CCCG 2012, Charlottetown, P.E.I., August 8-10, 2012

Approximating Majority Depth

Dan Chen*

Abstract

We consider the problem of approximating the majority
depth (Liu and Singh, 1993) of a point ¢ with respect to
an n-point set, S, by random sampling. At the heart of
this problem is a data structures question: How can we
preprocess a set of n lines so that we can quickly test
whether a randomly selected vertex in the arrangement
of these lines is above or below the median level. We
describe a Monte-Carlo data structure for this problem
that can be constructed in O(nlogn) time, can answer
queries O((logn)?/?) expected time, and answers cor-
rectly with high probability.

1 Introduction

A data depth measure quantifies the centrality of an
individual (a point) with respect to a population (a
point set). Depth measures are an important part of
multivariate statistics and many have been defined, in-
clude Tukey depth [17], Oja depth [13], simplicial depth
[10], majority depth [11], and zonoid depth [8]. For
an overview of data depth from a statistician’s point of
view, refer to the survey by Small [15]. For a computa-
tional geometer’s point of view refer to Aloupis’ survey
[1].

In this paper, we focus on the bivariate majority
depth measure. Let S be a set of n points in R?. For
a pair z,y € S, the major side of z,y is the union of
the (at most 2) closed halfplanes having both x and y
on their boundary that contain at least n/2 points of S.
The magjority depth [11, 14] of a point, ¢, with respect
to S, is defined as the number of pairs z,y € S that
have ¢ in their major side.

Under the usual projective duality [9], the set S be-
comes a set, S*, of lines; pairs of points in S become ver-
tices in the arrangement, A(S*), of S*; and ¢ becomes
a line, ¢*. The median-level of A(S*) is the closure of
the set of points on lines in S that have exactly |n/2]
lines of S above them. Then the majority depth of ¢
with respect to S is equal to the number of vertices, x,
in A(S*) such that

1. x is above ¢* and x is above the median level; or

*School of Computer Science, Carleton University,
dchen4@connect.carleton.ca
tSchool of Computer Science, Carleton University,

morin@scs.carleton.ca

Pat Morin'

2. x is below ¢* and z is below the median level.

Chen and Morin [5] present an algorithm for com-
puting majority depth that works in the dual. Their
algorithm works by computing the median level, com-
puting the intersections of ¢* with the median level, and
using fast inversion counting to determine the number,
t, of vertices of the arrangement sandwiched between ¢*
and the median level. The majority depth of ¢ is then
equal to (g) — t. The running time of this algorithm is
within a logarithmic factor of m, the complexity of the
median level.

The maximum complexity of the median level of n
lines has been the subject of intense study since it was
first posed. The current best upper bound is O(n*/3),
due to Dey [7] and the current best lower bound is
29(V1ogn) - que to Téth [16]. The median level can be
computed in time O(min{mlogn,n*/3}) [2, 3]. Thus,
the worst-case running time of Chen and Morin’s ma-
jority depth algorithm is w(n(logn)€) for any constant
¢, but no worse than O(n*/3logn).

It seems difficult for any algorithm that computes the
exact majority depth of a point to avoid (at least im-
plicitly) computing the median level of A(S*). This
motivates approximation by random sampling. In par-
ticular, one can use the simple technique of sampling
vertices of A(S*) and checking whether

1. each sample lies above or below ¢*; and

2. each sample lies above or below the median level of
S*.

In the primal, this is equivalent to taking random pairs
of points in S and checking, for each such pair, (z,y),
if, (1) the closed upper halfplane, hy,, with and y on
its boundary, contains ¢ and (2) if h,, contains n/2 or
more points of S.

The former test takes constant time but the latter test
leads to a data structuring problem: Preprocess the set
S* so that one can quickly test, for any query point, z,
whether z is above or below the median level of A(S*).
(Equivalently, does a query halfplane, h, contain n/2 or
more points of S.) We know of two immediate solutions
to this problem. The first solution is to compute the
median level explicitly, in O(min{mlogn,n*/3}) time,
after which any query can be answered in O(logn) time
by binary search on the x-coordinate of x. The sec-
ond solution is to construct a half-space range counting

24" Canadian Conference on Computational Geometry, 2012

structure—a partition tree—in O(nlogn) time that can
count the number of points of S in hy, in O(n'/2) time
[4].

The first solution is not terribly good, since Chen and
Morin’s algorithm shows that computing the ezact ma-
jority depth of ¢ can be done in time that is within a
logarithmic factor of m, the complexity of the median
level. (Though if the goal is to preprocess in order to ap-
proximate the majority depth for many different points,
then this method may be the right choice.)

In this paper, we show that the second solution can be
improved considerably, at least when the application is
approximating majority depth. In particular, we show
that when the query point is a randomly chosen ver-
tex of the arrangement A(S*), a careful combination of
partition trees [4] and e-approximations [12] can be used
to answer queries in O((logn)?/?) expected time. This
faster query time means that we can use more random
samples which leads to a more accurate approximation.

The remainder of this paper is organized as follows.
In Section 2 we review results on range counting and
g-approximations and show how they can be used for
approximate range counting. In Section 3 we show how
these approximate range counting results can be used
to quickly answer queries about whether a random ver-
tex of S* is above or below the median level of §*. In
Section 4 we briefly mention how all of this applies to
the problem of approximating majority depth. Finally,
Section 5 concludes with an open problem.

2 Approximate Range Counting

In this section, we consider the problem of approximate
range counting. That is, we study algorithms to prepro-
cess S so that, given a closed halfplane h and an integer
i > 0, we can quickly return an integer r;(h,S) such
that

|lhnS|—ri(h,S)| <i.

This data structure is such that queries are faster when
the allowable error, 7, is larger.

There are no new results in this section. Rather it
is a review of two relevant results on range searching
and e-approximations that are closely related, but sep-
arated by nearly 20 years. The reason we do this is
that, without a guide, it can take some effort to gather
and assemble the pieces; some of the proofs are exis-
tential, some are stated in terms of discrepancy theory,
and some are stated in terms of VC-dimension. The
reader who already knows all this, or is uninterested in
learning it, should skip directly to Lemma 2.

The first tools we need come from a recent result of
Chan on optimal partition trees and their application
to exact halfspace range counting [4, Theorems 3.2 and
5.3, with help from Theorem 5.2]:

Theorem 1. Let S be a set of n points in R? and let
N > n be an integer. There exists a data structure that
can preprocess S in O(nlog N) expected time so that,
with probability at least 1—1/N, for any query halfplane,
h, the data structure can return |hN S| in O(n'/?) time.

We say that a halfplane, h, crosses a set, X, of points
if h neither contains X nor is disjoint from X. The
partition tree of Theorem 1 is actually a binary space
partition tree. Each internal node, u, is a subset of R?
and the two children of a node are the subsets of u
obtained by cutting u with a line. Each leaf, w, in this
tree has [wNS| < 1. The O(n'/?) query time is obtained
by designing this tree so that, with probability at least
1 — 1/N, there are only O(n'/?) nodes crossed by any
halfplane.

For a geometric graph G = (S, E), the crossing num-
ber of G is the maximum, over all halfplanes, h, of the
number of edges uw € E such that h crosses {u,w}.
From Theorem 1 it is easy to derive a spanning tree of
S with crossing number O(n'/?) using a bottom-up al-
gorithm: Perform a post-order traversal of the partition
tree. When processing a node u with children v and w,
add an edge to the tree that joins an arbitrary point in
v NS to an arbitrary point in w N S. Since a halfplane
cannot cross any edge unless it also crosses the node
at which the edge was created, this yields the following
result [4, Corollary 7.1]:

Theorem 2. For any n point set, S, and any N > n,
it is possible to compute, in O(nlog N) expected time,
a spanning tree, T, of S that, with probability at least
1 —1/N, has crossing number O(n'/?).

A spanning tree is not quite what is needed for what
follows. Rather, we require a matching of size |n/2].
To obtain this, we first convert the tree, T, from Theo-
rem 2 into a path by creating a path, P, that contains
the vertices of T in the order they are discovered by a
depth-first traversal. It is easy to verify that the cross-
ing number of P is at most twice the crossing number
of T. Next, we take every second edge of P to obtain a
matching:

Corollary 1. For any n point set, S, and any N > n,
it is possible to compute, in O(nlog N) expected time, a
matching, M, of S of size |n/2| that, with probability
at least 1 — 1/N has crossing number O(n'/?).

The following argument is due to Matousek, Welzl
and Wernsich [12, Lemma 2.5]. Assume, for simplicity,
that n is even and let S’ C S be obtained by taking
exactly one endpoint from each edge in the matching
M obtained by Corollary 1. Consider some halfplane h,
and let M/ be the subset of the edges of M contained
in h and let th be the subset of edges crossed by h.
Then

S| =200+ |ME| .

CCCG 2012, Charlottetown, P.E.I., August 8-10, 2012

In particular,
b0 S| — M| <2(hn S| < [hN S|+ | M|

Since |MS| € O(n'/?), this is good news in terms of
approximate range counting; the set S’ is half the size
of S, but 2|hN.S’| gives estimate of |hN.S| that is off by
only O(n'/?). Next we show that this can be improved
considerably with almost no effort.

Rather than choose an arbitrary endpoint of each
edge in M to take part in S’, we choose each one of
the two endpoints at random (and independently of the
other n/2 — 1 choices). Then, each edge in M has
probability 1/2 of contributing a point to h N S’ and
each edge in M ,{ contributes exactly one point to hNS".
Therefore,

1
E[2/hN S| =2 <1|M,{ - 2th|) =|hnS| .

That is, 2|k N S’| is an unbiased estimator of |h N S]|.
Even better: the error of this estimator is (2 times)
a binomial(|MF|,1/2) random variable, with |MS| €
O(n'/?). Using standard results on the concentration of
binomial random variables (i.e., Chernoff Bounds [6]),
we immediately obtain:

Pr{|2|hN S| —|hNS|| > ent/*(log N)V/?} <1/N |

for some constant ¢ > 0. That is, with probability
1—1/N, 2|h N 5’| estimates |h N S| to within an er-
ror of O(n'/*(log N)'/?). Putting everything together,
we obtain:

Lemma 1. For any n point set, S, and any N > n, it
is possible to compute, in O(nlog N) expected time, a
subset S" of S of size [n/2] such that, with probability
at least 1 — 1 /N, for every halfplane h,

21k N S| — |h N S|| € O(nM4(log N)/?) .

What follows is another argument by Matousek,
Welzl and Wernisch [12, Lemma 2.2]. By repeatedly ap-
plying Lemma 1, we obtain a sequence of O(logn) sets
SoDS1---D ST, So =S and |Sj| = |—’I’L/2j—|. For j =1,
the set S; can be computed from S;_; in O(277nlog N)
time and has the property that, with probability at least
1—1/N, for every halfplane h,

27| N S, — |k S| € 023/ M4 (log N)/?) . (1)

At this point, we have come full circle. We store each of
the sets Sp,...,S, in an optimal partition tree (Theo-
rem 1) so that we can do range counting queries on each
set S; in O(|S;]'/?) time. This (finally) gives the result
we need on approximate range counting:

Lemma 2. Given any set S of n points in R% and any
N > n, there exists a data structure that can be con-
structed in O(nlog N) expected time and, with probabil-
ity at least 1 — 1/N, can, for any halfspace h and any
integer i € {0,...,n}, return a number r;(h,S) such
that

R0 S| = ri(h,)| <i .

Such a query takes O(min{n'/? (n/i)?/3(log N)'/3})
expected time.

Proof. The data structure is a sequence of optimal par-
tition trees on the sets Sy, ..., S,. All of these structures
can be computed in O(nlog N) time, since |Sp| = n and
the size of each subsequent set decreases by a factor of
2.

To answer a query, (h,i), we proceed as follows: If
i < n'/% then we perform exact range counting on the
set Sgp = S in O(n'/?) time to return the value |h N S|.
Otherwise, we perform range counting on the set S;
where j is the largest value that satisfies

0234 4 log NYY2 < i

where the constant C' depends on the constant in
the big-Oh notation in (1). This means |S;| =
O((n/i)*3(log N)?/3)) and the query takes expected
time

O(I8j]'/?) = O((n/i)*/*(log N)'/?)

as required. O

Our main application of Lemma 2 is a test that checks
whether a halfspace, h, contains n/2 or more points of

S.

Lemma 3. Given any set S of n points in R% and any
N > n, there exists a data structure that can be con-
structed in O(nlog N) expected time and, with probabil-
ity at least 1 —1/N, can, for any halfspace h determine
if [hNS| > n/2. Such a query takes expected time
Q) O(n'/?) for 0 <i<nl/t
1) =
O((n/i)?3(log N)'/3) otherwise,
where i = |[hN S| —n/2|.

Proof. As preprocessing, we construct the data struc-
ture of Lemma 2. To perform a query, we perform
a sequence of queries (h,i;), for j = 0,1,2,..., where
i; =n/27. The jth such query takes O(22/3(log N)1/3)
time and the question, “is |h N S| > n/27” is resolved
once n/2 < i/2. Since the cost of successive queries
is exponentially increasing, this final query takes time
O(min{n'/?, (n/i)*/?(log N)*/3}) and dominates the to-
tal query time. O

24" Canadian Conference on Computational Geometry, 2012

3 Side of Median Level Testing

We are now ready to tackle the main problem that
comes up in trying to estimate majority depth by ran-
dom sampling: Given a range pair of points z,y € 5,
determine if there are more than n/2 points in the up-
per halfspace, sy, whose boundary is the line through
x and y. In this section, though, it will be more natu-
ral to work in the dual setting. Here the question be-
comes: Given a random vertex, x, of A(S*), determine
whether = is above or below the median level of S*.
The data structure in Lemma 3 answers these queries
in time O((n/i)?/3(log N)'/3) when the vertex z is on
the n/2 —i or n/2 + i level.

Before proving our main theorem, we recall a result of
Dey [7, Theorem 4.2] about the maximum complexity
of a sequence of levels.

Lemma 4. Let L be any set of n lines and let s be
the number of vertices of A(L) that are on levels k, k +
1,...,k+7j. Then, s € O(nk'/35%/3).

We are interested in the special case of Lemma 4
where k =n/2 — i and j = 2i:

Corollary 2. Let L be any set of n lines. Then, for
any i € {1,...,n/2} the mazimum total number of ver-
tices of A(L) whose level is in {n/2 —i,...,n/2 +1i} is
O(n4/3i2/3).

Corollary 2 is useful because it gives bounds on the

distribution of the level of a randomly chosen vertex of
A(S*).

Theorem 3. Given any set, L, of n lines and any
c > 0, there exists a data structure that can test if a
point x is above or below the median level of L. For
any constant, c, this structure can be made to have the
following properties:

1. It can be constructed in O(nlogn) expected time
and uses O(n) space;

c

2. with probability at least 1 —n~
for all possible queries; and

, it answers correctly

3. when given a random vertex of A(L) as a query,
the expected query time is O((logn)*/3).

Proof. The data structure is, of course, the data struc-
ture of Lemma 3 with NV = n°. Let n; be the number of
vertices of A(L) on levels n/2 —i and n/2+i. Then the
expected query time of this data structure is at most
1 n/2
F(no,...,npp2) = ﬁ Z”iQ(i)) (2)
i=0

2

where, for sufficiently large n, Q(4) is upper-bounded by

Qi) < Bn'/2 if0<i<n'/4
i
= | B(n/i)?/3(log N)*/3 otherwise.

for some constant 8 > 0. Our goal, therefore, is
to upper-bound F(ng,...,n,/2) subject to Dey’s con-
straints (Lemma 4):

J
3w < 2
i=0

for some constant v > 0 and all j € {0,...,n/2}.
Working in our favour is that Qi) > Q(¢’) for all
1 < ¢/. This implies that, to obtain an upper bound on

F(ng,...,ny/2), we can set
J ynt/3 ifj=0
Zni TV And/3:2/3 otherwi (3)
pard Ant/3j otherwise

for all j € {0,...,n/2}. To see why this is so, suppose
we have a sequence S = ng, ..., n, /o that satisfies Dey’s
constraints but for which Y°7_ n; < yn?/342/3 for some
index j. If j = n/2 then we can obviously increase the
value of n;, still satisfy Dey’s constraints and increase
the value of F(ng,...,n;). Otherwise (j € {0,...,n/2—
1}), the sequence
S/ =ng,...,N; +(5,’I‘Lj+1 7(5,...,77%/2 s
where A = yn?/352/3 — S™_ n; also satisfies Dey’s
constraints. Furthermore,

F(S) = F(S)=AQ(j) —AQ(j +1) >0,

so F(S") > F(S). Repeatedly applying this type of
modification (or using induction) shows that the se-
quence S = ng, ..., Ny that satisifies (3) is a sequence
that maximizes F(S).

Finally, we can bound the sequence that satisfies (3)
by differentiating yn?*/3j2/3 with respect to j. This
yields n; € O(n/3/i'/3) for all i € {1,...,n/2}. Plug-
ging this back into (2) yields
F(ng,...,npn/2) (4)

n/2

o | 0o + - oy

IN

<o(1)
nl/4
o 3 Ot/ it 6
(2) i=1
n/2
ST 0@ (i) log)Y i)

(2) i='IL1/4+1

(6)

Recall that [,"i71/3di = £(n?/3—1). Using this integral

CCCG 2012, Charlottetown, P.E.I., August 8-10, 2012

to bound the sum in (5) allows us to just squeak by:

nl/4
1
(5) = 75 >_ O(n*/*nt/?/il/3)
=1

(5) 4

_ io(n4/3n1/2(n1/4)2/3)

(3)

=0(1)

(bounding by integral)

We are not so lucky with the sum in (6), which ends up
being harmonic:

n/2
O = D Ot /i o))

2/ j=nl/441

n/2
= > O((logN)"*/i)

i=nl/441

= O((logn)(log N)*/3) (since 327" 1/i = O(logn))
= O((logn)**)

since N = n® and c¢ is constant. To summarize, the
expected running time of the query algorithm is at most

F(no,...,nns2) < o(1)+(5)+(6) = O((logn)*/?) . O

4 Estimating Majority Depth

Finally, we return to our application, namely estimating
majority depth.

Theorem 4. Given a set S of n points in R? and
any constant ¢ > 0, there exists a data structure that
can preprocess S in O(nlogn) expected time such that,
for any point q, the data structure can compute, in
O(r(logn)*/3) expected time, a value d'(q,S) such that

|d/(Qa S) — d(qa S)'
Pr{ d(q, S)

> 5} <exp (—Q (*rp))+n=° |

where d(q,S) is the majority depth of p with respect to
S and p = d(q, S)/(g) is the normalized majority depth
of q.

Proof. The data structure is the one described in The-
orem 3. Let p = d(q,S)/(}). Select 7 random vertices
of A(S*) (by taking random pairs of lines in S*) and,
for each sample, test if it contributes to d(g,.S). This
yields a count 7’ < r where

E[r]=rp .

We then return the value d'(q,S) = (r’/r)(g)’ so that
E[d'(q,5)] = d(q, S), as required.

To prove the error bound, we use the fact that ' is
a binomial(p,r) random variable. Applying Chernoff
Bounds [6] on " yields:

Pr{|r' —rp| > erp} < exp(—Q(e*rp)) .

Finally, the algorithm may fail not because of badly
chosen samples, but rather, because the data structure
of Theorem 3 fails. The probability that this happens is
at most n~¢. Therefore, the overall result follows from
the union bound. O

5 Conclusions

Although the estimation of majority depth is the origi-
nal motivation for studying this problem, the underly-
ing question of the tradeoffs involved in preprocessing
for testing whether a point is above or below the median
level seems a fundamental question that is still far from
answered. In particular, we have no good answer to the
following question:

Open Problem 1. What is the fastest linear-space data
structure for testing if an arbitrary query point is above
or below the median level of a set of n lines?

To the best of our knowledge, the current state of
the art is partition trees, which can only answer these
queries in O(n'/?) time.

References

[1] G. Aloupis. Geometric measures of data depth. In
R.Liu, R.Serfling, and D.Souvaine, editors, Data Depth:
Robust Multivariate Analysis, Computational Geometry
and Applications, volume 72 of DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science,
pages 147-158. American Mathematical Society, 2006.

[2] G. S. Brodal and R. Jacob. Dynamic planar convex
hull. In FOCS, pages 617-626. IEEE Computer Society,
2002.

[3] T. M. Chan. Remarks on k-level algorithms in the
plane. Manuscript, 1999.

[4] T. M. Chan. Optimal partition trees. Discrete & Com-
putational Geometry, 47(4):661-690, 2012.

[5] D. Chen and P. Morin. Algorithms for bivariate ma-
jority depth. In Proceedings of the 23rd Canadian Con-
ference on Computational Geometry (CCCG’11), pages
425-430, 2011.

[6] H. Chernoff. A measure of the asymptotic efficient of
tests of a hypothesis based on the sum of observations.
Annals of Mathematical Statistics, 23:493-507, 1952.

[7] T. K. Dey. Improved bounds for planar k-sets and re-
lated problems. Discrete € Computational Geometry,
19(3):373-382, 1998.

[8] R. Dyckerhoff, G. Koshevoy, and K. Mosler. Zonoid
data depth: Theory and computation. In A. Prat, edi-
tor, COMPSTAT 1996 - Proceedings in Computational

24" Canadian Conference on Computational Geometry, 2012

Statistics, pages 235—240. Physica-Verlag, Heidelberg,
August 1996.

[9] H. Edelsbrunner. Algorithms in Combinatorial Geome-
try. Springer-Verlag, Heidelberg, Germany, 1997.

[10] R. Liu. On a notion of data depth based on random
simplices. Annals of Statistics, 18(1):405-414, 1990.

[11] R. Liu and K. Singh. A quality index based on data
depth and multivariate rank tests. Journal of the Amer-
ican Statistical Association, 88(421):252-260, 1993.

[12] J. Matousek, E. Welzl, and L. Wernisch. Discrepancy
and approximations for bounded VC-dimension. Com-
binatorica, 13:455-466, 1993.

[13] H. Oja. Descriptive statistics for multivariate distribu-
tions. Statistics and Probability Letters, 1(6):327-332,
1983.

[14] K. Singh. A notion of majority depth. Technical report,
Department of Statistics, Rutgers University, 1991.

[15] C. Small. A survey of multidimensional medians. In-
ternational Statistical Review, 58(3):263-277, 1990.

[16] G. Té6th. Point sets with many k-sets. In Symposium
on Computational Geometry, pages 37—42, 2000.

[17] J. W. Tukey. Mathematics and the picturing of data.
In Ralph D. James, editor, Proceedings of the Inter-
national Congress of Mathematicians, volume 2, pages
523-531, Vancouver Canada, August 1974.

