitive
concept of a 3D curve-skeleton.

3 First Approximation

The main idea of our method is a numerical optimiza-
tion of a curve-skeleton in order to minimize the approx-
imation error given in (8). This approach suggests that
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there is a first approximation of a curve-skeleton. It
can be constructed by almost any existing skeletoniza-
tion algorithm.

We construct the initial curve-skeleton using Reeb
graphs.

Definition 5 Let f be a continuous function defined on
a compact manifold M. A Reeb graph is a quotient space

Ry =M/ ~rp, (9)
where ~; is an equivalence relation such that
r~pye A CON:x,yel, f(z) =Const Vz €1, (10)
and l is a connected curve in 0S).

Algorithms based on Reeb graphs are rather effec-
tive. They always produce topologically correct skele-
tons. This is important since it is difficult to change
the topology of a skeleton during the numerical opti-
mization process. Another important advantage of Reeb
graphs is that the skeleton mapping o is generated ex-
plicitly.

The first approximation is computed in a few steps.
A continuous scalar function

Fio0 R (11)

is called a mapping function. The corresponding Reeb
graph Ry is a graph-like space. It describes the topology
of Q. We need to embed it into R? in order to generate
a 3D representation of the graph.

The embedding is defined as follows:

I = | JMEB(), (12)
leL
o(x)=MEB(le L:xz €l). (13)

MEB(!) is the center of a minimum enclosing ball cov-
ering the set [. Here minimum enclosing balls play the
same role as maximum inscribed balls do in the defini-
tion of a medial axis.

The appearance of a skeleton is determined by the
mapping function f. In our implementation it is defined
as follows. Let p € 09 be a fixed point called a pole.
The mapping function f(x) equals the geodesic distance
over 0f) between x and the pole p. This function does
not depend on the object’s orientation in space. This
is a serious advantage over functions like a height map.
Another benefit of our mapping function is that it has
a low computational complexity.

4 Implementation

In this section we discuss the implementation of our
method for 3D objects represented by polygonal meshes.

Let M be a triangulated closed surface with a set of
vertices V and a set of edges E. We assume that V is
uniform and detailed enough.

To avoid confusion with the mesh and its vertices and
edges, in this section we will use the term ”joint” for a
curve-skeleton vertex and the term ”"bone” for an edge.
By J denote the set of joints and by B denote the set
of bones. In our implementation, all bones are straight
line segments and all radial functions are linear. Each
joint

j=(wj,r;), v €R% 1 >0 (14)
is defined by 4 real values: the position z; and the value
of the radial function (or radius) r;. Each bone

b= (j1,72), j1,je€J (15)

connecting joints j; and jo describes a curve and a radial
function given by equations

Y(t) =ty + (1 —t)zy,, (16)

rp(t) = trj, + (1 = t)ry,, (17)

where t € [0;1].
The skeleton mapping value for a vertex v € V is
defined by the bone ¥ = (57, j3) and the parameter ¢,:

(47,45, t0), (47, 45) € B, t, € [0;1], (18)
o(v) = o) (te) = texjy + (1 —ty)xjy (19)

The computation of this mapping will be explained be-
low.

The integral in (8) is approximated with a sum £ over
all vertices:

E= Z (p2 (v,o(v)) —rz(a(v))) =

veV

- Z (P2 (vs towjy + (1 —ty)zjy)— (20)

veV

2
,(turﬁf + (1 — tv)’l’jéf)Z) .

4.1 First Approximation
In order to find the first approximation we need to
1. select the pole vertex;

2. compute the mapping function f and its contour
lines;

3. construct the skeleton itself.

The geodesic distance between two vertices vy, v, € V/
is approximated by the length of the shortest chain of
edges from E connecting v; and vo. The advantage of
this method is that it is rather fast. In some cases it may
produce a rough approximation. However, that is not
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an issue since we don’t need the exact values of geodesic
distance. The accuracy of this method is enough to
produce contour lines which define an acceptable Reeb
graph.

The pole vertex is computed in three steps:

1. let v; be a random vertex from V;
2. let vy be the vertex farthest from wy;

3. the pole vertex p is the vertex that is the farthest
from vs.

Figure 3: Contour lines of the mapping function.

The set V is divided into contour lines of f. It is
impossible to obtain exact contour line of f because we
work with the discrete set of points V. So the following
algorithm is performed. Let I C V be some contour
line. The contour line /x4 produced on the next step
of the algorithm is a maximum connected subset of V
such that

Ju € lk+1 : (21)
Jv €l (v1,u) € E, (22)
Yvg € lk+1 f(vg) < f(u) (23)

More then one connected subset satisfying these condi-
tions means that we have reached a joint where a group
of skeleton branches converge: each subset corresponds
to a new branch. Figure 3 demonstrates an example:
contour lines are painted in different colors.

Each contour line corresponds to a skeleton joint
j € J. The position of this joint x; is computed as

a center of the minimum enclosing ball. We use Welzl’s
algorithm to find the MEB [13]. The radius of this ball
is taken for the first approximation of the radial function
value r;.

4.2 Numerical Optimization

This step of the algorithm involves the minimization
of the function (20). This function is a polynomial of
degree 4 with 4|.J| variables (since we have |.J| joints
and each is defined by 4 scalar variables). It can be
represented in the form of the sum

E(z) = Z ((az + by)? — cv)2 =
veV
4 (Za

)
(5w)

)

)

=z +
+23

+

+2? (Z(6a3b5 — 2b%¢c,

veV

+z (Z(Zlaybi —4a,byc,) | +
veV
+ (Z(bﬁ ~ ke, + >) .
veV

with respect to each single variable z. For example, for
Z=T

Ay = ty, by = (1 —ty)rj3,00 = 0> (v,0(v)) (25)
if ji' = J,
ay = (1 —1,),by = tyrjv, 00 = P (v,0(v)) (26)
if j§ = j and
Gy =b, =c, =0 (27)
otherwise.

We use a gradient descent to minimize E. Let Jy
be a 4|J|-dimensional vector describing the set of joints
computed in step k. Then Jiy1 is given by

Jip1 = Jp — AVE(Jr), (28)
where A is a solution of the minimization problem
inE(Jy, — AVE(Jy)). 2
arg Min & (Jx = AVE(Jr)) (29)
It is a polynomial of degree 4 with respect to only one
variable. Therefore it is very easy to find its minimum

analytically. £ and V& are computed using (24). The
procedure (28) is performed until the condition

E(Tk) — E(Jry1)| < & (30)
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is satisfied, where € > 0 is a fixed parameter of the
algorithm. In our experiments

e =1073E(Jy), (31)

where Jy is the first approximation. The optimization
process is demonstrated in Figure 4. It shows the first
approximation and two serial iterations of the gradient
descent for the horse model from Figure 3.

(¢) After two iterations, £(J2) = 0.84

Figure 4: The curve-skeleton of the horse and its silhou-
ette.

Note that this process may lead to negative radial
functions. Negative values in radii have no physical
meaning. We change the sign of each negative r; since
they are included in £ with the second degree.

5 Experiments and Discussion

Some examples of our algorithm’s work are shown in
Figure 5. The resulting curve-skeletons are demon-
strated with their corresponding silhouettes. These 3D
models are often used in articles on curve-skeletons, so
they are suitable for visual comparison of our skele-
tonization method with other ones.

Figure 5: The results produced by our algorithm: the
skeletons (left) and their silhouettes (right) for various
3D objects.

An object with a full-dimensional medial axis is
shown in Figure 6. It does not have any significant
tubular fragments. Curve-skeletons are not very useful
for objects like this. The resulting silhouette is not a
valuable approximation.

Some desirable properties of a curve-skeleton are
listed in [3]. Our approach guarantees some of them:

e the topological properties (such as homotopic in-
variance) are provided by the usage of Reeb graphs;

e the invariance under isometric transformations is
not always guaranteed by methods based on Reeb
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Figure 6: An object with a full-dimensional medial axis.

graphs (for example, the mapping function can de-
pend significantly on one of the coordinates), but
in our case this property is satisfied;

e the possibility of reconstruction is a key feature of
our method;

e the skeletons are thin by definition;

e the centeredness is the value that is strictly mea-
sured and optimized with our algorithm.

Some properties are not satisfied:

e robustness is not guaranteed since some images
may produce skeleton branches for visually insignif-
icant protrusions of the shape. These branches
should be considered as noise which can’t be com-
pensated by the minimization of (20);

e smoothness is another property that is provided
neither by Reeb graphs nor by the optimization
process. However, the usage of curves of higher
degrees instead of piecewise linear curves could fix
that problem.

6 Conclusions and Future Work

We have demonstrated an approach to 3D curve-
skeletonization which allows to evaluate skeletons and to
choose the best one among others. This method is im-
plemented. The implementation and experiments prove
the practical utility of the method. Below we list several
open issues for further research.

1. Tuning the skeleton mapping ¢ during the mini-
mization process. Currently it is fixed, which im-
poses strict requirements on the quality of the first
approximation and its skeleton mapping.

2. Taking mesh edges and faces into account. Cur-
rent algorithm uses vertices only. This means that
skeletons of the detailed meshes are more accurate
than for the low polygon meshes.
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