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Steiner Reducing Sets of Minimum Weight Triangulations

Cynthia M. Traub*

Abstract

This paper develops techniques for computing the mini-
mum weight Steiner triangulation of a planar point set.
We call a Steiner point P a Steiner reducing point of a
planar point set X if the weight (sum of edge lengths) of
a minimum weight triangulation of X U{P} is less than
that of X. We define the Steiner reducing set St(X)
to be the collection of all Steiner reducing points of X.
We provide here necessary conditions for membership
in the Steiner reducing set. We prove that S¢(X) can
be topologically complex, containing multiple connected
components or even holes. We construct families of sets
X for which the number of connected components of
St(X) grows linearly in the cardinality of X. We fur-
ther prove that St(X) need not be simply connected,
and the rank of H;(St(X)) (i.e. the number of holes)
can also grow linearly in the cardinality of X.

1 Introduction

We consider minimum weight triangulations of point
sets that properly contain an initial input set X of
n points. We examine the topology of the collection
of Steiner points distinguished by the property that
adding one such point to the input set results in a min-
imum weight triangulation of a set of n 4+ 1 points with
weight less than that of X. We call these distinguished
Steiner points Steiner reducing points; the collection of
all Steiner reducing points is called the Steiner reduc-
ing set St(X). We present necessary conditions for a
point to be a Steiner reducing point. Our two main re-
sults prove that the number of connected components of
St(X) can grow linearly in the size of the input set, and
St(X) may fail to be simply connected, as illustrated
in Figure 1. In Section 2 we will present two necessary
conditions for constructing Steiner reducing sets. The
topology of Steiner reducing sets is studied in Section 3.

1.1 Definitions and Techniques

A triangulation of a finite set X of points in R? is an
inclusion-maximal set of non-intersecting straight line
segments between pairs of points in X. The weight of
a triangulation is defined as the sum of the Euclidean
lengths of its line segments, hence, a minimum weight
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Figure 1: The Steiner reducing set of the point set whose
minimum weight triangulation is illustrated in Figure
7; empty circles represent points that are not Steiner
reducing points

triangulation of X is a triangulation (not necessarily
unique) with weight less than or equal to that of any
other triangulation of X. We denote the weight of
a minimum weight triangulation of a point set X by
mwt(X). An edge AB is unavoidable if every triangu-
lation of X contains the edge AB. The edges of the
boundary of the convex hull are all unavoidable, as are
any edges interior to the convex hull which are not prop-
erly intersected by any other possible edge. We direct
the reader to a standard topology book [9] for formal
definitions of the topological terms used in this paper.
For our purposes here, the rank of Hy(Z) counts the
number of connected components in the point set Z,
and the rank of H;(Z) counts the number of holes or
handles in a set Z. A path-connected set without holes
is called simply connected.

Calculations of minimum weight triangulations given
in this paper were made using integer programming over
the universal polytope, or for small examples, verified
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by hand. The program universalbuilder written by De
Loera and Peterson was used to generate a system of
inequalities defining the universal polytope of each in-
put set X, which was then input to the optimization
engine CPLEX. This process found the weight of the
minimum weight triangulation as well as the triangles
used. A Bash shell script was used to test the effects
of adding an additional point at each location in an
n x n grid. In order to show that a minimal weight tri-
angulation has a specific structure for each element of
a 1- or 2-dimensional set of Steiner points, we appeal
to the S—skeleton, unavoidable edges, and the trian-
gle inequality, as well as the interaction between certain
curves called k—ellipses and the chambers of the hyper-
plane arrangement induced by specific pairs of points.

1.2 Background and Previous Work

The minimum weight triangulation decision problem
“Given a finite planar point set X and a positive in-
teger b, is there a triangulation of X with weight b or
less?” has been a problem of theoretical and computa-
tional interest for over thirty years [6]. The problem
was shown to be NP-hard in 2006 [12], yet determina-
tion of minimum weight triangulations of special classes
of point sets, such as polygonal domains, can be done in
polynomial time [7, 11]. The shortest edge [7] and spe-
cific subsets of edges such as the [-skeleton [2, 10] have
been proven to belong to all minimum weight triangula-
tions. The simultaneous addition of many Steiner points
to certain point sets can reduce triangulation weight by
a significant amount, as shown in [4]. Practical motiva-
tions for the study of Steiner points include improving
the ability of meshes to approximate fine details [1], and
allowing approximation of the minimum weight triangu-
lation of an input point set [4]. Our work presented here
is the first to define and study the shape of the Steiner
reducing set.

In order to find all edges of a minimum weight tri-
angulation (after perhaps identifying a subset of the
edges), one algorithmic approach applies integer pro-
gramming to the universal polytope. This polytope has
vertices corresponding to each triangulation of X. Thus,
even though the minimum weight triangulation problem
is known to be NP-hard, there are algorithmic means
for finding the minimum weight triangulation of planar
point sets of up to several hundred points that do not
rely on ad-hoc methods [3]. Note that no polynomial
time algorithm is known to verify that a proposed tri-
angulation is indeed minimal.

In this paper we reveal topological complexity behind
the minimum weight triangulation problem by giving
conditions that allow the addition of a Steiner point to
a fixed input set to reduce the weight of a minimum
weight triangulation. This answers a question posed
by Jesis De Loera in 2003 during the MSRI Summer
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Figure 2: The shaded area is the Steiner reducing set of
Y = {A, B,C, D}, shown with Steiner reducing point @

Graduate Workshop on Triangulations of Point Sets.

2 Steiner Reducing Sets: Necessary Conditions

In this section, we give a means for identifying sub-
sets of the Steiner reducing set via the combinatorial
structure of a minimal triangulation and the geometric
properties of an associated multi-focal ellipse (known as
a k-ellipse). To our knowledge, all known examples of
Steiner reducing points are located either outside the
interior of the convex hull of X (as in Figure 2), or in
the interior of a non-convex polygon formed by edges
that belong to a minimum weight triangulation of X
(as in Figure 5). The non-convexity of such a polygon
will lead to Steiner reducing sets with interesting topol-
ogy. It remains an open question whether there exist
convex polygons which admit Steiner reducing points
in the interior of their convex hulls.

It is simple to show that no set of three points admits
a Steiner reducing point. Case analysis of four-point sets
reveals that no such set will admit a Steiner reducing
point in the interior of its convex hull. There are four-
point sets, however, which allow Steiner reducing points
exterior to and on the edges of their convex hulls. One
illustration of such a set is shown in Figure 2.

The minimum weight triangulation of YU{Q} for Q =
(z,y), y < 0, will use edges AQ, BQ,CQ, DQ, when Q
is “close” to Y, in addition to edges AB, BC,CD, as
seen in Figure 2. Since the new edges replace edges
AC and AD from the original triangulation, the Steiner
reducing set St(Y') consists of all points () which satisfy
the inequality
[AQ| +|BQ|+|CQ| +|DQ| < |AC|+|AD| = 10+ V/65.

The curved boundary of St(Y) is part of a curve
known as a 4-ellipse. More generally, the locus of all
points P € R? such that the sum of distances from P
to each of k distinguished foci is constant is called a
k-ellipse. Under this definition, the circle is a 1-ellipse,
and the standard ellipse is a 2-ellipse. Let

k
E(Q;d) = {P ER?: > |PQi| = d}
i=1

denote the k-ellipse with foci in Q = {Ql, ceey Qk} and
corresponding distance sum d. Note that E(Q;d) is a



CCCG 2012, Charlottetown, P.E.I., August 8-10, 2012

closed curve. For k > 2, the interior of this level set does
not necessarily contain its foci @;, though the curve
represented by the level set will be convex for every
value of k > 1, as proven in [15]. Denote by E-(Q;d)
the points in its interior of the k-ellipse.

The history of the k-ellipse reaches back to Fermat,
who posed the following challenge: “Given three points
in a plane, find a fourth point such that the sum of
its distances to the three given points is as small as
possible.” (The smallest possible 3-ellipse consists of this
single point.) A solution to the problem of Fermat was
provided by Evangelista Torricelli around 1640, and the
distance minimizing point, termed the Fermat-Torricelli
point [8], remains a topic of active research. In the late
1600’s, Tschirnhaus generalized the standard string and
pins construction of an ellipse, illustrating how to draw a
3-ellipse by hand in [18]. Due to a lack of standardized
nomenclature for this object, it has been rediscovered
many times throughout the literature, receiving such
names as Tschirnhaussche Eiflachen [16], W,, curves [5],
polyellipses [19], and egglipses [14]. A survey article
of k-ellipses and their basic properties appears in [15].
Noting that the 1- and 2-ellipse both appear as the level-
zero set of degree two polynomials, Nie, Parillo, and
Sturmfels used semidefinite programming to show that
the k-ellipse appears as part of the level zero set of a
polynomial of degree 2¥ if k is odd and degree 2% — (kljz)
if k is even [13]. The author’s Ph.D. thesis [17] was the
first work detailing the connection between k-ellipses
and minimum weight triangulations.

The k-ellipse provides a criterion for measuring prox-
imity to multiple distinct points. For the Steiner reduc-
ing set to be non-empty, the sum of lengths of edges in-
cident to new Steiner point(s) must be less than the sum
of the lengths of the replaced edges minus the lengths
of new edges not incident to the Steiner point. Al-
though it is common for k-ellipses to appear as part
or all of the boundary of different Steiner reducing sets,
these Steiner reducing sets are not simply unions of sets
E. (Xi; di) for various pairs X;, d; of foci and distance
sums. This is an issue of feasibility; locations of @ in-
terior to quadrilateral ABCD lie within the necessary
4-ellipse, but do not give a complete triangulation. For
Q@ to be a Steiner reducing point, it must lie in the inter-
section of the 4-ellipse with the appropriate feasibility
set, as shown in Figure 3. The intersection of these two
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Figure 3: The intersection of F.(Y;10 4+ +/65) with
F(Y,1I)
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Figure 4: Any triangulation of X U {V} for V within
the shaded feasibility set uses the same set of edges.

sets gives the Steiner reducing set of Y.
We now formally define what we mean by feasibility.

Definition 1 Given a set X C R? of n distinct points,
an abstract (yet to be located) vertex V ¢ X, and a
graph G = (X U{V},1I), the feasibility set F(X,II) is
the set of points P € R*\ X such that if V = P, then the
straight line drawing of the graph G is a triangulation
of X U{P}.

In general, a feasibility set F'(X,II) is comprised of
unions of chambers (together with some boundary seg-
ments or rays) of the line arrangement formed by ex-
tending the segments of II between pairs of points of X
into lines. Thus, each feasibility set can be described
via linear inequalities. Feasibility sets need not be con-
nected, as can be shown by taking X to be a set of three
non-collinear points as in Figure 4.

The intersections of feasibility sets with k-ellipses are
the basic building blocks of Steiner reducing sets. In the
next section we will explore the geometry and topology
which occurs as we take unions of such intersections.

3 Topological Properties of Steiner Reducing Sets

3.1 Connectivity

Our first contribution to the study of the topology of
Steiner reducing sets is to show that the sets need not
be connected. This can be demonstrated with a point
set with as few as five points, as shown in Figure 5.

Theorem 2 There exist sets X of bn points such that
the rank of Ho(St(X)) is at least 2n.

Proof. Let Z = {(0,0),(2,1),(8,1),(10,0),(5,18)},
denoted by A, B,C, D, E, respectively. We will prove
that a quadrilateral of non-Steiner reducing points en-
circles the component of the Steiner reducing set of Z
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that lies in the interior of the convex hull. Note first that
edges AB, BC,CD, BE and CFE are all unavoidable in a
triangulation of Z since no other possible triangulation
edges intersect these. It follows that Z has exactly two
triangulations, and both are minimal. Choose MWT(Z)

to be the minimum weight triangulation of Z that uses
edge AC.

!
_em

Figure 5: At left, a Steiner reducing set with four con-
nected components; at right, the boundary of the in-

terior component is formed by intersecting a feasibility
set and a 5-ellipse

Since the minimum weight triangulation of Z contains
the same configuration of edges as the minimum weight
triangulation of Y from Figure 2, we know that certain
points on or below segment AD will be Steiner reducing
points. However, a quick calculation shows P = (5,3)
is also a Steiner reducing point.

Let Sp be the connected component of the Steiner re-
ducing set that contains P. Then Sp = E.(Z;2/298)N
F(Z,®), where 21/298 is the length of the edges replaced
from MWT(Z), and the feasibility set is the collection
of points within the convex hull that can be connected
to all five points of Z without intersecting any edges of
a minimal triangulation of Y = {4, B, C, D}.

In order to establish that the subset Sp of the Steiner
reducing set is not path connected to St(Y'), consider
uadrilateral FFGH, where F' = ﬁ N G =

ABnN Cﬁ, and H = Cﬁ N j@ This shape surrounds
Sp, and its edges contain no Steiner reducing points,
a fact which we now prove. To verify that no points
of FG or GH are Steiner reducing points, we consider
without loss of generality points R = (z, %x) within the
convex hull of Z and for x > 5. Such points R lie on
the ray CTH), which makes edges BE, AB, BC, and CD
all unavoidable in any triangulation of Z U {R}. Since
the triangle inequality implies |CR|+ |ER| > |CE|, the
point R is not a Steiner reducing point. A similar ar-
gument shows that no point () on segments F'E or EH
will be a Steiner reducing point. Therefore there are at
least two connected components in St(Z).

Figure 6: St (Z [4]) has at least 12 connected compo-
nents

To prove that St(Z) has four connected components,
we verify that the three components outside the convex
hull in Figure 5 are not path connected to one another.
This can be done, as above, by showing no points of
lines y = 1/2, y = 16 are Steiner reducing points.

By arranging four copies of the point set Z as shown
in Figure 6, we can construct a point set with a Steiner
reducing set that has at least 8 connected components.
The left and right exterior components of the Steiner
reducing set from each individual copy of Z are lost,
but the the other two components from each copy of Z
remain. For this particular example, the midpoint of
each boundary edge is a Steiner reducing point, each
belonging to its own connected component. By arrang-
ing copies of Z so that the images of F from the original
set lie on the vertices of an n-gon with sufficiently long
edges (relative to the size of Z), we can get a point set
denoted Z[" whose minimum weight triangulation con-

tains all edges of the minimum weight triangulation of
each copy of Z. Thus, X = Z[" is a point set with 5n
points that has at least 2n connected components in its
Steiner reducing set. O

In the previous example, we had Y C Z and the cor-
responding Steiner reducing sets St(Y) C St(Z). We
note that in general, X C W does not imply either
MWT(X) C MWT(W) or St(X) C St(W). Even if we
have containment of both the point sets X C W and
the edge sets MWT(X) C MWT(W), we may not have
St(X) C St(W). We further note that it is possible
for the number of connected components of the Steiner
reducing set to exceed the number of points in the set.
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Figure 7: A minimum weight triangulation of Y using
the edge set MWT(Y)

An example of a 15-point set X that admits a Steiner
reducing set St(X) such that Ho(St(X)) has rank at
least 20 is given in the author’s Ph.D. thesis [17].

3.2 Simple Connectivity

Our second topological result is to show that Steiner
reducing sets need not be simply connected.

Theorem 3 There exists a set' Y of 18 points such that
the rank of Hy(St(Y)) is at least 13.

We first describe the structure of a minimum weight
triangulation of the point set Y under consideration,
then find a connected subset of the Steiner reducing set
of Y. We prove this subset is not simply connected by
demonstrating 13 curves that lie in the Steiner reducing
set of Y and are representatives of linearly independent
homology classes within H; (St(Y)).

Proof. Let Y = Gg U G132, where

_ 9j in 24 |5 =
G6{(8360512,8381n12>'j 1,...,6}, and

G2 = {<2OCOS 21’ 20sin 24>‘J 1»""12}’

where 0; = 27(2j — 1). An illustration of Y together
with a minimal weight triangulation is given in Figure

7.

Figure 8: Five subsets M; of the Steiner reducing set of
Y

The set Y is preserved under the standard group ac-
tion of Dg, the dihedral group of order 12. Let I' be
the orbit of AG under the induced action of Dg on the
edges. The edges of the interior 12-gon formed from the
points in G12 belong to the [-skeleton of Y, and thus
will belong to every minimum weight triangulation of
Y. The edges in ' U {AI, BK,CM, DO, EQ, FG} tri-
angulate the region between the convex hulls of Gg and
G12. No other subset of 18 edges which lie in the an-
nular region between G¢ and G2 has smaller weight,
so these edges belong to a minimum weight triangula-
tion of Y. Denote by MWT(Y) a fixed minimum weight
triangulation of Y which uses these 18 edges.

Let H be the line arrangement formed by extend-
ing into lines the segments that form the boundaries of
conv(Gg) and conv(Giz). In Figure 8 we illustrate five
polygons M;,1 < ¢ < 5, whose interiors lie in specific
chambers of this line arrangement and belong to the
Steiner reducing set St(Y). The chamber will deter-
mine the available triangulation edges. For example, if
a Steiner point Z is added in chamber associated with
Ms, Z can be adjacent to any of G,H,I, or J, but
cannot be adjacent to K since the edges of the interior
12-gon still belong to a minimum weight triangulation
of the augmented point set. We further simplify our
search for the Steiner reducing set by utilizing the con-
vexity of k-ellipses. Namely, if W C Y is a set of d
points whose convex hull lies inside a specific feasibility
region, and if the points of W all lie in a region bounded
by an appropriate k-ellipse, then conv(W) C St(Y). By
checking the weight of the proposed triangulation at the
vertices of the polygons M;, we use convexity to deter-
mine that the interior of each M; is indeed a subset of a
corresponding k-ellipse, and build the Steiner reducing
set by verifying minimal triangulations for points that
fall on chamber boundary lines.
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To finish the proof of Theorem 3, we prove the exis-
tence of 13 holes within the Steiner reducing set St(Y").
To do so, we find generators of linearly independent ho-
mology classes in Hy(St(Y)). The technique requires
finding 13 points in the interior of conv(St(Y)) that
are not Steiner reducing points, together with 13 closed
curves ; such that v; C St(Y) for 1 <¢ < 13 and each
bounds a compact subset of R? that contains a point
which is not a Steiner reducing point.

None of the points (0,35), (18,32), or (0,0), as well
as rotations of these by multiples of % are Steiner re-
ducing points. It is not difficult to use sets M; to con-
struct three generators 71, 72, y3 of linearly independent
homology classes in H; (St(Y')) such that (0, 35) lies in-
terior to curve 7, (18,32) lies interior to 2, and (0,0)
lies interior to 3. It follows that no path homotopy
exists within the set St(Y') from ~; to v;, i # j, so the
holes detected are distinct. Define ; for 4 < i < 13
to be the distinct images of «; and -5 under rotations
about the origin by integer multiples of /3 radians. [

As in the proof of the first theorem, by aligning copies
of Y with the vertices of an n-gon with sufficiently long
edges (relative to the size of Y'), we can get a point set
Y whose minimum weight triangulation contains all
edges of the minimum weight triangulation of each copy
of Y, thus giving a point set with 18n points that has
at least 13n holes.

4 Future Work

These results have implications for the design of algo-
rithms to search for minimum weight Steiner triangula-
tions. Questions remain about whether two points can
be better than one: in a case when the Steiner reducing
set St(X) is empty, is it possible that two Steiner points
P and @ can team up to cause the weight of a minimal
weight triangulation of X U {P,Q} to be less than that
of X? It may be possible to use the structures of the k-
ellipse and feasibility sets to design faster algorithms to
find the minimal weight triangulation of certain classes
of point sets in an efficient manner.
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