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Hidden Mobile Guards in Simple Polygons∗
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Abstract

We consider guarding classes of simple polygons using
mobile guards (polygon edges and diagonals) under the
constraint that no two guards may see each other. In
contrast to most other art gallery problems, existence
is the primary question: does a specific type of polygon
admit some guard set? Types include simple polygons
and the subclasses of orthogonal, monotone, and star-
shaped polygons. Additionally, guards may either ex-
clude or include the endpoints (so-called open and closed
guards). We provide a nearly complete set of answers to
existence questions of open and closed edge, diagonal,
and mobile guards in simple, orthogonal, monotone, and
starshaped polygons, with some surprising results. For
instance, every monotone or starshaped polygon can be
guarded using hidden open mobile (edge or diagonal)
guards, but not necessarily with hidden open edge or
hidden open diagonal guards.

1 Definitions

We define the boundary of a polygon P (denoted ∂P )
as a simple polygonal chain consisting of a sequence
of vertices specified in counterclockwise order, and the
open set enclosed by ∂P to be the interior of P (denoted
int(P )). An edge e = pq of the polygon is an interval
of ∂P between consecutive vertices p, q, and a diagonal
d = rs of P is a straight line segment between non-
consecutive vertices r, s of ∂P such d− {r, s} ∈ int(P ),
i.e. the portion of d excluding its endpoints lies in the
interior of P .

We consider guarding int(P ) using a subset of the
edges and diagonals of P . A guard g sees or guards a
location l in the polygon if l is weakly visible [1] from the
guard: there exists a point p ∈ g such that the interior
of the segment lp lies in the interior of the polygon.
Edges and diagonals selected as guards are called edge
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guards and diagonal guards, respectively, and a mobile
guard [9] is either an edge or a diagonal guard. If a set
S of edges and diagonals of P is such that every location
in the interior of P is seen by at least one guard in S,
then S is a guard set of P and P is said to admit a
guard set. A closed guard set includes the vertices at
both ends of each edge or diagonal. If all endpoints are
excluded, the guard set is called an open guard set.

In addition to simple polygons or simply polygons, we
consider a number of special classes of polygons. An or-
thogonal polygon is a polygon that can be rotated such
that all edges are parallel to the x- or y-axis. A mono-
tone polygon is a polygon that can be rotated such that
the portion of the polygon intersecting any vertical line
consists of a connected interval. A starshaped polygon
is a polygon that can be translated such that an interior
point coincides with the origin and sees all locations in
the interior of the polygon, and the kernel of the poly-
gon is the set of all points in the polygon with this prop-
erty. These three classes (along with convex and spiral
polygons) are described by O’Rourke [10] in the context
of guarding problems as being “usefully distinguished in
the literature.”

Finally, we add the constraint that a guard set is hid-
den: no pair of guards in the set see each other. Here a
pair of guards g1, g2 in a polygon P can see each other
if there exists a pair of points p ∈ g1, q ∈ g2 such that
pq − {p, q} ∈ int(P ).

2 Introduction

Edge, diagonal, and mobile guards in polygons have
been studied extensively in the past. Avis and Tous-
saint [1] considered the case where a single closed edge
is sufficient to guard the entire polygon. Shortly after,
Toussaint gave an example of a polygon whose smallest
closed edge guard set is bn/4c [9] and conjectured that
an edge guard set of this size is sufficient for any poly-
gon. O’Rourke [9] showed that closed mobile guard sets
of size bn/4c are sometimes necessary and always suf-
ficient for polygons. For closed diagonal guards, Sher-
mer [12] has shown that guard sets of size b(2n+ 2)/7c
are necessary for some polygons, and no polygon re-
quires a guard set of size greater than b(n− 1)/3c.

More recently, open edge guards were suggested by
Viglietta [14] and studied by Benbernou et al. [2] and
Tóth et al. [13], who showed that open edge guard sets
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of size bn/3c and bn/2c are sometimes necessary and
always sufficient for simple polygons.

The study of hidden guards began with Shermer [11]
who gave several results, including examples of poly-
gons that are not guardable using hidden vertex guards.
The study of hidden edges has only been initiated re-
cently by Kranakis et al. [6] who showed that computing
the largest hidden open edge set in a polygon (ignoring
guarding) cannot be approximated within an arbitrar-
ily small constant factor unless P = NP. In the same
theme, Kosowoski et al. [7] have studied cooperative
mobile guards, where each guard is required to be seen
by another guard. Such a constraint is the opposite of
hiddenness, which forbids any guard from seeing any
other guard.

Here we evaluate the existence of hidden edge, diag-
onal, and mobile guard sets for simple polygon classes.
A summary of results is seen in Table 1.

Guard class Polygon class
Inclusion Type Simple Ortho Mono Star

Edge No Yes No No
Open Diagonal No No No No

Mobile No Yes Yes Yes
Edge No No No No

Closed Diagonal No No No No
Mobile No No No ?

Table 1: New results in this paper. Entries indicate
whether a hidden guard set exists for every polygon in
the class.

3 Open edge guards

Recall open edge guards are edges of the polygon ex-
cluding the endpoints.

Lemma 1 There exists a monotone polygon that does
not admit a hidden open edge guard set.

Proof. See Figure 1. We refer to the convex regions
bounded by three edges in the upper left and right por-
tions of the polygon as ears. Consider guarding the
pair of ear regions without using any of the three edges
that form each ear. The cases resulting from these at-
tempts are seen in Figure 2. In each case, any maximal
combination of non-ear edges fails to guard either ear
completely. Moreover, a portion of the remaining un-
guarded region in each ear is not visible from any edge
of the other ear. Thus any guard set contains one of the
three edges in each ear. Also, every pair of ear edges in
the same ear see each other, so any guard set contains
exactly one edge in each ear.

Next, consider possible ear-edge pairs containing one
edge from each ear. In Figure 3 it is shown that for

Figure 1: A monotone polygon that does not admit a
hidden open edge guard set.

Figure 2: All maximal combinations of open edge guards
that exclude the six ear edges.

each such ear-edge pair, the pair cannot be augmented
to form a hidden open edge guard set for the polygon.
Thus the polygon cannot be guarded with hidden open
edge guards. �

Figure 3: All combinations of ear edge pairs and the
maximal hidden sets containing each ear edge pair.

Lemma 2 There exists a starshaped polygon that does
not admit a hidden open edge guard set.

Proof. See Figure 4. The polygon consists of a central
convex region with numerous spikes emanating from it.
Figure 6 provides a labeled version of the polygon, with
two sets of four large spikes each ({ai} and {bi}) and
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Figure 4: A starshaped polygon that does not admit a
hidden open edge guard set.

four sets of two small spikes each ({c1, c2} forms one
such set). Call edges on the central convex region cen-
tral edges and the spike pairs {a1, a3}, {a2, a4}, {b1, b3},
{b2, b4} opposing spike pairs. Consider guarding the four
spikes {ai} without using central edges (see Figure 5).

a1
a3

a4

a2

a1
a3

a4

a2

Figure 5: The two possible guardings of the four spike
{ai} without using central edges (dotted).

Only one edge per opposing spike pair may be in any
hidden edge guard set, as all four edges of an opposing
spike pair see each other. Each spike has two asymmet-
ric edges; one is able to guard the entire opposing spike
pair, while the other is not. Each spike also contains a
location not seem by any spike edge not in the spike’s
opposing spike pair. Finally, a pair of edges from a1
and a4 see each other, as do a pair in a2 and a3. So
any hidden edge guard set for the opposing spike pairs
{a1, a3} and {a2, a4} that does not include central edges
consists of one of two pairs seen in Figure 5.

Now consider guarding the entire polygon. Any cen-
tral edge guards the interior of at most one spike from
{ai} or {bi}. So one of the two spike sets {ai} and {bi}
must be guarded without using central edges. Without
loss of generality, assume the {ai} set is guarded in this
way. Then one of the pairs of edges seen in Figure 5
must be in the guard set. Again without loss of gen-
erality, assume the edge pair of a1 and a2 are selected,
as in Figure 6. Then there exist two spikes c1 and c2
whose edges are both seen by the guard edges in spikes
a1 and a2, but portions of the interiors of c1 and c2
remain unguarded. The only edges sufficient to guard
the interiors of c1 and c2 are the central edges e1 and
e2. However, e1 and e2 each guard the interior of only
one spike. Thus a portion of the interior of either c1 or
c2 must remain unguarded, and the polygon cannot be
guarded using hidden open edge guards. �
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c1
c2
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Figure 6: A incomplete but necessary set of guard edges
and the region they guard. The interiors of c1 and c2
remain partially unguarded and cannot be guarded with
a hidden open edge set.

Lemma 3 Every orthogonal polygon admits a hidden
open edge guard set.

Omitted proofs can be found in the full version1 of
this paper.

4 Open diagonal guards

Lemma 4 There exists a monotone and starshaped
polygon that does not admit a hidden open diagonal
guard set.

1http://arxiv.org/pdf/1206.1803v1
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Figure 7: A monotone and starshaped polygon that does
not admit a hidden open diagonal guard set.

Lemma 5 There exists an orthogonal polygon that does
not admit a hidden open diagonal guard set.

Figure 8: An orthogonal polygon that does not admit a
hidden open diagonal guard set.

5 Open mobile guards

Lemma 6 There exists a simple polygon that does not
admit a hidden open mobile guard set.

Figure 9: A simple polygon that does not admit a hid-
den open mobile guard set.

Observation 1 Let g be a geodesic path between a pair
of vertices p, q in a polygon P . Then the interiors of the
edges g form a set of hidden open mobile guards in P .

We refer to such a guard set for a path g as the open
mobile guard set induced by g.

Lemma 7 Every monotone polygon admits a hidden
open mobile guard set.

A natural approach to finding an open mobile guard
set for a starshaped polygon is to look for a mobile guard
that intersects the kernel of the polygon. Unfortunately
such a guard may not exist as noted in [10] (see Fig-
ure 10).

Figure 10: A starshaped polygon with no edge or diag-
onal intersecting its kernel (gray).

The following lemma is used in the proof of Lemma 9.

Lemma 8 Let P be a starshaped polygon translated so
that the origin lies in the kernel of P , and let v, v′ be
consecutive reflex vertices such that angle between the
rays from v and v′ through the origin (sweeping from v
to v′) is at most π. If a geodesic path g ∈ P intersects
both rays either before or after they intersect the origin,
then g guards the subpolygon R bounded by the portions
of the two rays before they intersect the origin, and the
portion of ∂P from v to v′.

Lemma 9 Every starshaped polygon admits a hidden
open mobile guard set.

Proof. Let P be a given starshaped polygon translated
so that the origin lies in the kernel of P . Consider shoot-
ing rays from each reflex vertex through the origin as
seen in the left portion of Figure 11. Find a double
wedge W formed by a consecutive pair of these rays
such that each wedge is coincident to exactly one reflex
vertex (which we call u and u′) as seen in right portion
of Figure 11 as a dark gray region. Such a double wedge
is formed by every pair of consecutive intersections of
rays along ∂P such that one intersection is the start
of a ray (at a reflex vertex of P ), and the other is the
termination of a ray.

For every consecutive pair of reflex vertices v, v′ on
∂P , the rays from v and v′ through the origin lie entirely
in P −W . Two pairs are an exception: the two pairs
containing u and u′ that form a pair of wedges, each
containing half of the double wedge W (seen as the dark
gray double wedge extended with two light gray wedges
in the right portion of Figure 11). For all remaining
pairs, the geodesic path from u to u′ intersects both
rays either before or after they have passed through the
origin. Therefore, by Lemma 8, the hidden open mobile
guard set induced by g sees the entire polygon except
(possibly) the pair of wedges bounded by two pairs of
consecutive reflex vertices adjacent to u and u′.
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u

u′W

Figure 11: Left: a starshaped polygon with rays from
each reflex vertex through the origin. Right: the poly-
gon and a double wedge W (dark gray) with one reflex
vertex (u or u′) incident to each wedge. The light and
dark gray regions together form the subpolygons possi-
bly left unguarded by the hidden open mobile guard set
induced by a geodesic path from u to u′.

It may be the case that the two remaining wedges
are actually a single non-convex subpolygon with reflex
vertex at the origin (see Figure 12).

u u′

W

Figure 12: A polygon and double wedge W (dark gray
region) where the region not necessarily guarded by the
hidden open mobile guard set induced by the geodesic
path from u to u′ is actually a single non-convex polygon
(light and dark gray regions combined) bounded by u
and u′.

In this situation the subpolygon can be bisected into
two convex subpolygons by a ray bisecting the reflex
angle at the origin.

Recall that each convex subpolygon has a vertex u or
u′ in common with the geodesic’s final edge (see Fig-
ure 13). If the interior angle formed by these two edges
is at most π, then the subpolygon is seen by the interior
of the final edge of the geodesic. If not, the geodesic can
be extended to include an edge of ∂P in the subpolygon
that guards the subpolygon completely.

Thus the hidden mobile guard set induced by the
geodesic described guards P . �

Computing such a guard set for a polygon with n
edges can be done in O(n) time, as each step takes at
most O(n) time: 1. compute a point in the kernel of the

⇒

u

u u

Figure 13: The two cases of guarding the remaining
subpolygons. In the case shown in the upper part of
the figure, the existing geodesic is sufficient to guard
the wedge. In the second case, the geodesic leaves a
portion of the wedge unguarded and must be extended.

u

u′

Figure 14: A polygon with a geodesic path inducing a
hidden open mobile guard set for the polygon. The ini-
tial geodesic from u to u′ leaves the gray region incident
to u partially unguarded, so the geodesic is extended by
one edge.

polygon (O(n) time by Lee and Preparata [8]). 2. find a
separating angle θ (O(n) time). 3. triangulate the poly-
gon and find a geodesic between the reflex vertices u and
u′ (O(n) time by Fournier and Montuno [3] and Guibas
et al. [5]). 4. check whether the two remaining subpoly-
gons are already covered by the geodesic, and extend the
geodesic by an additional edge if necessary (O(1) time).

6 Closed edge and diagonal guards

In the next section we present orthogonal and monotone
polygons that do not admit hidden closed mobile guard
sets. Note that these polygons also serve as examples
of polygons that do not admit hidden closed edge or
hidden closed diagonal guards. For starshaped polygons
no such example is known.

Lemma 10 There exists a starshaped polygon that does
not admit a hidden closed edge guard set.
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Figure 15: A starshaped polygon that does not admit a
hidden closed edge guard set.

Lemma 11 There exists a starshaped polygon polygon
that does not admit a hidden closed diagonal guard set.

7 Closed mobile guards

Lemma 12 There exists an orthgonal polygon that does
not admit a hidden closed mobile guard set.

Figure 16: An orthogonal polygon that cannot be
guarded using hidden closed mobile guards.

Lemma 13 There exists a monotone polygon that does
not admit a hidden closed mobile guard set.

Conjecture 1 Every starshaped polygon admits a hid-
den closed mobile guard set.
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