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A Note on Interference in Random Networks

Luc Devroye∗ Pat Morin†

Abstract

The (maximum receiver-centric) interference of a geo-
metric graph (von Rickenbach et al. (2005)) is stud-
ied. It is shown that, with high probability, the follow-
ing results hold for a set, V , of n points independently
and uniformly distributed in the unit d-cube, for con-
stant dimension d: (1) there exists a connected graph
with vertex set V that has interference O((log n)1/3);
(2) no connected graph with vertex set V has interfer-
ence o((log n)1/4); and (3) the minimum spanning tree
of V has interference Θ((log n)1/2).

1 Introduction

Von Rickenbach et al. [8, 9] introduce the notion of
(maximum receiver-centric) interference in wireless net-
works and argue that topology-control algorithms for
wireless networks should explicitly take this parame-
ter into account. Indeed, they show that the minimum
spanning tree, which seems a natural choice to reduce
interference, can be very bad; there exists a set of node
locations in which the minimum spanning tree of the
nodes produces a network with maximum interference
that is linear in the number, n, of nodes, but a more
carefully chosen network has constant maximum inter-
ference, independent of n. These results are, however,
worst-case; the set of node locations that achieve this
are very carefully chosen. In particular, the ratio of the
distance between the furthest and closest pair of nodes
is exponential in the number of nodes.

The current paper continues the study of maximum
interference, but in a model that is closer to a typical
case. In particular, we consider what happens when the
nodes are distributed uniformly, and independently, in
the unit square. This distribution assumption can be
used to approximately model the unorganized nature of
ad-hoc networks and is commonly used in simulations
of such networks [10]. Additionally, some types of sen-
sor networks, especially with military applications, are
specifically designed to be deployed by randomly placing
(scattering) them in the deployment area. This distri-
bution assumption models these applications very well.

∗School of Computer Science, McGill University,
lucdevroye@gmail.com
†School of Computer Science, Carleton University,

morin@scs.carleton.ca

Our results show that the maximum interference, in
this case, is very far from the worst-case. In particular,
for points independently and uniformly distributed in
the unit square, the maximum interference of the min-
imum spanning tree grows only like the square root of
the logarithm of the number of nodes. That is, the max-
imum interference is not even logarithmic in the number
of nodes. Furthermore, a more carefully chosen network
topology can reduce the maximum interference further
still, to the cubed root of the logarithm of n.

1.1 The Model

Let V = {x1, . . . , xn} be a set of n points in Rd and let
G = (V,E) be a simple undirected graph with vertex
set V . The graph G defines a set, B(G), of closed balls
B1, . . . , Bn, where Bi has center xi and radius

ri = max{‖xixj‖ : xixj ∈ E} .

(Here, and throughout, ‖xy‖ denotes the Euclidean dis-
tance between points x and y.) In words, Bi is just
large enough to enclose all of xi’s neighbours in G. The
(maximum receiver-centric) interference at a point, x,
is the number of these balls that contain x, i.e.,

I(x,G) = |{B ∈ B(G) : x ∈ B}| .

The (maximum receiver-centric) interference of G is the
maximum interference at any vertex of G, i.e.,

I(G) = max{I(x,G) : x ∈ V } .

Figure 1 shows an example of a geometric graph G and
the balls B(G). Each node, x, is labelled with I(x,G).

One of the goals of network design is to build, given
V , a connected graph G = (V,E) such that I(G) is
minimized. Thus, it is natural to consider interference
as a property of the given point set, V , defined as

I(V ) = min{I(G) : G = (V,E) is connected} .

A minimum spanning tree of V is a connected graph,
MST (V ), of minimum total edge length. Minimum
spanning trees are a natural choice for low-interference
graphs. The purpose of the current paper is to prove the
following results (here, and throughout, the phrase with
high probability means with probability that approaches
1 as n→∞):
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Figure 1: A geometric graph G with I(G) = 5.

Theorem 1. Let V be a set of n points independently
and uniformly distributed in [0, 1]d. With high probabil-
ity,

1. I(MST (V )) ∈ O((log n)1/2);

2. I(V ) ∈ O((log n)1/3), for d ∈ {1, 2}; and

3. I(V ) ∈ O((log n)1/3(log log n)1/2), for d ≥ 3.

Theorem 2. Let V be a set of n points independently
and uniformly distributed in [0, 1]d. With high probabil-
ity,

1. I(MST (V )) ∈ Ω((log n)1/2)

2. I(V ) ∈ Ω((log n)1/4).

1.2 Related Work

This section surveys previous work on the problem of
bounding the interference of worst-case and random
point sets. A summary of the results described in this
section is given in Figure 2. In the statements of all
results in this section, |V | = n.

The definition of interference used in this paper was
introduced by von Rickenbach et al. [8] who proved up-
per and lower bounds on the interference of one dimen-
sional point sets:

Theorem 4 (von Rickenbach et al. 2005). For any d ≥
1, there exists V ⊂ Rd such that I(V ) ∈ Ω(n1/2).

The point set, V , in this lower-bound consists of any
sequence of points x1, . . . , xn, all on a line, such that
‖xi+1xi‖ ≤ (1/2)‖xixi−1‖, for all i ∈ {2, . . . , n − 1}.
That is, the gaps between consecutive points decrease
exponentially.

This lower bound is matched by an upper-bound:

Theorem 5 (von Rickenbach et al. 2005). For all V ⊂
R, I(V ) ∈ O(n1/2).

The upper bound in Theorem 5 is obtained by select-
ing n1/2 vertices to act as hubs, connecting the hubs into
any connected network and then having each of the re-
maining nodes connect to its nearest hub. This idea was
extended to two and higher dimensions by Halldórsson
and Tokuyama [3], by using a special type of (n−1/2)-net
as the set of hubs:

Theorem 6 (Halldórsson and Tokuyama 2008). For all
V ⊂ Rd,

1. I(V ) ∈ O(n1/2) for d = 2; and

2. I(V ) ∈ O((n log n)1/2), for d ≥ 3.

Several authors have shown that the interference of a
point set is related to the (logarithm of) the ratio be-
tween the longest and shortest distance defined by the
point set. In particular, different versions of the fol-
lowing theorem have been proven by Halldórsson and
Tokuyama [3]; Khabbazian, Durocher, and Haghnegah-
dar [4]; and Maheshwari, Smid, and Zeh [6]:

Theorem 7 (Halldórsson and Tokuyama 2008; Khab-
bazian, Durocher, and Haghnegahdar 2011; Mahesh-
wari, Smid, and Zeh 2011). For any constant d ≥ 1
and for all V ⊂ Rd, I(V ) = O(logD), where D =
max{‖xy‖ : {x, y} ⊆ V }/min{‖xy‖ : {x, y} ⊆ V }.

At least two of the proofs of Theorem 7 proceed by
showing that I(MST (V )) = O(logD). A strengthening
of this theorem is that the numerator in the definition
of D can be replaced with the length of the longest edge
in MST (V ) [4, 6].

Theorem 7 suggests that point sets with very high
interference are unlikely to occur in practice. This in-
tuition is born out by the results of Kranakis et al. [5],
who show that high interference is unlikely to occur in
random point sets in one dimension:

Theorem 8 (Kranakis et al. 2010). Let V be a set
of n points independently and uniformly distributed
in [0, 1]. Then, with high probability, I(MST (V )) ∈
Θ((log n)1/2).

Note that, in this one-dimensional case, the minimum
spanning tree, MST (V ), is simply a path that connects
the points of V in order, from left to right. Taken to-
gether, Part 1 of Theorems 1 and 2 generalize Theorem 8
to arbitrary constant dimensions d ≥ 1.

In higher dimensions, Khabbazian, Durocher, and
Haghnegahdar [4] use their version of Theorem 7 to
show that minimum spanning trees of random point sets
have at most logarithmic interference.

Theorem 9 (Khabbazian, Durocher, and Haghnegah-
dar 2011). Let V be a set of n points independently and
uniformly distributed in [0, 1]d. Then, with high proba-
bility, I(MST (V )) ∈ O(log n).
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Ref. Dimension Statement

[8] d ≥ 1 there exists V s.t. I(V ) ∈ Ω(n1/2)
[8] d = 1 for all V , I(V ) ∈ O(n1/2)
[3] d = 2 for all V , I(V ) ∈ O(n1/2)
[3] d ≥ 3 for all V , I(V ) ∈ O((n log n)1/2)
[5] d = 1 for V i.u.d. in [0, 1], I(MST (V )) ∈ Θ((log n)1/2) w.h.p.
[4] d ≥ 2 for V i.u.d. in [0, 1]d, I(MST (V )) ∈ O(log n) w.h.p.
Here d ≥ 1 for V i.u.d. in [0, 1]d, I(MST (V )) ∈ Θ((log n)1/2) w.h.p.
[5, 8] d = 1 for V i.u.d. in [0, 1], I(V ) ∈ Ω((log n)1/4) w.h.p.
Here d ≥ 1 for V i.u.d. in [0, 1]d, I(V ) ∈ Ω((log n)1/4) w.h.p.
Here d ∈ {1, 2} for V i.u.d. in [0, 1]d, I(V ) ∈ O((log n)1/3) w.h.p.
Here d ≥ 3 for V i.u.d. in [0, 1]d, I(V ) ∈ O((log n)1/3(log log n)1/2) w.h.p.

Figure 2: Previous and new results on interference in geometric networks.

Part 1 of Theorem 1 improves the upper bound in
Theorem 9 to O((log n)1/2) and Part 1 of Theorem 2
gives a matching lower bound.

The second parts of Theorems 1 and 2 show that min-
imum spanning trees do not minimize interference, even
for random point sets. For random point sets, one can
construct networks with interference O((log n)1/3) and
the best networks have interference in Ω((log n)1/4).

The remainder of this paper is devoted to proving
Theorems 1 and 2. For ease of exposition, we only
present these proofs for the case d = 2 though they gen-
eralize, in a straightforward way, to arbitrary (constant)
dimensions. Due to space constraints, some proofs are
omitted from this version of the paper. All proofs can
be found in the preprint version [2].

2 Proof of the Upper Bounds (Theorem 1)

In this section, we prove Theorem 1. However, before
we do this, we state a slightly modified version of The-
orem 7 that is needed in our proof.

Lemma 1. Let V ⊂ Rd, let r > 0, and let MST r(V ) de-
note the subgraph of MST (V ) containing only the edges
whose length is in (r, 2r]. Then I(MST r(V )) ∈ O(1).

Proof. (This proof is similar to the proof of Lemma 3
in Ref. [6].) Let x be any point in Rd and let B the
set of all balls in B(MST r(V )) that contain x so that,
by definition I(x,MST r(V )) = |B|. All the centers of
balls in B are contained in a ball of radius 2r centered
at x. Therefore, a simple packing argument implies that
there exists a ball, b, of radius r/2 that contains at least
|B|/5d centers of balls in B. (5d is the volume of a ball
of radius 5r/2 divided by the volume of a ball of radius
r/2.) The center of each of these ball is the endpoint
of an edge of length at most 2r. The other endpoints
of these edges are all contained in a ball of radius 5r/2
centered around b. The same packing argument shows

that we can find a ball of radius r/2 that contains at
least |B|/(5 · 6)d of these other endpoints.

We claim that this implies that |B|/30d < 2 (so |B| <
2 · 30d). Otherwise, MST (V ) contains two edges, xixj
and xkx`, each of length greater than r and such that
‖xixk‖ ≤ r and ‖xjx`‖ ≤ r. But this contradicts the
minimality of MST (V ), since one could replace xixj
with one of xixk or xjx` and obtain a spanning tree
of smaller total edge length. We conclude that |Si| <
2 · 30d, and this completes the proof.

Note that Lemma 1 implies Theorem 7, since it im-
plies that we can partition the edges of MST (V ) into
dlog2De classes, based on length, and each class will
contain only a constant number of edges.

We are ready to prove Parts 2 and 3 of Theorem 1.
The sketch of the proof is as follows: We partition [0, 1]d

into equal cubes of volume 1/nt, for some parameter t
to be chosen later. Using Chernoff’s bounds, we show
that each cube contains O((log n)2/3) points so that the
points within each cube can be connected, using the
results of Halldórsson and Tokuyama, with maximum
interference O((log n)1/3). Next, the cubes are con-
nected to other cubes by selecting one point in each
cube and connecting these selected points with a mini-
mum spanning tree. Lemma 1 is then used to show that
this minimum spanning tree has maximum interference
O((log n)1/3). Without further ado, we present:

Proof of Theorem 1, Parts 2 and 3. Partition [0, 1]2

into square cells of area 1/nt for some value t to be
specified later. Let Ni denote the number of points
that are contained in the ith cell. Then Ni is binomial
with mean µ = 1/t. Recall Chernoff’s Bounds [1] on
the tails of binomial random variables:

Pr{Ni ≥ (1 + δ)µ} ≤
(

eδ

(1 + δ)1+δ

)µ
.
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In our setting, we have,

Pr{Ni ≥ k} = Pr{Ni ≥ ktµ}

≤
(

ekt

(kt)kt

)1/t

=
ek

(kt)k

≤ 1

tk
for k ≥ e

≤ 1

nc+2
,

for t = 2(logn)
1/3

and k = (c+ 2)(log n)2/3.
Note that the number of cells is no more than nt ≤ n2,

for sufficiently large n. Therefore, by the union bound,
the probability that there exists any cell containing
more than k points is at most n−c.

Within each non-empty cell, we apply Theorem 6 to
connect the vertices in the ith cell into a connected
graph Gi with I(Gi) = O(

√
Ni).

1 In fact, a some-
what stronger result holds, namely that max{I(x,Gi) :
x ∈ R2} = O(

√
Ni). Notice that each edge in Gi has

length at most
√

2/nt. Stated another way, in
⋃
iGi,

any point, x, receives interference only from cells within
distance

√
2/nt of the cell containing x. There are only

25 such cells, so

max

{
I

(
x,
⋃
i

Gi

)
: x ∈ R2

}
= O(

√
k) = O((log n)1/3)

with high probability.
Thus far, the points within each cell are connected

to each other and the maximum interference, over all
points in R2, is O(

√
k). To connect the cells to each

other, we select one point from each non-empty cell
and connect these using a minimum spanning tree, T .
What remains is to show that the additional interfer-
ence caused by the addition of the edges in T does not
exceed O((log n)1/3).

Suppose that I(x, T ) = r, for some point x ∈ R2.
There are at most 9 vertices in T whose distance to x
is less than 1/

√
nt. Therefore, by Lemma 1, T must

contain an edge of length at least c2r/
√
nt, for some

constant c > 1.
A well-known property of minimum spanning trees is

that, for any edge xixj in T , the open ball with diame-
ter xixj does not contain any vertices of T . In our set-
ting, this means that there is an open ball, B, of radius
c2r/2

√
nt such that every cell contained in B contains

no point of V . Inside of B is another empty ball B′

of radius c2r/(2
√
nt) −

√
2/nt whose center is also the

center of some cell.

1This is where the discrepancy between Parts 2 and 3 of the
theorem occurs. For d ≥ 3, Theorem 6 only guarantees I(Gi) =
O(
√
Ni logNi).

At least one quarter of the area of B′ is contained in
[0, 1]2, so the number of cells completely contained in
B′ is at least πc222r/16 − O(2r/

√
nt). By decreasing c

slightly, and only considering r larger than a sufficiently
large constant, r0, we can simplify this number of cells
to πc2r/16.

For a fixed ball B′, the probability that the cπ22r/16
cells defined by B′ are empty of points in V is at most

p ≤ (1− cπ22r/16nt)n

≤ exp(−cπ22r/16t)

≤ 1/n2+c
′
,

for r ≥ log(16/cπ) + log t + log(2 + c′) + log lnn. By
the union bound, the probability that there exists any
such B′ is at most pnt ≤ 1/nc

′
. Since we can choose

r ∈ O(log t + log logn) = O((log n)1/3), this completes
the proof.

The proof of Part 1 of Theorem 1 is just a matter of
reusing the ideas from the previous proof of Parts 2 and
3.

Proof of Theorem 1, Part 1. Let x be any point in R2.
We partition the balls in B(MST (V )) that contain x
into three sets:

1. the set B0 of balls having area at most 1/nt;

2. the set B1 of balls having area in the range
[1/nt, (c log n)/n]; and

3. the set B2 of balls having area greater than
(c log n)/n.

In this proof, the parameter t = 2(logn)
1/2

.
The set B0 consists of points contained in a ball

of area 1/nt centered at x. Exactly the same argu-
ment used in the first part of the previous proof shows
that, with high probability, every such ball contains
O((log n)1/2) points, so

|B0| ∈ O((log n)1/2) .

The set B1 consists of balls whose radii are in the
range [

√
1/πnt,

√
(c log n)/πn]. Lemma 1 shows that

the number of these balls is

|B1| ∈ O
(

log

(√
(c log n)/πn√

1/πnt

))
= O(log log n+ log t)

= O((log n)1/2) .

Finally, any edge in the set B2 implies the existence
of an empty ball, with center in [0, 1]2, having area
c log n/n. The second part of the previous proof shows
that the probability that such a ball exists is O(n−c).
Therefore, with high probability,

|B2| = 0 .
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Figure 4: The ball centered at xi that contains xi+1 also
contains x0.

3 Proof of The Lower Bounds (Theorem 2)

In this section, we prove the lower bounds in Theorem 2.
We define a Zeno configuration as follows (see Figure 3):
A Zeno configuration of size k, centered at a point, x, is
defined by a set of k + 1 balls. The construction starts
with disjoint balls D0, . . . , Dk−1, each having radius u.
The ball D0 is centered at x. The center of Di, i ∈
{1, . . . , k− 1} is at x+ (u3i, 0). A final large ball, D, of
radius r = u3k is centered at x and contains all other
balls. A Zeno configuration occurs at location x in a
point set V when D contains exactly k points of V and
these occur with exactly one point in each ball Di.

The following lemma shows that a Zeno configuration
in V causes high interference in MST (V ).

Lemma 2. If V contains a Zeno configuration of size
k, I(MST (V )) ≥ k − 1.

Proof. Let xi, i ∈ {0, . . . , k − 1}, denote the point of V
contained in Di. Note that, for i ∈ {1, . . . , k − 1} the
closest point to xi in V is xi−1. Since MST (V ) contains
the nearest-neighbour graph, this implies that MST (V )
contains the edges xixi+1 for all i ∈ {0, . . . , k − 2}. See
Figure 4 for what follows. We claim that, for all i ∈
{0, . . . , k − 2}, the ball Bi centered at xi that contains
xi+1 also contains x0. This is clearly true for i = 0 and
i = 1. Next, note that

‖xix0‖ ≤ u(3i + 2) .

On the other hand, for i ≥ 2,

‖xixi+1‖ ≥ u(3i+1−3i−2) = 2u3i−2u ≥ u(3i+7) > ‖xix0‖ .

Therefore, I(x0,MST (V )) ≥ k − 1.

The next lemma shows that a Zeno configuration
causes high interference on any connected graph on ver-
tex set V .

Lemma 3. If V contains a Zeno configuration of size
k, then I(V ) ≥

√
k − 1.

Proof. Let G be any connected graph on V . Using the
same notation as in the proof of Lemma 2, call a ver-
tex, xi, a big one if xi is adjacent to any vertex xj ,

with j > i, or xi is adjacent to any vertex x not in
D. The proof of Lemma 2 shows that every big one
contributes to the interference at x0. Therefore, if the
Zeno configuration contains

√
k − 1 or more big ones,

then I(x0, G) ≥
√
k − 1 and there is nothing left to

prove. Otherwise, note that each of x0, . . . , xk−2 is ei-
ther a big one or adjacent to a big one. Therefore, there
must be a big one, xi, with degree at least

√
k − 1− 1,

so I(xi, G) ≥
√
k − 1.

To prove Theorem 2, all that remains is to show a
Zeno configuration of size Ω((log n)1/2) occurs in V with
high probability. We omit this proof due to space con-
straints.

4 Discussion

Summary. This paper gives new bounds on the maxi-
mum interference for graphs defined by points randomly
distributed [0, 1]d. Minimum spanning trees have inter-
ference Θ((log n)1/2), but better graphs exist; a strat-
egy based on bucketing yields a graph with interference
O((log n)1/3). No graph on such a point set has inter-
ference o((log n)1/4).

Open Problem. An obvious open problem is that
of closing the gap between the upper bound of
O((log n)1/3) and the lower bound of Ω((log n)1/4. One
strategy to achieve this would be to prove the following
conjecture, which has nothing to do with probability
theory:

Conjecture 1. For any V ⊂ Rd, I(V ) =
O(
√
I(MST (V ))).

A weaker version of this conjecture is due to
Halldórsson and Tokuyama [3], who conjecture that
I(V ) = O(

√
logD) where D is the ratio of the lengths

of the longest and the shortest edges of MST (V ).

Unit Disk Graphs. Several of the references consider
interference in the unit disk graph model, in which the
graph G is constrained to use edges of maximum length
r(n). It is straightforward to verify that all of the
proofs in this paper continue to hold in this model,
when r(n) ∈ Ω(

√
(log n)/n). This is not an unreason-

able condition; for i.u.d. points in [0, 1]d, it is known
that r(n) ∈ Ω(

√
(log n)/n) is a necessary condition to

be able to form a connected graph G [7].

Locally Computable Graphs. Khabbazian, Durocher,
and Haghnegahdar [4] give a local algorithm, called Lo-
calRadiusReduction, that is run at the nodes of a
communication graph, G = (V,E), and that reduces the
number of edges of G. The resulting graph G′ comes
from a class of graphs that they denote as T (V ). The
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Figure 3: A Zeno configuration of size k.

class T (V ) includes the minimum spanning tree of V
and the graphs in this class share many of the same
properties as the minimum spanning tree. In particu-
lar, the following result can be obtained by using the
proof of Theorem 1 Part 1 and properties of the family
T (V ) [4, Theorem 3].

Theorem 3. Let V be a set of n independently and uni-
formly distributed points in [0, 1]d and let G be any graph
in T (V ). With high probability, I(G) = O((log n)1/2 +
log(`

√
n)), where ` is the length of the longest edge in

G.

In particular, Theorem 3 implies that running the Lo-
calRadiusReduction algorithm at the nodes of a unit
disk graph with unit r(n) ∈ O(2

√
logn/

√
n) yields a con-

nected graph with maximum interference O((log n)1/2).
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