CCCG 2012, Charlottetown, P.E.I., August 8-10, 2012

Tight Linear Lower Memory Bound for Local Routing in Planar Digraphs

Maia Fraser*

Abstract

Local geometric routing algorithms with logarithmic
memory are in widespread use in modern MANETS
(mobile ad hoc networks). Formally, these are algo-
rithms executed by an agent traveling from node to
node in a geometric graph, using only local geometric
information at each node, leaving no traces and car-
rying O(logn) bits of memory. For the case of undi-
rected graphs, theoretical and practical aspects of such
algorithms have been extensively developed since Face
Routing (FR) was proposed in 1999 for planar embed-
ded graphs. By contrast, the corresponding problem in
geometric digraphs has been relatively little studied. In
CCCG’08, the author and co-authors showed a lower
bound of Q(n) bits on the memory of local geometric
routing algorithms for planar embedded digraphs.

The purpose of the present paper is to show this lower
bound is tight under two models: either node identifiers
(possibly coordinates) are known to come from an O(n)
size space and no marks may be left, or else O(logn) bits
suffice to identify a node (as assumed in FR) and peb-
bles may be left. We describe an analog to FR which un-
der either model guarantees delivery in polynomial time
in strongly connected planar embedded digraphs. In
the first model, memory of O(n) bits is transported, in
the second O(logn) bits are transported and O(n) peb-
bles are left. By contrast, for non-geometric algorithms
of the second model a tight lower memory bound of
Q(nlogn) bits follows from work of Ilcinkas and Fraig-
niaud with an exponential runtime algorithm. Our work
thus provides a first example confirming that geometry
simplifies routing in digraphs.

1 Introduction

Face Routing (FR), proposed in a CCCG’99 paper by
Kranakis, Singh and Urrutia, was the first routing algo-
rithm to use geometric and purely local information. It
guarantees delivery in time O(n) for planar embedded
(undirected) graphs of size n, while transporting only
O(logn) bits memory!. It opened a new era in routing
at a time when both wireless ad hoc networks (where
global connectivity information is not available) and

*Department of Computer Science, University of Chicago,
maia@cs.uchicago.edu

Lthe minimal memory for a routing algorithm, if it by definition
carries at least the destination ID.

global positioning devices (which provide real-time po-
sition information) were becoming commonplace. The
idea is simple: to get from node s to node ¢ the al-
gorithm walks one-by-one around the faces which meet
the segment st, until ¢ is reached. While only applying
to graphs with no edge-crossings, the simplicity and ro-
bustness of the algorithm made it canonical and it was
modified and extended in many ways so that today most
practically occurring MANETSs may be handled by some
derivative of FR, and it remains at the base of some of
the most commonly used algorithms in this class today.

By contrast very little is known for the case of geomet-
ric directed graphs (digraphs). In certain special cases of
planar embedded digraphs, local geometric routing algo-
rithms with logarithmic memory are known to exist: in
Eulerian graphs (in which in- and out-degrees coincide
and are constant) and in outerplanar graphs (in which a
single face contains all vertices) [2]. But these are very
restricted classes and even within the class of planar
embedded digraphs there is no hope of a logarithmic
memory algorithm like FR: in CCCG’08 we showed [5]
there exist planar embedded digraphs in which correct
local geometric routing requires Q(n) bits memory. In
that paper, we considered only algorithms which do not
leave traces, however our proof can be adapted to cover
algorithms which do leave traces, in which case the re-
quired memory is the combined number of pebbles and
transported bits (see Section 3.1).

The aim of the present paper is theoretical?>. We show
the linear lower memory bound is tight under two mod-
els: either node identifiers (possibly coordinates) come
from an O(n) size space and no marks are left or else
O(logn) bits identify a node (as assumed in FR) and
marks (pebbles) may be left. We describe an analog
of FR which correctly routes in all strongly connected
planar embedded digraphs under these models. In the
first model, memory of O(n) bits is transported and no
marks are left; in the second, O(logn) bits are trans-
ported and O(n) pebbles are left.

We remark that a significant amount of theoretical
work does exist on routing in mon-geometric digraphs

2We concluded in [5] that uni-directional links should be
avoided in MANETSs. In fact, there is another practical issue.
Unless we allow multicasting, node v will not send to node u un-
less it knows of u’s existence and given a uni-directional arc from
v to u this is impossible to achieve directly by communication
between the two nodes: nodes will not be locally aware of their
downstream neighbours.

24" Canadian Conference on Computational Geometry, 2012

under other models. In particular the problem of di-
rected st-connectivity is usually posed assuming a JAG
model (see for example the survey article [1]). JAG’s are
automata working in a team and able to teleport (jump)
to teammates. This is very different from our setting.
An instance of our agent may not be teleported but must
be transmitted and this is by definition only possible to
direct neighbours. Our second model, however, is the
geometric analog of a model considered by Ilcinkas and
Fraignaud in [3]. They assume an agent which cannot
jump but is able to leave pebbles at nodes and trans-
port some memory. They show such an agent needs
Q(nlogd) bits of memory to explore a digraph with
maximum out-degree d but no vertex labeling, even if it
can use a linear amount of pebbles. Since no geometric
information is present, by the adversary argument this
is also a lower bound on routing (the destination would
be marked instead of specified by ID). They give such
an algorithm with exponential runtime. By contrast,
our algorithm which has access to geometry (and hence
node ID’s) can successfully route in polynomial time
leaving O(n) pebbles and transporting O(logn) bits.

2 Directed Face Routing Algorithm

Let G be a directed graph of size n embedded in the
plane. The main strategy of the algorithm is the same
as that of FR:

Input: source s and destination ¢
Procedure:

1. Traverse anti-clockwise the face which is entered by
the segment st at s.

2. If t is visited then STOP.

3. Else if a node s’ such that d(s',t) < d(s, t) is visited
then s « s'.

4. Go to step 1.

The process of traversing a face, however, is much
more arduous than in the undirected case.

3 Results

Assuming either of the two models defined above, we
will show:

Theorem 1 There is a local geometric algorithm, Di-
rected Face Traversal, which uses O(n) bits memory and
traverses a given face F of a strongly connected planar
embedded digraph G.

This then implies:

Corollary 2 Directed FR is a local geometric algorithm
transporting O(n) bits memory which guarantees deliv-
ery in any strongly connected planar embedded digraph

G.

Indeed, using Directed Face Traversal, Directed FR
is guaranteed to reach t by the usual argument: since G
is embedded in the plane, when the segment st enters
a face F' it must meet the boundary of F' again either
to exit F' or to arrive at t; thus, one of the conditions
in steps 2. and 3. is guaranteed to hold and either we
will stop at ¢ or the next iteration begins with a strictly
reduced distance d(s,t). Moreover, this local geometric
algorithm transports only O(logn) bits memory of its
own (to record coordinates of s and t) besides the mem-
ory of Directed Face Traversal so the over all memory
requirement remains O(n) bits.

Observation 1 For simplicity, we will describe the al-
gorithm in terms of the second model - leaving O(1) peb-
bles per node. In the case of the first model, we may
associate O(1) bits to each node using an array of total
size O(n) bits, and so by transporting this memory we
can simulate the algorithm written for the second model.

As an additional result, in Section 3.1, we briefly ad-
dress the extension of the lower bound from [5] to the
second model. Sections 4 and 5 are then devoted to
describing Directed Face Traversal and proving Theo-
rem 1.

3.1 Lower bound

In this section we show that the lower bound of [5],
which we established for agents which do not leave peb-
bles, also applies to agents leaving pebbles: for such
agents, the sum of the bits transported and pebbles left
must be Q(n).

Our proof in [5] was based on a simulator of local
geometry for a special class C of graphs Kyn, n € N,
where K~ is defined using the initial n-bit substring
2™ of a Kolmogorov random bit string . Such graphs
were called kinked embedded locks. We refer the reader
to [5] for more detail. The important aspect, for our
purposes is that each graph K.~ has a left-most vertex
up and a right-most vertex w (both on the z-axis) and
any routing or traversal algorithm A will have to at
some time T travel exactly the path wug,uy,...,u,,w.

3We make two remarks. First, the assumption of O(logn)
identifiers is also made in standard FR when coordinates are used
as identifiers. Indeed, if nodes were arranged on the real line with
exponentially increasing spacing (e.g. distance 2¥ between k’th
and k + 1’st nodes) then coordinates with (n) bits would be
needed in order to distinguish nodes; such an example is usually
ruled out. Second, if either node ID’s or coordinate pairs come
naturally from key spaces which are large they could be hashed
first; we assume we start with (possibly virtual) node ID’s which
are integers in a range [0, C'n] for some constant C.

CCCG 2012, Charlottetown, P.E.I., August 8-10, 2012

The argument in [5] shows that given input the state
of A at time T, one can simulate geometry and make
use of A on the simulated geometric graph to output the
string ™. Moreover, the total memory overhead for this
process is only O(logn). This is the memory needed to
run the simulator and co-ordinate tasks and it excludes
the memory M (n) transported by A and also the input
(which is a state of A and so also bounded above by
M(n)). The Kolmogorov randomness of x implies at
least n bits of memory for any algorithm outputing =™
and so one concludes that transported memory of A
must be (n) bits. We will use a similar argument for
slightly different graphs.

To define these, choose any integer constant ¢ > 1 and
consider kinked embedded locks Ky, K(ge)r, K(geyr, ..
formed from the initial c-bit substring x¢ of z, the subse-
quent ¢-bit substring (2¢)’, and so on. Then form a new
graph, denoted SK,(z), defined as the series composi-
tion of the n graphs Kye, K(zey, -, K(geym-1 (With ug
and w as terminals in each). Let m; denote the path in
SK, (x) which was labeled ug,u1, ..., U, w in Kgeyo -
The size of SK,(x) is a linear function of n. Denote
it L(n). Now, define the class C* = {SK,(x): n € N}.
These are bounded-degree planar digraphs and we will
prove:

Theorem 3 Any deterministic traversal or routing al-
gorithm which is correct on graphs of the class C*, is
allowed to leave pebbles and uses only local information
must satisfy P(n) + M(n) € Q(n) where P(n) is the
number of pebbles left and M(n) the transported mem-
ory in the graph SK,(x) of size ©(n) (even if the algo-
rithm uses geometric information).

Proof. If A is correct for C* then it must, at some
time T, travel the concatenated path p = momy - M1
in SK,,(z). We will assume only one kind of pebble can
be left (and at most one is left on each vertex). The
argument for a constant number of pebble types is es-
sentially the same*. Consider the n subgraphs K (z¢) @)
1 =0,...,n—1 and suppose there are pebbles on exactly
k = k(n) of these at time T (so P(n) > k(n)). Let R be
a bitstring of length ck which is the concatenation of k
strings of bitstrings of length ¢ indicating — for those k
values of 7 such that K(wc)m has pebbles — on which of
the vertices of each m; there is a pebble. Additionally
form a single n-bit string S whose ’th bit is 1 if K,y
has pebbles and 0 if K,y does not (so that in total
S has k bits set to 1).

Now, define an algorithm which takes as input the
state of A at time T (as in [5]) but also the strings R and
S. If the ¢’th bit of S is 0, this algorithm should simulate
geometry using the output of A and thus traverse a
simulated 7; (exactly as in [5]) but if the i’th bit of S is
1, it should read from R in order to simulate geometry

4There would be several bitstrings like R.

with pebbles and thus traverse a simulated ;. Just as
in [5], in this way it will travel a virtual version of p and
can be used to output the string v, where N = nc. Let
W(N) denote an upper bound on the working memory
of such a process. As in [5] we have W(N) € O(log N).

Fix some ¢ € (0,1 — 1/¢) and let R be a sufficiently
large integer that W(N) < eN for all N > R. By
Kolmogorov randomness of x we have:

2M(n) +ck+n+W(N) >N
2M(n) +ck+n> N —W(N)
>(1—¢€¢)N

2M(n) + ck > <1—e—1)N

C

Thus,

cM(n) + ck > (1—6—(1:)N
M(n) +k> pn

P(n)+ M(n) > pn

where =1—¢— % This is positive by our choice of e,
and so we conclude that P(n) + M(n) € Q(n). O

We remark that alternatively, one may consider the
same class of graphs as in [5], namely kinked embed-
ded locks of various sizes (for a given Kolmogorov ran-
dom z) and record the position of pebbles (along the
up and down simulated vertices) by two sequences of
inter-pebble distances n; and m;. A similar argument
to that of [5] shows that either this record or M(n)
must be Q(n). Using the inequality of arithmetic and
geometric means one can show that the former implies
P(n) € Q(n), yielding a result analogous to Theorem 3
(but for kinked embedded locks).

4 Terminology

First we fix some standard terminology for embedded
digraphs. By edge we mean an edge of the undirected
graph G’ obtained by forgetting the directions of arcs of
G. By face we mean a connected component of the com-
plement of G’ in the plane. A walk will refer to a walk of
G'; i.e., a sequence of vertices vy, v;, . . ., Uk such that ei-
ther v;_1v; or v;v;_1 is an arc of G foreach ¢ : 1 < i < k.
The walk is said to be directed if arc orientation is re-
spected, i.e. each v;_qv; is actually an arc of G. A walk
is closed if vy = vg. The vertices of a walk may in prin-
ciple coincide; we say the walk is simple if they do not.
The fact the digraph G is strongly connected means that
for any two nodes, s and ¢, there exists a directed walk
starting at s and ending at ¢t. Every face has a unique
boundary walk starting at a vertex v on the boundary of
the face, namely the closed walk consisting of the nodes

24" Canadian Conference on Computational Geometry, 2012

which are encountered when following the face bound-
ary in its canonical boundary orientation, starting from
v. This orientation is to the left for an observer stand-
ing within the face. Boundary walks are in general not
directed walks.

Since G is embedded there is a natural cyclical order-
ing of edges at each vertex: draw a small circle around
v, travel around it in the clockwise direction and cycli-
cally order the edges incident at v by the cyclical order
in which they are encountered. Suppose uv is an in-
coming arc at v then we denote by succ(uv) the next
outgoing arc in this cyclical ordering. Given a set M of
marked vertices one may analogously define succys(uv)
as the next outgoing arc whose head belongs to M; we
assume succys returns NULL if there are no such out-
going arcs.

This allows one to define a walk starting from a given
arc a by iteratively taking succ(a). If a walk v, ..., vy is
thus defined by succy; where M is the vertex set of the
walk, we say the walk is left-free, since the condition is
equivalent to there being no edges of the walk incident
on the left side of the walk. Boundary walks are always
left-free (since there are no edges at all between uv and
vw)®. Simple walks are certainly left-free.

We now introduce two notions which will simplify our
discussion of face traversal.

Definition 1 A closed walk vy, v1,...,v0, = vg s said
to self-cross if some edge v;_1v; is incident at vy =
v; and lies strictly to one side of the walk at vy, while
viv41 lies strictly to the other. When a closed walk B
is not self-crossing we define C(8) to be the collection
of faces it encloses: those faces from which a curve
may be traced which first meets 3 on the left and not the
right side of (3.

This is illustrated in Figure 1.

C

d

Figure 1: The shaded face is enclosed by the walk
a,b,c,a. On the other hand, the walk a, b, d, a encloses
a collection of two faces: the shaded one and the outer
face.

Suppose B is non self-crossing and F' is a face not
in C(8) but adjacent to an edge v;—1v; of B. It lies

5For this to hold, it is important that the cyclical ordering
be done in clockwise fashion when one considers boundary walks
with canonical boundary orientation.

necessarily on the right of 8 and when one replaces the
sub-walk v; _qv; of 8 with the remainder of the boundary
walk of F' (also a walk from v;_1 to v;) one obtains a
new non self-crossing walk 3 which encloses one more
face than did 8. For example, in Figure 1, the unshaded
triangle is a face not enclosed by a, b, ¢, a, and so using it
we can produce the walk a, d, b, ¢, a which encloses both
triangular faces.

Definition 2 Given a directed walk o define its outer
shell shell(«) to be the (non self-crossing) closed di-
rected walk which includes o as a sub-walk and encloses
a minimal number of faces.

To see this is well-defined, suppose there are two non-
identical closed directed walks u, v, wsq,...,wr = u and
U, v, Wy, ..., w); = u both enclosing a minimal number
M of faces. Starting from v let the last vertex where
they coincide be wy, so w; = w; for i < £ and wyy1 #
wy, ;. Now let w, = w;, be the first vertices which
coincide for m,p > ¢. We then have two directed walks
from wy = wy to wy,, = w), which meet only at their
endpoints: we, wey1, ..., Wy and wy, wy, 4, ..., w,. By
replacing one sub-walk with the other we can obtain
a closed directed walk which includes u, v and encloses

fewer than M faces, a contradiction.

5 Directed Face Traversal Algorithm

Idea The idea of this algorithm is to traverse the face
boundary (3 until an opposing arc a is encountered, say
at vertex v, and then to traverse the outer shell o of the
arc a (or the outer shell of a longer directed walk ending
in a). This shell traversal cannot in general be done in
one iteration, rather our algorithm will on the ¢’th iter-
ation produce a non self-crossing directed closed walk §;
such that C(d;) C C(o) and such that C(6;) € C(d;41).
Eventually therefore we must have § = . Suppose this
walk starts and ends at the head of a. We now use,
as an exit from this area, the outgoing arc uw whose
tail (on o) most closely preceeds v (in the order on o)
such that there are no outgoing arcs on the right of o
between uw at u and the incoming arc at v and thus
we know that this part of o (which includes a) is part
of the face boundary 8 which we seek. And then we
continue. This process must terminate since we always
increase the visited portion of 3.

5.1 Internal memory

Under the first model, the algorithm stores three binary
arrays of size O(n):

INNER][], OUTER/], and MID[],

all initialized to zero. Under the second model it
uses pebbles of types INNER, OUTER, MID. In

CCCG 2012, Charlottetown, P.E.I., August 8-10, 2012

both models, it also records three node identifiers:
JOIN, NEW_EXIT, and EXIT, each of size O(logn)
as well as the coordinates of s and t. We will assume
there is a simple logspace subroutine which verifies if a
given edge crosses the segment st.

In addition, Directed Face Traversal records
its state which is one of the following:
WALK_BDRY, BACKTRACK, FIND_EXIT,
GO_EXIT. Finally there is a Boolean flag TEN-
TATIVE, initially set to false.

5.2 State diagram

The state diagram for the algorithm is cyclical:

WALK_BDRY — BACKTRACK
— FIND_EXIT
— GO_EXIT — WALK_BDRY

5.3 Invariant

In the Appendix we prove that the following property
is an invariant, always true upon entering a new state.

Path property:

1. The nodes marked OUTER form a directed simple
walk, 7, from s to EXIT.

2. The nodes marked INNER form a left-free walk
from s to JOIN which passes through EXIT. We
denote by 7 the sub-walk up to EXIT and by A the
sub-walk after EXIT.

3. The nodes marked INNER and MID can be used
to form a directed walk from EXIT to s (take MID
when INNER cannot be taken).

4. T concatenated with —7 (which goes from EXIT to
s) is non self-crossing and all nodes marked MID
belong to faces enclosed by this concatenated curve.

This is illustrated in Figure 2.

Explanation Borrowing the notation used to describe
the Idea of the algorithm at the start of Section 5, the
point of the Path property is that it allows the current ¢;
to be defined by pebbles; namely, ¢; is ‘almost’ traversed
by starting at s and following 7 then —7 back to s. The
reason for the word ‘almost’ is that such a walk will in
general not be a directed walk: although 7 is directed so
that one can indeed follow it in this direction, —n may
not be. The small walks marked MID are detours which
allow one to get back to s from EXIT (i.e. each piece
of MID by-passes an unsuitably directed part of —n).
Thus a more accurate statement is that by following
OUTER till EXIT and then INNER+MID back to s

one traverses 0;.

i — =INNER

Figure 2: Path property

The condition, in the Path property, that pebbles
form a walk (which can be followed) is to be interpreted
using the following fact.

Lemma 4 Any left-free walk 8 may be uniquely fol-
lowed (from some vertex u onward) by a memory-less
(local) geometric algorithm as long as all its vertices
are marked by pebbles, no adjacent non-8 vertices are
marked, and the algorithm is given a starting arc at u.

This holds because if we start at a pebble-marked
node u and are given the first arc uv to follow, then we
may iteratively follow the path defined by succys where
M is the set of pebble-marked vertices.

Now, assume we have established the Path property
as an invariant. We will upon entry into each state
be able to follow 7 (via OUTER), A (via INNER) or
almost —n (via INNER+MID). In our pseudocode we
write follow to indicate we are following one of these
walks appealing to these principles. We now describe
the main loop of Directed Face Traversal.

5.4 Main loop

We describe the algorithm in high-level pseudocode,
suitable for proving correctness. In the interests of clar-
ity we will refer to the curves 7, 7 and A from the Path
property, as well as a vertex called PRIOR which is de-
fined below. All of these walks as well as PRIOR
can however be determined locally. In the Ap-
pendix we give lower-level pseudocode which does this
and implements the same actions as specified below.

It remains to define the high-level variable PRIOR.
Assuming the path property, the walk along INNER
from EXIT to JOIN meets either:

1. the walk INNER only, and on the left side of that
walk, in a section bypassed by MID (a) or not (b).

2. the walk OUTER only, and on the right side of that
walk

24" Canadian Conference on Computational Geometry, 2012

3. a vertex of both walks, either on the left or right
side (cases (a) and (b) resp.).

In all cases, we define PRIOR to be the vertex belonging
to both walks which most closely preceeds (or equals) the
vertex® JOIN (in the walk that was met).

This is illustrated in Figure 3. The convention is the
same as in Figure 2: the dotted directed walk represents
OUTER and it ends at EXIT. After that point the walk
along INNER continues from EXIT to JOIN, where it
meets either INNER, or OUTER, or both. This is in-
dicated by a ray with its arrow pointing to the place of
return. The possible cases are illustrated and labeled as
above: lab, 2, 3ab.

3ab)

¥ =PRIOR

Figure 3: PRIOR is shown for the various cases

We now make two remarks. They concern respec-
tively the setting of PRIOR (in the state BACK-
TRACK) and the use of PRIOR (in the state
FIND_EXIT).

Observation 2 [t is possible for the agent to deduce
which case has occurred by walking provisionally to the
left once JOIN occurs. A case by case analysis shows the
logic involved. The key point is that the orientation of
arcs along INNER between intersections with OUTER
or MID is prescribed and so contradictions must even-
tually arise if the provisional assumption is wrong. We
assume that PRIOR can be found, i.e. the agent can
walk to this vertex and determine that it is the vertex
PRIOR. Moreover, at that moment it knows which way
T is oriented.

Observation 3 Once the agent is at PRIOR, by walk-
ing along 7 and then —n (using detours provided by
MID), always keeping track of the last outgoing arc on
the right until PRIOR is reached again, the location of
a new exit can be found. By strong connectivity some

6In the first case, where JOIN is a repeated vertex of INNER,
we refer to its first occurrence.

outgoing arc must exist and this method of choosing it
will ensure there are no outgoing arcs between it and
PRIOR on the walk just described.

The actions to perform in the main loop depend on
the state. If at any point the following implicit exit
condition becomes valid the main loop is exited and the
algorithm places the agent at whichever endpoint w or
v is closer to t and returns.

Exit condition: the arc uv crosses the line segment st.
Initialization: Set EXIT and JOIN to s and let a = sv
be the first arc which exits s to the right of the line
segment st.

Main loop:

e WALK_BDRY:

1. Use succ() starting along the arc a (at EXIT)
to build a left-free walk, marking all its ver-
tices with INNER. Stop when this walk first
meets an existing INNER or OUTER, vertex
and let JOIN be the intersection vertex.

2. Change state to BACKTRACK.
e BACKTRACK:

1. Follow INNER-+MID or OUTER and thereby
determine and reach the vertex PRIOR (see
Observation 2).

2. Change state to FIND_EXIT.
e FIND_EXIT:

1. In cases 1, 2, 3a, walk along 7 then A, al-
ways recording the last outgoing arc encoun-
tered on the right (see Observation 3). Let
NEW _EXIT be the vertex where this outgo-
ing arc is found (it will be PRIOR itself if no
later outgoing arc was found). In case 3b let
NEW _EXIT be PRIOR. When NEW_EXIT =
PRIOR some additional special handling is re-
quired (see Appendix).

2. Change state to GO_EXIT.
e GO_EXIT:

1. Return to NEW_EXIT correcting all markers
so the Path property will be preserved” upon
setting EXIT <+ NEW_EXIT. Set EXIT <«
NEW_EXIT and also JOIN < NEW_EXIT.
Set a to succ(b) at EXIT, where b is the out-
going arc of the new —n at EXIT.

2. Change state to WALK_BDRY.

"We want to move EXIT to a new vertex, NEW_EXIT, along
the combined walk 7 with —»n and thus we will be changing the
breakpoint between 7 and —n. To retain the Path property the
pebbles for INNER, MID and OUTER must be adjusted accord-
ingly. Details are given in the Appendix.

CCCG 2012, Charlottetown, P.E.I., August 8-10, 2012

5.5 Correctness

Proof. Let F' be the face determined by sv from the ini-
tialization. We will prove that Directed Face Traversal
traverses F'. We assume that the Path property holds
upon entry to all states.

Consider the first v;_1,v; on the boundary walk £ of
F which is not an arc. Then v;v;_1 is an arc. We claim
the agent will eventually reach v;. Let a be a maximal
directed sub-walk of —f3 which ends with v;,v;_1. Let
o = shell(a) be the outer shell of a.

Let p be the concatentation of 7 with —n. We prove
by induction (on the iteration), that at the start of the
main loop we have C(u) € C(o) as long as the agent has
not yet arrived v;. To see this, assume p is as at the start
of the k’th iteration and it satisfies this condition. We
claim its new value at the start of the k + 1’st iteration
will also do so. We consider the new A which will be
formed during the WALK_BDRY state. Suppose the
agent will not arrive at v; by the start of the k + 1’st
iteration. Let FY, Fy, F3,... be the faces encountered
on the left when following the new A and a1, as,as, ...
the corresponding arcs which are incoming to A on the
left. If the first vertex of this walk after EXIT does not
belong to a face in C(o) then since C(u) C C(o), the
walk g must coincide with ¢ at EXIT. But following p
back to v;_1 we do not meet any outgoing arcs on the
right. Thus p and ¢ must coincide all the way back to
v;—1 and so p passes through v;, a contradiction. Thus
the first vertex past EXIT on the new A does indeed
belong to a face in C(0). And so o encloses F;. But
given the orientation of aq, this implies o encloses the
outer shell of a; and hence encloses F5, and so on. This
continues until we reach the end of the new X\ (at the
new JOIN) because on the left side of A there are only
incoming arcs. Thus at the start of the £+ 1’st iteration
we will have C(u) C C(o) and this inclusion must be
strict, otherwise p would equal ¢ and the agent would
return to v;.

Moreover, we have also shown that C(u) increases on
each such iteration. This cannot go on forever so eventu-
ally the agent must reach v;. This means it will advance
along (B past a;. We repeat the above argument using
(in place of 7 and 1) 7, and 7,, the sub-walks of 7 and
7 starting at v, where v is the next value of EXIT after
the agent has returned to v; (we know EXIT belongs to
both walks). This process continues and since the agent
thus advances by at least one edge along /3 every time,
eventually it must traverse all of 3. O

6 Conclusions

We have shown that the lower linear bound on mem-
ory for local routing algorithms that was proved in [5)
is tight. Our algorithm mimics Face Routing but in-
volves a much more involved face traversal procedure.

Nevertheless the linear memory requirement of the algo-
rithm is a significant reduction in the Q(nlogn) mem-
ory required for local routing in non-geometric digraphs
proven by Ilcinkas and Fraigniaud [3], where they also
provide algorithms with exponential runtime or else
polynomial runtime and higher memory. Our geomet-
ric algorithm’s worst case runtime (hop-length) is poly-
nomial. Indeed on a given iteration of Directed Face
Traversal, each arc may be traversed at most O(1) times
and there are O(n) iterations for a given face (since the
node EXIT will be different on each) and O(n) faces in
total.

7 Acknowledgements

The author thanks the referees for their very useful com-
ments and suggestions, in particular for seeking clarifi-
cation on the models used and prompting Figure 1.

References

[1] G. Barnes, J. Edmonds. Time-space lower bounds
for directed st-connectivity on graph automata models.
SIAM J. on Computing, 27(4):1190-1202,1998

[2] E. Chavez, S. Dobrev, E. Kranakis, J. Opatrny, L. Sta-
cho, J. Urrutia. Route discovery with constant mem-
ory in oriented planar geometric networks. Networks,
48(1):7-15, 2006.

[3] P. Fraigniaud and D. Ilcinkas. Digraphs exploration
with little memory. 21st Symposium on Theoreti-
cal Aspects of Computer Science (STACS04), LNCS
2296:246-257, 2004.

[4] E. Kranakis, H. Singh, J. Urrutia. Compass routing in
geometric graphs. 11th Canadian Conference on Com-
putational Geometry (CCCG’99), 51-54, 1999.

[5] M. Fraser, E. Kranakis, J. Urrutia. Memory require-
ments for local geometric routing and traversal in di-
graphs. 20th Canadian Conference on Computational
Geometry (CCCG’08), 2008.

24" Canadian Conference on Computational Geometry, 2012

Appendix

Lower-level pseudocode for parts of Directed Face
Traversal. Suppose we are at vertex v and given next ver-
tex v.

e WALK_BDRY:
1. Do:

(a) Let vw = succ(uv).

(b) Add an INNER pebble to u

(c) u+w

(d) v+ w

while u is neither INNER nor OUTER.
2. JOIN «+ u
3. Change state to BACKTRACK.

e BACKTRACK:

1. If u is both INNER and OUTER: let v be the ver-
tex to the left along OUTER, set the flag TEN-
TATIVES, go to step 4.

2. If u is only INNER: attempt to follow IN-
NER~+MID to the right until a vertex that is both
INNER and OUTER is found, but if this fails (as-
sert: we have been travelling on INNER and not
seen MID) then follow INNER back to MID and
let the arc leading along MID be a, then follow
INNER+MID in the direction of a until a vertex
that is both INNER and OUTER is found, then
let u be the new current vertex, and v the vertex
to the left along OUTER, go to step 4.

3. If u is only OUTER: follow OUTER to the right
until a vertex that is also INNER is found, let a
be the arc to the left along INNER, follow IN-
NER~+MID along a until OUTER is reached, then
let © be new current vertex, and v the vertex to
the left along OUTER, go to step 4.

4. Set PRIOR < w.
5. Change state to FIND_EXIT.

e FIND_EXIT:

1. (assert: w = PRIOR and this is a node of both
INNER and OUTER)

2. if not TENTATIVE then set NEW_EXIT <«
PRIOR and

— follow OUTER along v until possibly EXIT
is reached, after which follow INNER; at
each node w during this walk if there are
outgoing arcs on the right then NEW_EXIT
< u. When JOIN is reached, stop.

— If NEW_EXIT = PRIOR then return to
PRIOR and go to step 5

— Otherwise go to step 4.
3. if TENTATIVE then follow OUTER until either

8 At this point we do not know on which side we have reached
the common INNER/OUTER path; we tentatively assume from
the left and wait for contradictions.

— OUTER diverges from INNER on the wrong
(left) side, then

* Set NEW_EXIT < u, go to step 5.

— or OUTER will diverge from INNER on the
correct (right) side, then reset TENTATIVE
to false, set v to previous node and go to step
2.

— or OUTER and INNER have not diverged
but there is an outgoing arc uv on the left

* Set NEW_EXIT < u, go to step 4.

— or OUTER and INNER have not diverged
but there is currently an outgoing arc on the
right then reset TENTATIVE to false, set v
to previous node and go to step 2.

4. Change state to GO_EXIT.

5. (special handling when forced to exit along an arc
which is part of —n):

— follow INNER+MID along v until OUTER
returns to INNER on the left; record the
vertex at which it diverged as TMP_JOIN
and the vertex at which it returns as
TMP_PRIOR. Imitate the ‘if not TENTA-
TIVE’ case (with its flow control) but us-
ing TMP_JOIN and TMP_PRIOR in place
of JOIN and PRIOR respectively.

o GO_EXIT:

1. If not at NEW_EXIT then (assert: we are
at JOIN) return to PRIOR by following IN-
NER+MID.

2. Depending on whether we are at NEW_EXIT or
PRIOR follow the existing paths and change peb-
bles accordingly so the Path property will be pre-
served (see paragraph below).

3. Set EXIT + NEW_EXIT and also JOIN <+
NEW_EXIT. Set a to succ(b) at EXIT, where b
is the outgoing arc of the new —n at EXIT.

4. Change state to WALK_BDRY.

In all of the above, when following a walk as indicated, node
updating is assumed to occur as in WALK_BDRY so that
node u is always the current one and node v the next one.

Path property is an invariant The way in which markers
must be corrected (i.e. pebbles placed and removed) during
state GO_EXIT is not specified in the above pseudocode. We
claim it can be done in such a way that the Path property
will hold true upon entry into each new state. Note that
it holds (trivially) at initialization. Suppose it holds at the
start of a run of the main loop.

Pebbles are only changed in the states WALK_BDRY and
GO_EXIT, so the Path property is trivially preserved during
BACKTRACK and FIND_EXIT. In WALK_BDRY, INNER
pebbles are added but only until reaching either OUTER or
INNER which occurs at JOIN; thus, the Path property is
preserved during that state as well.

To analyze the state GO_EXIT,and see that pebbles can
be changed suitably, note that we begin this state at the

CCCG 2012, Charlottetown, P.E.I., August 8-10, 2012

vertex JOIN or (in case 3b only) at NEW_EXIT. If not the
last case, we will follow INNER+MID back to PRIOR.

Consider the cases for PRIOR shown in Figure 3. In
cases 1 and 2, it is possible, starting from PRIOR, to fol-
low OUTER either till EXIT and then INNER till JOIN,
or OUTER directly to JOIN, while at some time passing
NEW _EXIT. From JOIN, it is then possible to follow IN-
NER+MID to PRIOR. In case 3a, none of this applies as
PRIOR = JOIN.

To maintain the Path property in cases 1 and 2, it thus
suffices to ensure that during the walk from PRIOR — up
until JOIN — we leave or remove pebbles so that all vertices
up to NEW_EXIT are labeled OUTER, and all vertices after
this are labeled INNER. From JOIN back to PRIOR, we
must then change pebbles so that INNER+MID will define
a directed walk from NEW_EXIT back to s (it suffices to deal
with the portion from JOIN until PRIOR since the portion
up until JOIN was just handled). In case 1 this will mean
severing a piece of the old INNER which forms a chord on
the new INNER (this can be done by removing a pebble
at each end), and in case la) additionally changing some
INNER to MID. In case 2 this will mean converting some
OUTER to MID.

In case 3a, we will need to change OUTER to INNER as
we follow OUTER from NEW_EXIT to EXIT, then we will
need to return to JOIN along INNER+MID, severing this
walk from the other marked walks (by removing a pebble at
each end).

Finally, consider case 3b (where we entered the state
GO_EXIT at vertex NEW_EXIT). By removing OUTER
pebbles from the part of 7 after NEW_EXIT, we will have
a new 7 which indeed starts at s and ends at EXIT (upon
setting EXIT < NEW_EXIT). Conditions 2, 3 of the Path
property will also be satisfied if we convert the portion of 7
between NEW_EXIT and JOIN to INNER and the portion
between JOIN and EXIT to MID.

