
CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Kinematic Joint Recognition in CAD Constraint Systems∗

Audrey Lee-St.John†

Abstract

We study the joint recognition problem, which asks
for the identification and classification of kinematic
joints from a geometric constraint system. By laying
the foundation for a rigidity-theoretic study of flexible
body-and-cad frameworks, we obtain an O(n3) algo-
rithm for identifying prismatic and revolute joints rela-
tive to a specific body and an O(n4) algorithm for find-
ing all pair-wise joints. For a specific subset of body-
and-cad frameworks, we present a combinatorial algo-
rithm for identifying all pairs of bodies with prismatic
joints in O(n2) time.

1 Introduction

Computer-aided design (CAD) software allows engi-
neers to design sophisticated mechanical systems by
placing intuitive geometric constraints in rigid body as-
semblies. In many cases, motion of the resulting system
comprises a large part of the user’s design intent. We
present a novel approach based on rigidity theory for an-
alyzing a flexible structure constructed with CAD con-
straints. This comprehensive approach considers a CAD
system at the global level and can recognize kinematic
joints that may be implied by constraints not directly
involving the two participating bodies.

Motivation. To provide engineers with meaningful
feedback for verifying design intent, many CAD appli-
cations offer motion study tools to simulate kinematic
and dynamic motion. Kinematics simulation allows for
quick prototyping, as dynamics is a more computation-
ally expensive task. Once the engineer is satisfied with
the kinematics, more robust dynamic simulation can be
performed before the product is physically produced.

A common approach to kinematic motion simulation
of CAD systems is to perturb the system, then resolve
the constraints. This can be computationally expen-
sive as it generally reduces to solving an algebraic sys-
tem of equations. An alternative approach is to directly
model the kinematics, which relies on identifying well-
understood mechanical joints, such as the prismatic and
revolute studied here.

∗A preliminary version of this work was presented at the
FWCG ’10 with Rittika Shamsuddin.
†Department of Computer Science, Mount Holyoke College,

astjohn@mtholyoke.edu

(a) A plane-plane coincidence
constraint used in the design.

(b) Design intent includes ro-
tation.

Figure 1: A pair of pliers, designed in SolidWorks, has
a single rotational motion (i.e., a revolute joint). “Slip
Joint Pliers” part from www.3dcontentcentral.com.

Contributions. In this paper, we establish a rigid-
ity theoretic foundation for understanding flexible body-
and-cad frameworks. The joint recognition problem
asks for the recognition of kinematic joints described
by a geometric constraint system. We consider 3D
body-and-cad frameworks, which are composed of rigid
bodies joined by pairwise coincidence, angular and dis-
tance constraints, first introduced in [3]. A constraint
is placed between two bodies by identifying a geometric
element (a point, line or plane) on each body and spec-
ifying the relationship between them. We address the
identification of two types of kinematic joints, both al-
lowing exactly one degree of freedom: prismatic (trans-
lational motion) and revolute (rotational motion)∗.

We present a set of examples highlighting underlying
subtleties, lay the mathematical foundation for study-
ing infinitesimal relative motions (or twists) of bodies
and introduce key concepts for building a theory to an-
alyze them. For motion relative to a particular body,
we obtain an O(n3) algorithm for identifying kinematic
joints. A näıve extension provides an O(n4) algorithm
for all pairs of bodies. In the case of prismatic joints,
a combinatorial approach for a subset of body-and-cad
systems leads to an O(n2) algorithm.
Related work. Recognition of kinematic joints has a
rich history in the CAD community [8], as engineers
rely on tools for verifying the kinematic joints dictated
by their designed geometric constraint system. Com-
mercial software, such as SolidWorks, Pro/Engineer and
the SimMechanics package for MatLab, include a vari-
ety of tools for recognizing joints. These proprietary
techniques appear to be based on heuristics or map-
pings from basic constraints to joints. Such mapping
∗In the rigidity theory literature, a revolute joint is called a

hinge.



24th Canadian Conference on Computational Geometry, 2012

techniques require explicit constraints between the two
bodies where such a joint is recognized; see, e.g., [9].
However, joints may be implied by constraints present in
the global system. Recent work [1] presents a dynamic
geometric system that uses a filter to check potential
motions with a limited set of predicates (currently, this
set includes “CircularMotion” and “Rocker”).

The methodology in this paper relies on the foun-
dation of body-and-cad rigidity that was presented in
[3]. Our approach is similar in flavor to the witness
method of Thierry et al. [12]. The witness method relies
on analysis and manipulation, e.g., Gauss-Jordan elim-
ination, of the Jacobian matrix to detect dependencies;
maximal rigid components are discovered by using ref-
erences. We refer to the Jacobian matrix as the rigidity
matrix and pin a body in a way that is similar to choos-
ing a reference. However, the references used by the
witness method to detect maximal G-well-constrained
components must explicitly block the “motions” of a
transformation group G. An attempt to extend this ap-
proach would require a priori knowledge of the axis of
motion for a proposed revolute or prismatic joint. How-
ever, our approach not only detects the presence such
a kinematic joint, but additionally identifies the axis of
motion. Also in contrast to the work of Thierry et al.,
which uses a generic witness for analysis, we work with
the rigidity matrix of an embedded framework. It is only
for prismatic joints in body-and-cad frameworks with
certain properties that the behavior appears generic and
amenable to combinatorial analysis.

Structure. Section 2 provides motivating examples,
then presents preliminaries for the relevant rigidity the-
ory. Section 3 develops the methodology for identifi-
cation of prismatic and revolute joints. For a special
subset of body-and-cad frameworks, Section 4 gives a
purely combinatorial approach for detecting prismatic
joints. Finally, Section 5 concludes with open questions.

2 Background

In this section, we begin with simple examples to pro-
vide intuitions and highlight the subtleties of the joint
recognition problem. We then provide the prelimi-
naries necessary for describing our contributions.

2.1 Motivating examples

We present several small examples of body-and-cad
frameworks that expose some of the difficulties encoun-
tered when analyzing motion and identifying kinematic
joints.

Simple revolute joint. Figure 1 depicts a simple ex-
ample of a 2-body system with a single revolute joint.
This pair of pliers is composed of two rigid handles with
(1) a plane-plane coincidence so they lie adjacent to each

other, and (2) a point-point coincidence to force a center
of rotation at the desired axis. Since the resulting rota-
tional motion is clearly necessary for the design, identi-
fication of this revolute joint would allow verification of
user intent. This example contains no dependencies and
the rotational degrees of freedom are constrained by ex-
actly two (primitive) angular constraints resulting from
the plane-plane coincidence, so analysis seems straight-
forward: intuitively, we can conclude that there is one
rotational degree of freedom.

A

B

(a) A revolute joint deter-
mined by 5 point-point dis-
tance constraints.

A

B

(b) A prismatic joint allows a
single translational motion.

Figure 2: Two-body frameworks with revolute and pris-
matic joints.

Revolute joint with only blind constraints. Body-
and-cad constraints can be separated into “angular”
constraints (affecting only rotational degrees of free-
dom) and “blind” constraints (affecting either rotational
or translational degrees of freedom); refer to Section
2.2. This presents a challenge as a revolute joint may
be specified without the use of any angular constraints:
it is known from classical rigidity theory that a “hinge”
(i.e., a revolute joint) may be described by 5 bars (i.e.,
point-point distances) [11, 14]. Figure 2a depicts this set
of bar constraints between two bodies (the three black
points lie on body A); there is exactly one rotational
motion about the purple (bold) line. Since point-point
distance constraints are blind, there does not appear
to be straightforward reasoning that would lead us to
identify this revolute joint.
Simple prismatic joint. We return to a simple de-
sign for a prismatic joint between a pair of rigid bodies
(see Figure 2b). This system is composed of (1) a line-
line coincidence along the solid line, and (2) a line-plane
perpendicular between the dashed line on body B and
the striped plane on body A. These constraints define
a prismatic joint: body B may only translate relative
to body A along the solid axis. As with the first ex-
ample, this system seems amenable to analysis as it has
no dependencies and the rotational degrees are explic-
itly eliminated by exactly three angular constraints (two
from the coincidence and one from the perpendicular).



CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Prismatic joint with only blind constraints. This
next example again highlights the subtlety of blind con-
straints. We create an equivalent system to the previ-
ous one by using (1) a point-line coincidence between
the gray point on body B and the solid line on body A,
(2) a point-line coincidence between the white point on
body B and the solid line on body A, and (3) a point-
plane distance between the black point on body B and
the yellow (striped) plane on body A. While the only
motion left is a translation along the solid axis, there
are no angular constraints present. Intuitively, it seems
that three of the bars are somehow modeling angular
constraints to eliminate the rotational degrees of free-
dom.

Pegboard example: implied revolute joints. In
the previous examples, the constraints determining a
kinematic joint explicitly involved the two bodies. The
pegboard shown in Figure 3a provides an example where
a revolute joint is implied by constraints not directly
involving the two bodies. This system contains 4 rigid
bodies: a wooden board along with three “pegs” A, B,
and C. The constraints are described by the cad graph
(formally defined in Section 2.2) in Figure 3b. The peg-
board has three non-trivial degrees of freedom associ-
ated to three revolute joints: each peg can rotate rela-
tive to the board (about the vertical axis through the
peg’s center point). Notice the lack of constraints be-
tween peg C and the board; this revolute joint is implied
by the rest of the constraints. In fact, such a design is a
realistic result of the difficulties often caused by user in-
terfaces of 3D CAD software (rotating the view to select
logical surfaces can be cumbersome).

2.2 Preliminaries

We now present background for body-and-cad rigidity,
which provides a foundation for defining relative motion
and classifying prismatic and revolute joints.

Body-and-cad infinitesimal rigidity theory. We
work with body-and-cad frameworks, composed of rigid
bodies with pairwise constraints from a set of 21 coin-
cidence, angular and distance constraints. A constraint
between two bodies involves a geometric element (a
point, line or plane) rigidly affixed to each body. Since
we rely on the body-and-cad rigidity theory presented
by Haller et al. [3], we give a brief overview of the nec-
essary foundations for the infinitesimal rigidity theory.

Formally, a body-and-cad framework is defined by a
cad graph (G, c) that describes the combinatorics along
with a family of 21 “length” functions describing the
geometry of the structure. The cad graph (G, c) is a
pair, where G = (V,E) is a multigraph with V = [1..n]
and c an edge coloring function specifying the cad con-
straints. See Figure 3b for an example cad graph; we
use labels to indicate the edge “colors.” In this paper,

z

x

y

A

B

C

Board

(a) A 4-body system has a single wooden board with three pegs.

Board

Peg A

Peg B

Peg C

Point-line distance
(center to y-axis)

Point-line distance
(center to x-axis)

Plane-plane coincidence
(xy-plane)

Plane-plane coincidence
(xy-plane)

Point-line distance
(center to x-axis)

Point-point distance
(centers)

Plane-plane coincidence
(xy-plane)

Point-point distance
(centers)

Point-point distance
(centers)

(b) Associated cad graph denotes constraints.

Figure 3: A pegboard example with three revolute joints
(one completely implied by indirect constraints).

we will abuse notation slightly and assume that a body-
and-cad framework is given by an embedding from which
the “length” functions can be computed.

Since we work in the infinitesimal rigidity theory, we
first consider instantaneous rigid body motion in 3D.
As a consequence of Chasles’ Theorem (see, e.g., [10]),
any instantaneous rigid body motion may be described
by a twist (translation and rotation about a twist axis),
which itself is represented by a 6-vector s = (ω, v). The
3-vector ω describes the angular velocity: the direction
of the twist axis and rotational speed about it. The 3-
vector v can be used to decode the rest of the twist axis
and translational speed along it.

Body-and-cad infinitesimal rigidity theory relies on
expressing constraints in the Grassmann-Cayley alge-
bra, resulting in the construction of a rigidity matrix.
This matrix has 6 columns for each body i, correspond-
ing to 2-tensors represented with Plücker coordinates.
Since there is a mapping between the 2-tensors in the
Grassmann-Cayley algebra and twists, we may interpret
these 6 columns representing the degrees of freedom of
body i: s∗i = (vi,−ωi)†. The kernel of the rigidity

†The re-ordering and negation are technicalities arising from
the development of the rigidity matrix. When referring to ele-
ments of the kernel, we will use s∗; when referring to the corre-
sponding twist, we will use s.



24th Canadian Conference on Computational Geometry, 2012

matrix describes the infinitesimal‡ motion space for a
body-and-cad system.

Each body-and-cad constraint is associated to a num-
ber of primitive constraints (which affect at most one de-
gree of freedom). A primitive constraint between bodies
i and j is encoded by a single row in the rigidity matrix
that has a vector x ∈ R6 in the columns for body i and
−x in the columns for body j; every other entry in the
row is 0. A distinction is made between primitive angu-
lar and blind constraints: a primitive angular constraint
may affect only a rotational degree of freedom and cor-
responds to a row in the rigidity matrix with zeros in
the v columns.

Combinatorics. For a cad graph (G, c), we associate
a primitive cad graph H = (V,R t B), which assigns a
vertex to each body and red (R) and black (B) edges
to primitive angular and blind constraints determined
by each cad constraint. Recent work [6] characterizes
generic rigidity of body-and-cad frameworks without
point-point coincidence constraints.

Theorem 1 [6] Let F be a body-and-cad framework
with no point-point coincidence constraints. Let H =
(V,R t B) be the primitive cad graph associated to F .
Then F is generically minimally rigid if and only if there
exists a set B′ ⊆ B such that (V,R∪B′) and (V,B \B′)
are each the edge-disjoint union of 3 spanning trees.

For angular constraints in isolation, angular rigidity
for body-and-angle frameworks was characterized in [7],
based on sparsity counts.

Theorem 2 [7] A body-and-angle framework is gener-
ically minimally rigid if and only if its associated graph
is (3, 3)-tight.

The pebble games of [4] provide O(n2) algorithms for
determining if a graph is (k, `)-sparse (or tight) and for
detecting (k, `)-components ((k, `)-tight subgraphs that
are maximal with respect to vertices).

Relative motions. We consider relative motions be-
tween a pair of bodies. Let F be a body-and-cad frame-
work, M(F ) its rigidity matrix and ker(M(F )) the as-
sociated motion space. It must be the case that the
6-dimensional space of trivial rigid body motions is a
subspace of ker(M(F )). For a pair of bodies i and j, we
restrict the motion space to describe relative motions
between the bodies. Formally, we project ker(M(F ))
into R12 by a linear transformation described by the
following 12× 6n matrix: the first (respectively, last) 6
rows contain the identity matrix of size 6 in the columns
for body i (respectively, j) and zeros everywhere else.
Then the relative motion space W is the resulting sub-
space of R12. Again, the 6-dimensional space of trivial

‡For brevity, we will omit “infinitesimal” for the remainder of
the paper.

motions must be a subspace of W . Define the num-
ber of relative degrees of freedom to be dim(W ) − 6. If
this is zero, the two bodies are relatively rigid. A rigid
component is a maximal set of bodies that are pairwise
relatively rigid. We observe that the number of relative
degrees of freedom is equal to the minimum number of
rows (i.e., primitive constraints or edges in the primitive
cad graph) whose addition cause i and j to fall into the
same rigid component.

Intuitively, to study the non-trivial relative motions,
we consider when one body is fixed and seek a descrip-
tion of the allowed motions of the second. To formalize
this notion, we may fix body i by appending 6 rows to
the rigidity matrix: the identity matrix of size 6 appears
in the columns for i and zeros appear in all other en-
tries. We denote the newly obtained pinned matrix by
M(F, i). The non-trivial relative motion space for body
i is simply ker(M(F, i)). The non-trivial relative motion
space between bodies i and j is a projection of the kernel
into R6. The linear transformation used is defined by
a 6 × 6n matrix with the identity matrix of size 6 ap-
pearing in the columns for body j and zeros everywhere
else. The number of relative degrees of freedom is the
dimension of this subspace of R6.

3 Identification of Kinematic Joints

In this paper, we are interested in non-trivial relative
motion spaces of dimension 1, spanned by a single twist
s ∈ R6. As a consequence of the mapping between twists
and 2-tensors in the Grassmann-Cayley algebra, there
is a further mapping between twists that are either pure
rotations or pure translations and 2-tensors that are
decomposable. Decomposable 2-tensors are those that
satisfy the Plücker relation, i.e., those that lie on the
Grassmannian. We choose the same convention as [3]
for the Plücker coordinates, so that the Plücker rela-
tion is satisfied for a vector s = (ω, v) if 〈−ω, v〉 = 0,
where the angle brackets denote the dot product. These
6-vectors lie on the Klein quadric and describe lines in
3-dimensional projective space. Furthermore, if ω = 0,
the twist has only a translation v (encoding a prismatic
joint). Otherwise, the twist corresponds to pure rota-
tion about the axis (encoding a revolute joint), and the
axis of rotation is described by s, the Plücker coordi-
nates of the line. See, e.g., [10, 13], for reference.

We can now describe the algorithm for identifying
infinitesimal prismatic and revolute joints. To
find joints relative to body i in a body-and-cad frame-
work F :

1. Construct the pinned rigidity matrix M(F, i).

2. Compute its kernel ker(M(F, i)).

3. For each body j 6= i:



CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

(a) Restrict to body j by finding a basis for the
non-trivial relative motion space between i
and j.

(b) Compute the number of relative degrees of
freedom (the dimension of the space).

(c) If there is > 1 degree of freedom, continue to
the next body.

(d) Otherwise, consider the single basis vector
s∗ ∈ R6.

(e) Check if s = (ω, v) satisfies the Plücker rela-
tion. If not, continue to the next body.

(f) If ω = 0, output prismatic joint between i and
j with translation v; otherwise, output revo-
lute joint between i and j with axis of rotation
described via Plücker coordinates s.

Let m be the number of rows (primitive constraints)
and n the number of bodies. The dominating fac-
tor is step 2 (computing the kernel), which requires
O(min(n, m)nm) time; if we assume a linear number of
constraints (e.g., if there are no dependencies), the al-
gorithm has time complexity O(n3). By executing the
algorithm for all i ∈ [1..n], we obtain an algorithm for
identifying all pairs of infinitesimal prismatic and revo-
lute joints that runs in O(n4) time.

Since the analysis is done at the infinitesimal level,
this is not a characterization (i.e., the method may in-
correctly identify a relative kinematic joint), but can be
used as a filter to identify potential pairs of bodies with
prismatic or revolute joints.

4 Combinatorial Identification of Prismatic Joints

We now give a combinatorial algorithm for identify-
ing prismatic joints in a subset of body-and-cad frame-
works. We consider frameworks that have no point-
point coincidence constraints, dependencies or non-
trivial (involving more than one body) rigid compo-
nents. This allows us to find a combinatorial condition
for characterizing when two bodies have a single relative
degree of freedom, leading to an algorithm for finding
candidate pairs that may have a kinematic joint.

Lemma 3 For a body-and-cad framework with no
point-point coincidence constraints, dependent con-
straints or non-trivial rigid components, a pair of bodies
i and j generically have one relative degree of freedom
if and only if they lie in a common (6, 7)-component of
H = (V,R tB), the associated primitive cad graph.

Proof. By [2], a graph is (6, 7)-tight if and only if the
addition of any edge results in the edge-disjoint union of
6 spanning trees. As a consequence of Theorem 1, (6, 7)-
components of H are equivalent to subgraphs such that
the addition of any edge results in a rigid component.

Since the number of relative degrees of freedom between
two bodies is the minimum number of edges whose addi-
tion results in their being in the same rigid component,
i and j have one relative degree of freedom if and only
if they lie in a common (6, 7)-component. �

To find prismatic joints, we begin by defining angular-
rigid components. As with Section 2.2, we restrict the
motion space to consider only rotational degrees of free-
dom. For a framework F with rigidity matrix M(F )
and motion space ker(M(F )), the angular motion space
is the space obtained by projecting the kernel into R3n

(intuitively retaining only the rotational coordinates).
Formally, we use the linear transformation described by
the 3n× 6n matrix with a set of 3 rows for each body i
containing the identity matrix of size 3 in the columns
for −ωi and zeros elsewhere. Instead of rigid body mo-
tions, the 3-dimensional space of (trivial) rotations is
contained in the angular motion space. The concepts
of relative angular motion space, relative angular de-
grees of freedom, relatively angular-rigid and non-trivial
relative angular motion space follow analogously. An
angular-rigid component is a maximal set of bodies that
are pairwise relatively angular-rigid.

Lemma 4 In a body-and-cad framework, a pair of bod-
ies i and j with one relative degree of freedom share
a prismatic joint if and only if they lie in a common
angular-rigid component.

Proof. Let F be a body-and-cad framework; let bodies
i and j have one relative degree of freedom and denote
by W their relative motion space (i.e., dim(W ) = 7).

Bodies i and j lie in a common angular-rigid compo-
nent if and only if WR, their relative angular motion
space, has dimension 3. Now consider fixing body i;
let W ′ be the non-trivial relative motion space for j
and W ′

R the non-trivial relative angular motion space.
Then W ′ must have dimension 1, defined by a single
basis vector s∗ = (v,−ω). WR has dimension 3 if and
only if W ′

R has dimension 0 if and only if ω = 0. Thus,
bodies i and j share a prismatic joint if and only if they
lie in a common angular-rigid component. �

For a subset of body-and-cad frameworks, the de-
tection of (generic) angular-rigid components becomes
a combinatorial problem. If F is a framework with
rigidity matrix M(F ) and primitive cad graph H =
(V,R tB), let MR(F ) be the submatrix determined by
the 3n columns corresponding to the rotational degrees
of freedom ωi and the rows associated to the red edges
R. We define a body-and-cad framework to be angular-
distinct if the kernel of MR(F ) is the same as the angular
motion space of F . Then, as a consequence of Theo-
rem 2, angular-rigid components in an angular-distinct
body-and-cad framework are equivalent to (3, 3)-tight
components in HR = (V,R).



24th Canadian Conference on Computational Geometry, 2012

We now present a combinatorial algorithm for de-
tecting prismatic joints for a body-and-cad frame-
work F satisfying the conditions: (A) F contains no
point-point coincidence constraints, (B) F contains no
dependent constraints or non-trivial rigid components,
and (C) F is angular-distinct.

1. Play the (6, 7)-pebble game on H to detect (6, 7)-
components.

2. Play the (3, 3)-pebble game on HR = (V,R) to de-
tect (3, 3)-components.

3. Find all pairs of bodies i and j that share a (6, 7)-
component and a (3, 3)-component; output pris-
matic joint between bodies i and j.

Condition (A) allows the application of Theorem 1.
Since dependencies or rigid components result in sub-
graphs that are not (6, 7)-sparse, Condition (B) ensures
that we find all pairs of bodies with one relative de-
gree of freedom. Without Condition (C), we will still
correctly output prismatic joints, but may not find all.

The pebble game algorithms run in O(n2) time, so
Steps 1 and 2 each take quadratic time. In Step 3,
the union pair-find data structure developed for rigid
components [5] allows us to query if two bodies share a
component in constant time and quadratic space. Thus,
the entire algorithm has O(n2) time complexity.

5 Conclusions and Future Work

We initiated the study of understanding flexible body-
and-cad frameworks and relative motions from a
rigidity-theoretic perspective. This led to the develop-
ment of an O(n3) algorithm for detecting infinitesimal
prismatic and revolute joints relative to a fixed body and
an O(n4) algorithm for finding all pair-wise kinematic
joints. Based on standard linear algebra techniques, this
method outputs the type of kinematic joint (revolute or
prismatic) as well as the axis of motion.

For the special case of prismatic joints in a restricted
set of body-and-cad structures, we gave a purely com-
binatorial algorithm with O(n2) complexity, indicating
that prismatic joints are more amenable to detection al-
gorithms. This may be due to their correspondence to a
2-dimensional plane in the Klein quadric, whereas revo-
lute joints correspond to all other points on the quadric.
Future work. The combinatorial algorithm for pris-
matic joints motivates the need for an efficient algo-
rithm for body-and-cad rigidity (including detecting de-
pendencies and rigid components). Further investiga-
tion of angular-distinct systems or the transformation
(or identification) of blind constraints to angular con-
straints may elucidate the special treatment of angular
constraints with respect to rotational degrees of free-
dom. More generally, we anticipate that the foundations

presented here will allow us to understand motions be-
yond infinitesimal prismatic and revolute joints.
Acknowledgements. We are grateful to reviewers for
insightful suggestions and observations and to Rittika
Shamsuddin for participating in the initial work.

References

[1] M. Freixas, R. Joan-Arinyo, and A. Soto-Riera. A
constraint-based dynamic geometry system. Comput.
Aided Des., 42(2):151–161, 2010.

[2] R. Haas. Characterizations of arboricity of graphs. Ars
Combinatorica, 63:2002.

[3] K. Haller, A. Lee-St.John, M. Sitharam,
I. Streinu, and N. White. Body-and-cad geo-
metric constraint systems. Computational Geom-
etry: Theory and Applications, 2010. In press.
http://dx.doi.org/10.1016/j.comgeo.2010.06.003.

[4] A. Lee and I. Streinu. Pebble game algorithms and
sparse graphs. Discrete Mathematics, 308(8):1425–
1437, 2008.

[5] A. Lee, I. Streinu, and L. Theran. Finding and
maintaining rigid components. In Proceedings of the
17th Canadian Conference of Computational Geometry,
Windsor, Ontario, 2005.

[6] A. Lee-St.John and J. Sidman. Combinatorics and the
rigidity of cad systems. Accepted to SPM ’12: Sympo-
sium of Solid and Physical Modeling, 2012.

[7] A. Lee-St.John and I. Streinu. Angular rigidity in 3d:
combinatorial characterizations and algorithms. In Pro-
ceedings of the 21st Canadian Conference on Computa-
tional Geometry, pages 67–70, 2009.

[8] K. Lyons, V. Rajan, and R. Sreerangam. Rep-
resentations and methodologies for assembly model-
ing. National Institute of Standards and Technol-
ogy,Gaithersburg, MD, 6059, 1997.

[9] O. E. Ruiz. Geometric constraint subsets and subgraphs
in the analysis of assemblies and mechanisms. Inge-
nieria y Ciencia (Engineering and Science), 2(3):103–
137.

[10] J. M. Selig. Geometric Fundamentals of Robotics.
Monographs in Computer Science series. Springer, New
York, 2nd edition, 2005.

[11] T.-S. Tay. Rigidity of multi-graphs. I. Linking rigid bod-
ies in n-space. Combinatorial Theory Series, B(26):95–
112, 1984.

[12] S. E. B. Thierry, P. Schreck, D. Michelucci, C. Fünfzig,
and J.-D. Génevaux. Extensions of the witness method
to characterize under-, over- and well-constrained ge-
ometric constraint systems. Computer-Aided Design,
43(10):1234–1249, 2011.

[13] N. White. Grassmann-Cayley algebra and robotics.
Journal of Intelligent and Robotics Systems, 11:91–107,
1994.

[14] W. Whiteley. The union of matroids and the rigidity
of frameworks. SIAM Journal Discrete Mathematics,
1(2):237–255, May 1988.


