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1 Abstract

Persistent homology is a relatively new tool from topo-
logical data analysis that has transformed, for many, the
way data sets (and the information contained in those
sets) are viewed. It is derived directly from techniques
in computational homology but has the added feature
that it is able to capture structure at multiple scales.
One way that this multi-scale information can be pre-
sented is through a barcode. A barcode consists of a
collection of line segments each representing the range
of parameter values over which a generator of a homol-
ogy group persists. A segment’s length relative to the
lenght of other segments is an indication of the strength
of a corresponding topological signal. In this paper, we
consider how vector bundles may be used to re-embed
data as a means to improve the topological signal. As
an illustrative example, we construct maps of tori to a
sequence of Grassmannians of increasing dimension. We
equip the Grassmannian with the geodesic metric and
observe an improvement in barcode signal strength as
the dimension of the Grassmannians increase.

2 Introduction

The need to efficiently extract critical information from
large data sets has been growing for decades and is cen-
tral to a variety of scientific, engineering and mathe-
matical challenges. In many settings, underlying con-
straints on the data allow it to be considered as a sam-
pling of a topological space. It is a fundamental prob-
lem in topological data analysis to develop theory and
tools for recovering a topological space from a noisy,
discrete sampling. The tools that one might choose to
use on a given problem depend on the density, quality,
and quantity of the data, on the ambient space from
where the sampling is drawn, and on the complexity
of the topological space as a sub-object of an ambient
space. In this paper, we will focus on data consisting
of points sampled from an algebraic variety (the zero
locus of a system of polynomials). The data points are
obtained using the tools of numerical algebraic geome-
try. Derived from techniques in homotopy continuation,
numerical algebraic geometry allows one to use numeri-
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cal methods to cheaply sample a large collection of low-
noise points from an algebraic set. Persistent homology
(PH) allows one to use such a sample to gain insight into
the topological structure of the algebraic variety. Imple-
mentations of persistent homology are readily available
and have been used in a variety of applications, ranging
from the analysis of experimental data to analyzing the
topology of an algebraic variety. However, as with any
algorithm, there are computational limitations. Gen-
erally, the time and space required for the persistence
computation grows rapidly with the size of the input
sample, so the maximum size of a sample is limited.
Often, applications of PH start with noisy, real-world
data, which may also be limited in size [16]. However,
our consideration begins with effectively unlimited, ar-
bitrarily accurate data. Experience shows that as one
increases the sample size of a fixed space, the quality of
the topological signals produced by PH improves. Since
the computational complexity of persistent homology
limits the size of a sample, methods of preprocessing
data that improve the topological signal, without in-
creasing the sample size, are desirable.

In this paper, we consider how topological re-
embeddings affect the topological signal obtained from
persistent homology. First, a construction of PH and
the inherent challenges of interpreting its output is
briefly introduced. Then, we will provide details about
the setting in which we have applied this embedding
technique, using computational topology to analyze pro-
jective algebraic varieties. Lastly, results for a specific
example are displayed and interpreted.

3 Background

3.1 Persistent Homology

Beginning with a finite set of data points, which are
viewed as a noisy sampling of a topological space, as-
sume one has a way of building the matrix of pairwise
distances between points in the data set. From this dis-
tance matrix, one constructs a nested sequence of sim-
plicial complexes indexed by a parameter t. Fixing a
field K, for each simplicial complex, one builds an asso-
ciated chain complex of vector spaces over K. The ith

homology of the chain complex is a vector space and its
dimension corresponds to the ith Betti number, βi(K),
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of the corresponding topological space. For each pair
t1 < t2, there is a pair of simplicial complexes, St1 and
St2 , and an inclusion map j : St1 ↪→ St2 . This inclusion
map induces a chain map between the associated chain
complexes which further induces a linear map between
the corresponding ith homology vector spaces. For each
i, the totality of the collection of ith homology vector
spaces and induced linear maps can be encoded as a
graded K[t]-module known as the persistence module.
The ith bar code is a way of presenting the invariant
factors of the persistence module. As the invariant fac-
tors of the persistence module directly relate to the Betti
numbers, from the bar code one can visualize the Betti
numbers as a function of the scale, t, and can visualize
the number of independent homology classes that per-
sist across a given time interval [ti, tj ]. For foundational
material and overviews of computational homology in
the setting of persistence, see [8, 21, 12, 6, 9, 20, 15].

One commonly used method for building a nested
sequence of simplicial complexes from a distance ma-
trix is through a Vietoris-Rips complex [12]. This is
done by first building the 1-skeleton of the simplicial
complex then determining the higher dimensional faces
as the clique complex of the 1-skeleton. More pre-
cisely, fix t > 0, a collection of points X, and a metric,
d(xi, xj) for xi, xj ∈ X. The 1-skeleton of the Vietoris-
Rips complex, Ct(X), is defined by including the edge
xixj ∈ Ct(X) if d(xi, xj) ≤ t. A higher dimensional
face is included in Ct(X) if all of its lower dimensional
sub-faces are in Ct(X). In other words, the abstract k-
simplices of Ct(X) are given by unordered (k+1)-tuples
of sample points whose pairwise distances do not exceed
the parameter t.

Given a collection of data points, the resulting
Vietoris-Rips complex, and its homology, is highly de-
pendent on the choice of parameter t. To reconcile this
ambiguity, persistence exploits that if t1 < t2 then Ct1

is a sub simplicial complex of Ct2 . In other words, as
t grows so do the Vietoris-Rips complexes, giving an
inclusion from earlier complexes to those which appear
later. The idea then is to not only consider the ho-
mology for a single specified choice of parameter, but
rather track topological features through a range of pa-
rameters [12]. Those which persist over a large range
of values are considered signals of underlying topology,
while the short lived features are taken to be noise in-
herent in approximating a topological space with a finite
sample [10].

For clarity, consider 4 points in the plane with dis-
tance matrix 

0 t2 t5 t3
t2 0 t1 t6
t5 t1 0 t4
t3 t6 t4 0

 .

We label the points a, b, c and d and build the sequence
of Vietoris-Rips simplicial complexes up to Ct5 . Table 1

a

db

c

C  =  { a,b,c,d}0

db

c

C  =  { bc,a,d}t1

db

c

C  =  { bc,ab,d}t2

db

c

C  =  { bc,ab,da}t3

db

c

C  =  { bc,ab,da,cd}t4

db

c

C  =  { abc,cad}t5

t2
=  d(a,b)

t1
=  d(b,c)

t3
=  d(a,d)

a

a a

a

t4
=  d(c,d)

a

t5
=  d(a,c)

Figure 1: A sequence of Vietoris-Rips simplicial com-
plexes shown geometrically and abstractly along with
their maximal faces.

shows the Betti information (where βi is the dimension
of the ith homology vector space) for the example illus-
trated in Figure 1 over the range of parameter values
t ≥ 0.1

filtration times (t) β0 β1

0 ≤ t < t1 4 0
t1 ≤ t < t2 3 0
t2 ≤ t < t3 2 0
t3 ≤ t < t4 1 0
t4 ≤ t < t5 1 1
t5 ≤ t 1 0

Table 1: Persistent homology data

Even in this simple example, the amount of informa-
tion created by the persistent homology computation is
non-trivial. Furthermore, an effective rendering of the
complexes in Figure 1 is only possible because there are
very few points in the example. In the 4-point example,
at time t6 the simplicial complex Ct6 becomes three-

1For finite data there will only be finitely many parameter
values where the simplicial complex changes.
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dimensional. As the vertex set or the dimension of the
ambient space grows, visualizing the sequence of com-
plexes is not practical.

The barcode is a visual method for presenting some
of the homological information in a sequence of chain
maps. In particular, it displays the structure of the
invariant factors of the ith persistence module. Figure 2
is the barcode corresponding to the example of the four
points in the plane described in Figure 1.

Figure 2: Barcodes corresponding to Figure 1

The computational requirements of the persistence
computation is related to the sample size. It is often
the case that computing the persistent homology using
the Rips filtration is impractical. There is an alterna-
tive construction, introduced by Carlsson and de Silva,
called the witness complex [7, 13]. Starting with a large
sample set X, one picks a distinguished subset L ⊂ X
of landmark points. The witness complex is a family of
simplicial complexes built on L using information from
the entire set X.

To build the witness complex, first use the landmark
set to assign to each point x ∈ X the numbers mk(x)
corresponding to the distance from x to its (k + 1)-
th nearest landmark point. For each integer k (0 <
k < |X|) and vertices {lji |0 ≤ i ≤ k} ⊂ L, include
the k-simplex [lj0 lj1 ...ljk ] in the complex (at time t) if
there exists a point x ∈ X such that max{d(lji , x)|0 ≤
i ≤ k} ≤ t + mk(x), and if all of its faces are in the
complex [1].

The output of the witness filtration is sensitive to the
choice of landmark set. One technique for choosing a
landmark set, called sequential maxmin, is implemented
in the freely distributed persistent homology software
package JPlex [17]. The procedure for using sequential
maxmin is to first pick a point l0 ∈ X then inductively
choose the i-th landmark point from X by choosing the
point furthest from the set of (i − 1) points already
chosen. In practice, this seems to produce a stronger
topological signal than choosing L randomly, so it is
the method we will utilize.

3.2 Algebraic Varieties and Numerical Algebraic Ge-
ometry

A motivating problem for this paper is the computation
of the Betti numbers of a complex projective algebraic
variety from numerically obtained sample points. The

method we use to obtain sample points derive from sev-
eral algorithms in numerical algebraic geometry.

The term numerical algebraic geometry is often used
to describe a wide ranging set of numerical methods to
extract algebraic and geometric information from poly-
nomial systems. The field includes a diverse collection of
algorithms (both numeric and numeric-symbolic). The
class of numerical algorithms that we use are rooted in
homotopy continuation. The idea of homotopy contin-
uation is to link a pair of polynomial systems through
a deformation and to relate features of the two systems
through this deformation. For example, one can track
known, isolated, complex solutions of one polynomial
system to unknown, complex solutions of a second poly-
nomial system through a deformation of system param-
eters.

Let Z be the complex algebraic variety associated
to an ideal in C[z1, . . . , zN ]. With numerical homo-
topy continuation methods combined with monodromy
breakup, it is practical to produce sets of numerical data
points which numerically lie on each of the irreducible
components of Z [19, 18].

There are several important features of the methods
of numerical algebraic geometry that are worth high-
lighting. The first feature is the ability to refine sam-
ple points to arbitrarily high precision via Newton’s
method. A second feature is the ability to produce an
arbitrary number of sample points on any given compo-
nent. A third feature is the parallelizability of these nu-
merical methods. For instance, 10,000 processors could
be used in parallel to track 10,000 paths and could be
used in parallel to refine the accuracy of each sample
point to arbitrarily high precision. The basic algorithms
of numerical algebraic geometry (including monodromy
breakup) are implemented in the freely available soft-
ware package, Bertini [4].

It is important to note that sampling is computation-
ally inexpensive, so obtaining large sample sets does not
pose a significant challenge. However, it is not clear that
this sampling technique will provide points that are well
distributed for the purpose of persistent homology com-
putations.

4 Main Idea

4.1 Theory

By its very nature, persistent homology characterizes
intrinsic topological features which should be relatively
insensitive to the metric used to build a pairwise dis-
tance matrix. However, experiments show that the sig-
nal strength is impacted by the choice of metric. In our
experience, even if the topological features remain the
same, the ability to correctly interpret information from
a barcode depends on the strength of the signal. We will
consider the barcode signal strength of mappings of an
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algebraic variety into various Grassmannians.

The Grassmannian Gr(n, k) is a manifold parametriz-
ing all k dimensional subspaces of a fixed n dimensional
vector space. The Grassmann manifold Gr(n + 1, 1) is
the projective space Pn, and from this vantage point,
Grassmannians can be viewed as generalizations of pro-
jective spaces. These manifolds can be given a topo-
logical structure, a differential structure and even the
structure of a projective variety (e.g. via the Plucker
embedding).

Points in an n-dimensional projective space corre-
spond to 1-dimensional subspaces of a fixed (n + 1)-
dimensional vector space. A natural notion of distance
is given by the smallest angle between the subspaces.
We would like to define the distance between points on
other Grassmannians by extending this definition. As a
starting point, it can be shown that any unitarily invari-
ant metric on a Grassmannian can be written in terms
of the principal angles between the corresponding sub-
spaces. The principal angles between a pair of subspaces
A,B in Cn can be determined as follows. First, deter-
mine matrices M and N whose columns form orthonor-
mal bases for A and B. Next, determine the singular
value decomposition M∗N = UΣV ∗. The singular val-
ues of M∗N are the diagonal entries of Σ. These singu-
lar values are the cosines of the principal angles between
A and B (see [5]). If A and B are k-dimensional, then
there will be principal angles Θ(A,B) = (θ1, θ2, . . . , θk)
with 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θk ≤ π/2. There are
many common metrics computed as functions of the
principal angles [2]. For instance, the Fubini-Study met-
ric induced by the Plucker embedding is dFS(A,B) =

cos−1
(∏k

i=1 cos θi

)
. We have found that the Fubini-

Study metric does not, in general, yield a strong signal,
and instead, we restrict our attention to the geodesic
distance

d(A,B) =
√
θ21 + . . .+ θ2k.

Since we wish to compare the effect of considering
a sample in various Grassmannian embeddings, it re-
mains to define what we mean by relative topological
signal strength. Imagine we know that our sample was
taken from a topological space whose ith Betti number
is bi. Assuming that the bi longest segments in the bar-
code represent these topological features, we will mea-
sure signal strength as the ratio of the sum of the lengths
of the bi longest segments to the sum of the total length
of all the segments in the ith Betti barcode, including
noise. Note that noise consisting of many segments of
total length m and noise consisting of a single segment
of length m cannot be distinguished by this statistic.
To cope with this limitation we also consider the ratio
of the length of the bthi longest segment to the (bi + 1)th

longest segment in the barcode.

4.2 Embeddings into the Grassmannian

Consider a complex projective curve, C ⊂ P2, defined
by the zero locus of a homogenous polynomial F (x, y, z).
When we think of the zero set as a projective vari-
ety, then each point, [x : y : z] on C, corresponds to
a 1-dimensional subspace of C3 (note that the homo-
geneity of the equation leads to the conclusion that if
(x, y, z) is a solution then so is (cx, cy, cz) for any c ∈ C).
Thus, points on a projective variety correspond to one-
dimensional subspaces of C3 constrained to lie on the
vanishing locus of a homogeneous polynomial. From
this point of view, C is a sub-object of P2 = Gr(3, 1).
We can sample random points on C with several dif-
ferent methods. If we wish to build a distance matrix
from these points, then we should consider the distance
between a pair of points as the principal angle between
the one dimensional spaces to which they correspond.

Consider the matrix

E(x, y, z) :=

 0 z −y
−z 0 x
y −x 0

 ,
and observe that for any point (x, y, z) 6= (0, 0, 0), the
rank of E(x, y, z) is 2. This can be seen by observing
that the determinant of E(x, y, z) is identically zero and
that the locus of conditions such that all 2×2 minors of
E(x, y, z) are zero force x = y = z = 0. For each value
of (x, y, z), we consider the row space of E(x, y, z). Note
also that  0 z −y

−z 0 x
y −x 0

xy
z

 =

0
0
0

 .
As a consequence, the row space of E(x, y, z) is the same
as the row space of E(cx, cy, cz), and E(x, y, z) can be
viewed as a rule for attaching a smoothly varying 2 di-
mensional subspace to each point of P2. In other words,
E(x, y, z) determines a rank two vector bundle on P2.
For each one dimensional subspace of C3, we can deter-
mine a 2-dimensional subspace of C3 by mapping it to
the row space of E([x : y : z]). If Φ0 : P2 → Gr(3, 2)
denotes the image of this map, then by restriction this
gives a map φ0 : C → Gr(3, 2).

For each integer k > 0, consider the set of mono-
mials in x, y, z of degree k. We construct new matri-
ces, Ek(x, y, z), by concatenating matrices of the form
mi · E(x, y, z) for each degree k monomial mi. For ex-
ample, E1(x, y, z) is the matrix[

0 xz −xy 0 yz −y2 0 z2 −zy
−xz 0 x2 −yz 0 yx −z2 0 zx
xy −x2 0 y2 −yx 0 zy −zx 0

]
.

For each k, Ek(x, y, z) has constant rank 2 on P2 and
can be used to define a map φk : C → Gr(Nk, 2) (where
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Nk is the number of columns of Ek(x, y, z)). Geometri-
cally, the columns of Ek(x, y, z) corresponds to a “span-
ning set for the space of sections of the twisted tangent
bundle, TP2(k − 1)”. In this way, we can consider im-
ages of C, in increasingly large Grassmannians via the
maps φ0, φ1, φ2, . . . . It can be shown that for each k, Φk

embeds P2 into Gr(Nk, 2) and that φk embeds C into
Gr(Nk, 2).

4.3 Example

Consider the complex projective elliptic curve, C ⊂ P2

defined by the equation

x2y + y2z + z2x = 0. (1)

Topologically, C is a torus whose Betti numbers are
β0 = 1, β1 = 2, β2 = 1.

Using Bertini, we sampled 10,000 points satisfying
Equation 1. We mapped each point to Gr(Nk, 2) using
φk, for k = 1, . . . , 10. From these 10,000 points we fixed
100 landmark sets, Li (of size 200) using the sequen-
tial maxmin algorithm with random initial points l0,i
for i = 1, . . . , 100. For each embedding φk(C) and for
each of the fixed landmark sets, we compute the per-
sistent homology barcodes for the zeroth and first Betti
numbers using the witness complex construction.

Using the geodesic distance to measure distances be-
tween points, Figure 3 shows prototypical Betti-1 bar-
codes for the images of the 10,000 points in Gr(Nk, 2).
In the figure, each segment in the barcode is plotted as
a point in the (x, y)-plane with the x-coordinate corre-
sponding to the starting parameter and the y-coordinate
corresponding to the ending parameter. Short segments
(i.e. topological noise) appear near the y = x line. No-
tice that as we move the elliptic curve to Grassmannians
of higher degree, the two longest segments in the bar-
code grow in length while the number and lengths of
the other segments decrease.

In Figure 4, we plot the relative signal strength of the
Betti-1 barcodes, as measured by the ratio of the sum of
the length of the two longest segments to the total sum
of lengths of all segments, averaged over all landmark
sets for each embedding. We observe an increase from
approximately 10% to 55% of the total length of the bar-
codes being accounted for in the longest two segments.
We also observe that the improvement of the relative
signal strength levels-off after k = 5.

Figure 5 compares the second longest segment in the
Betti-1 barcode (corresponding to a topological circle)
to the third longest segment (representing topological
noise). We notice a sharp increase in this measure of
signal strength followed by a similarly steep decrease.
Together with the content of Figure 4 this indicates that
after k = 5, the relative length of the longest Betti-1 seg-
ment remains somewhat unchanged while the disparity
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(d) k = 4

Figure 3: Betti-1 barcodes for each of the four specified
embeddings.
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Figure 4: Average ratio of the sum of the longest two
barcode lengths to the sum of the lengths of all barcodes
for k = 1, . . . , 10.

in the lengths of the second and third longest segments
is diminished.

It is worth noting that there is a diminished signal
strength from the projective variety to the embeddings
in the Grassmannian. Our aim, however, is to compare
topological signal strength improvement across succes-
sive Grassmannian embeddings.

5 Conclusion

Using the techniques of numerical algebraic geometry,
we can sample arbitrarily many points, to an arbitrary
degree of accuracy, on any prescribed component of an
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Figure 5: Average ratio of the second longest barcode
to the third longest barcode for k = 1, . . . , 10.

algebraic set. Using twists of the tangent bundle to
projective space, we can map these points to a sequence
of Grassmann manifolds of increasing dimension. With
techniques of computational homology, we can build the
persistence module and decompose the module into its
invariant factors. A visual plot of the starting and end-
ing points of the invariant factors aids in the under-
standing of the underlying variety as a topological space.
Higher embeddings of the data seem to strengthen the
topological signal.

For further research, we intend to develop improved
sampling techniques for algebraic varieties. We will also
conduct experiments to determine if alternate vector
bundles or alternate metrics on the Grassmannian can
be used to strengthen topological signals.
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