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ABSTRACT 
This paper presents a study of incorporating domain-specific 
knowledge (i.e., information about concepts and relationships 
between concepts in a certain domain) in an information retrieval 
(IR) system to improve its effectiveness in retrieving biomedical 
literature. The effects of different types of domain-specific 
knowledge in performance contribution are examined. Based on 
the TREC platform, we show that appropriate use of domain-
specific knowledge in a proposed conceptual retrieval model 
yields about 23% improvement over the best reported result in 
passage retrieval in the Genomics Track of TREC 2006.  

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – retrieval models, query formulation, information 
filtering. H.3.1 [Information Storage and Retrieval]: Content 
Analysis and Indexing – thesauruses. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Document Retrieval, Passage Extraction, Biomedical Documents 

1. INTRODUCTION 
Biologists search for literature on a daily basis. For most 
biologists, PubMed, an online service of U.S. National Library of 
Medicine (NLM), is the most commonly used tool for searching 
the biomedical literature. PubMed allows for keyword search by 
using Boolean operators. For example, if one desires documents on 
the use of the drug propanolol in the disease hypertension, a 
typical PubMed query might be “propanolol AND hypertension”, 
which will return all the documents having the two keywords. 
Keyword search in PubMed is effective if the query is well-crafted 

by the users using their expertise. However, information needs of 
biologists, in some cases, are expressed as complex questions 
[8][9], which PubMed is not designed to handle.  While NLM does 
maintain an experimental tool for free-text queries [6], it is still 
based on PubMed keyword search.  

The Genomics track of the 2006 Text REtrieval Conference 
(TREC) provides a common platform to assess the methods and 
techniques proposed by various groups for biomedical information 
retrieval. The queries were collected from real biologists and they 
are expressed as complex questions, such as “How do mutations in 
the Huntingtin gene affect Huntington’s disease?”. The document 
collection contains 162,259 Highwire full-text documents in 
HTML format. Systems from participating groups are expected to 
find relevant passages within the full-text documents. A passage is 
defined as any span of text that does not include the HTML 
paragraph tag (i.e., <P> or </P>). 

We approached the problem by utilizing domain-specific 
knowledge in a conceptual retrieval model. Domain-specific 
knowledge, in this paper, refers to information about concepts and 
relationships between concepts in a certain domain. We assume 
that appropriate use of domain-specific knowledge might improve 
the effectiveness of retrieval. For example, given a query “What is 
the role of gene PRNP in the Mad Cow Disease?”, expanding the 
gene symbol “PRNP” with its synonyms “Prp”, “PrPSc”, and 
“prion protein”, more relevant documents might be retrieved. 
PubMed and many other biomedical systems [8][9][10][13] also 
make use of domain-specific knowledge to improve retrieval 
effectiveness. 

Intuitively, retrieval on the level of concepts should outperform 
“bag-of-words” approaches, since the semantic relationships 
among words in a concept are utilized. In some recent studies 
[13][15], positive results have been reported for this hypothesis. In 
this paper, concepts are entry terms of the ontology Medical 
Subject Headings (MeSH), a controlled vocabulary maintained by 
NLM for indexing biomedical literature, or gene symbols in the 
Entrez gene database also from NLM. A concept could be a word, 
such as the gene symbol “PRNP”, or a phrase, such as “Mad cow 
diseases”. In the conceptual retrieval model presented in this 
paper, the similarity between a query and a document is measured 
on both concept and word levels. 

This paper makes two contributions:  

1. We propose a conceptual approach to utilize domain-specific 
knowledge in an IR system to improve its effectiveness in 
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retrieving biomedical literature. Based on this approach, our 
system achieved significant improvement (23%) over the best 
reported result in passage retrieval in the Genomics track of 
TREC 2006. 

2. We examine the effects of utilizing concepts and of different 
types of domain-specific knowledge in performance 
contribution. 

This paper is organized as follows: problem statement is given in 
the next section. The techniques are introduced in section 3. In 
section 4, we present the experimental results. Related works are 
given in section 5 and finally, we conclude the paper in section 6. 

2. PROBLEM STATEMENT 
We describe the queries, document collection and the system 
output in this section. 
The query set used in the Genomics track of TREC 2006 consists 
of 28 questions collected from real biologists. As described in [8], 
these questions all have the following general format:  

Biological object (1..m) Relationship←⎯⎯⎯⎯→ Biological process (1..n)       (1) 

where a biological object might be a gene, protein, or gene 
mutation and a biological process can be a physiological process 
or disease. A question might involve multiple biological objects 
(m) and multiple biological processes (n). These questions were 
derived from four templates (Table 2). 

Table 2 Query templates and examples in the Genomics track 
of TREC 2006 

Template Example 
What is the role of gene in 
disease? 

What is the role of DRD4 in 
alcoholism? 

What effect does gene have 
on biological process? 

What effect does the insulin 
receptor gene have on 
tumorigenesis? 

How do genes interact in 
organ function? 

How do HMG and HMGB1 
interact in hepatitis? 

How does a mutation in 
gene influence biological 
process? 

How does a mutation in Ret 
influence thyroid function? 

Features of the queries: 1) They are different from the typical 
Web queries and the PubMed queries, both of which usually 
consist of 1 to 3 keywords; 2) They are generated from structural 
templates which can be used by a system to identify the query 
components, the biological object or process.  
The document collection contains 162,259 Highwire full-text 
documents in HTML format.  
The output of the system is a list of passages ranked according to 
their similarities with the query. A passage is defined as any span 
of text that does not include the HTML paragraph tag (i.e., <P> or 
</P>). A passage could be a part of a sentence, a sentence, a set of 
consecutive sentences or a paragraph (i.e., the whole span of text 
that are inside of <P> and </P> HTML tags). 
This is a passage-level information retrieval problem with the 
attempt to put biologists in contexts where relevant information is 
provided. 

3. TECHNIQUES AND METHODS 
We approached the problem by first retrieving the top-k most 
relevant paragraphs, then extracting passages from these 
paragraphs, and finally ranking the passages. In this process, we 
employed several techniques and methods, which will be 
introduced in this section. First, we give two definitions: 

Definition 3.1 A concept is 1) a entry term in the MeSH 
ontology, or 2) a gene symbol in the Entrez gene database. This 
definition of concept can be generalized to include other 
biomedical dictionary terms. 

Definition 3.2 A semantic type is a category defined in the 
Semantic Network of the Unified Medical Language System 
(UMLS) [14]. The current release of the UMLS Semantic Network 
contains 135 semantic types such as “Disease or Syndrome”. Each 
entry term in the MeSH ontology is assigned one or more semantic 
types. Each gene symbol in the Entrez gene database maps to the 
semantic type “Gene or Genome”. In addition, these semantic 
types are linked by 54 relationships. For example, “Antibiotic” 
prevents “Disease or Syndrome”. These relationships among 
semantic types represent general biomedical knowledge. We 
utilized these semantic types and their relationships to identify 
related concepts. 
The rest of this section is organized as follows: in section 3.1, we 
explain how the concepts are identified within a query. In section 
3.2, we specify five different types of domain-specific knowledge 
and introduce how they are compiled. In section 3.3, we present 
our conceptual IR model. Finally, our strategy for passage 
extraction is described in section 3.4. 

3.1 Identifying concepts within a query 
A concept, defined in Definition 3.1, is a gene symbol or a MeSH 
term. We make use of the query templates to identify gene 
symbols. For example, the query “How do HMG and HMGB1 
interact in hepatitis?” is derived from the template “How do genes 
interact in organ function?”. In this case, “HMG” and “HMGB1” 
will be identified as gene symbols. In cases where the query 
templates are not provided, programs for recognition of gene 
symbols within texts are needed.  
We use the query translation functionality of PubMed to extract 
MeSH terms in a query. This is done by submitting the whole 
query to PubMed, which will then return a file in which the MeSH 
terms in the query are labeled.  In Table 3.1, three MeSH terms 
within the query “What is the role of gene PRNP in the Mad cow 
disease?” are found in the PubMed translation: "encephalopathy, 
bovine spongiform" for “Mad cow disease”, “genes” for “gene”, 
and “role” for “role”. 
Table 3.1 The PubMed translation of the query "What is the 
role of gene PRNP in the Mad cow disease?". 

Term PubMed translation 

Mad cow 
disease 

"bovine spongiform encephalopathy"[Text Word] 
OR "encephalopathy, bovine spongiform"[MeSH 
Terms] OR Mad cow disease[Text Word] 

gene ("genes"[TIAB] NOT Medline[SB]) OR 
"genes"[MeSH Terms] OR gene[Text Word] 

role "role"[MeSH Terms] OR role[Text Word] 
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3.2 Compiling domain-specific knowledge 
In this paper, domain-specific knowledge refers to information 
about concepts and their relationships in a certain domain. We 
used five types of domain-specific knowledge in the domain of 
genomics: 
Type 1. Synonyms (terms listed in the thesauruses that refer to 

the same meaning) 
Type 2. Hypernyms (more generic terms, one level only) 
Type 3. Hyponyms (more specific terms, one level only) 
Type 4. Lexical variants (different forms of the same concept, 

such as abbreviations. They are commonly used in the 
literature, but might not be listed in the thesauruses) 

Type 5. Implicitly related concepts (terms that are semantically 
related and also co-occur more frequently than being 
independent in the biomedical texts) 

Knowledge of type 1-3 is retrieved from the following two 
thesauruses: 1) MeSH, a controlled vocabulary maintained by 
NLM for indexing biomedical literature. The 2007 version of 
MeSH contains information about 190,000 concepts. These 
concepts are organized in a tree hierarchy; 2) Entrez Gene, one of 
the most widely used searchable databases of genes. The current 
version of Entrez Gene contains information about 1.7 million 
genes. It does not have a hierarchy. Only synonyms are retrieved 
from Entrez Gene. The compiling of type 4-5 knowledge is 
introduced in section 3.2.1 and 3.2.2, respectively. 

3.2.1 Lexical variants 
Lexical variants of gene symbols 
New gene symbols and their lexical variants are regularly 
introduced into the biomedical literature [7]. However, many 
reference databases, such as UMLS and Entrez Gene, may not be 
able to keep track of all this kind of variants. For example, for the 
gene symbol "NF-kappa B", at least 5 different lexical variants can 
be found in the biomedical literature: "NF-kappaB", "NFkappaB", 
"NFkappa B", "NF-kB", and "NFkB", three of which are not in the 
current UMLS and two not in the Entrez Gene. [3][21] have shown 
that expanding gene symbols with their lexical variants improved 
the retrieval effectiveness of their biomedical IR systems. In our 
system, we employed the following two strategies to retrieve 
lexical variants of gene symbols.  

Strategy I: This strategy is to automatically generate lexical 
variants according to a set of manually crafted heuristics [3][21]. 
For example, given a gene symbol “PLA2”, a variant “PLAII” is 
generated according to the heuristic that Roman numerals and 
Arabic numerals are convertible when naming gene symbols. 
Another variant, “PLA 2”, is also generated since a hyphen or a 
space could be inserted at the transition between alphabetic and 
numerical characters in a gene symbol.  

Strategy II: This strategy is to retrieve lexical variants from an 
abbreviation database. ADAM [22] is an abbreviation database 
which covers frequently used abbreviations and their definitions 
(or long-forms) within MEDLINE, the authoritative repository of 
citations from the biomedical literature maintained by the NLM. 
Given a query “How does nucleoside diphosphate kinase (NM23) 
contribute to tumor progression?”, we first identify the 
abbreviation “NM23” and its long-form “nucleoside diphosphate 
kinase” using the abbreviation identification program from [4]. 
Searching the long-form “nucleoside diphosphate kinase” in 
ADAM, other abbreviations, such as “NDPK” or “NDK”, are 

retrieved. These abbreviations are considered as the lexical 
variants of “NM23”. 

Lexical variants of MeSH concepts 
ADAM is used to obtain the lexical variants of MeSH concepts as 
well. All the abbreviations of a MeSH concept in ADAM are 
considered as lexical variants to each other. In addition, those 
long-forms that share the same abbreviation with the MeSH 
concept and are different by an edit distance of 1 or 2 are also 
considered as its lexical variants. As an example, "human 
papilloma viruses" and "human papillomaviruses" have the same 
abbreviation “HPV” in ADAM and their edit distance is 1. Thus 
they are considered as lexical variants to each other. The edit 
distance between two strings is measured by the minimum number 
of insertions, deletions, and substitutions of a single character 
required to transform one string into the other [12].  

3.2.2 Implicitly related concepts 
Motivation: In some cases, there are few documents in the 
literature that directly answer a given query. In this situation, those 
documents that implicitly answer their questions or provide 
supporting information would be very helpful. For example, there 
are few documents in PubMed that directly answer the query 
"What is the role of the genes HNF4 and COUP-tf I in the 
suppression in the function of the liver?". However, there exist 
some documents about the role of "HNF4" and "COUP-tf I" in 
regulating "hepatitis B virus" transcription. It is very likely that the 
biologists would be interested in these documents because 
"hepatitis B virus" is known as a virus that could cause serious 
damage to the function of liver. In the given example, "hepatitis B 
virus" is not a synonym, hypernym, hyponym, nor a lexical variant 
of any of the query concepts, but it is semantically related to the 
query concepts according to the UMLS Semantic Network. We 
call this type of concepts “implicitly related concepts” of the 
query. This notion is similar to the “B-term” used in [19] for 
relating two disjoint literatures for biomedical hypothesis 
generation. The difference is that we utilize the semantic 
relationships among query concepts to exclusively focus on 
concepts of certain semantic types.  
A query q in format (1) of section 2 can be represented by 

q = (A, C) 
where A is the set of biological objects and C is the set of 
biological processes. Those concepts that are semantically related 
to both A and C according to the UMLS Semantic Network are 
considered as the implicitly related concepts of the query. In the 
above example, A = {“HNF4”, “COUP-tf I”}, C = {“function of 
liver”}, and "hepatitis B virus" is one of the implicitly related 
concepts.   
We make use of the MEDLINE database to extract the implicitly 
related concepts. The 2006 version of MEDLINE database 
contains citations (i.e., abstracts, titles, and etc.) of over 15 million 
biomedical articles. Each document in MEDLINE is manually 
indexed by a list of MeSH terms to describe the topics covered by 
that document. Implicitly related concepts are extracted and 
ranked in the following steps: 

Step 1. Let list_A be the set of MeSH terms that are 1) used for 
indexing those MEDLINE citations having A, and 2) semantically 
related to A according to the UMLS Semantic Network. Similarly, 
list_C is created for C.  Concepts in B = list_A ∩ list_C are 
considered as implicitly related concepts of the query. 
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Step 2. For each concept b∈B, compute the association between 
b and A using the mutual information measure [5]: 

P( , )( , ) log
P( )P( )

b AI b A
b A

=  

where P(x) = n/N, n is the number of MEDLINE citations having x 
and N is the size of MEDLINE. A large value for I(b, A) means 
that b and A co-occur much more often than being independent. 
I(b, C) is computed similarly.  

Step 3. Let r(b) = (I(b, A), I(b, C)), for b∈ B. Given b1, b2 ∈ B, 
we say r(b1) ≤ r(b2) if I(b1, A) ≤ I(b2, A) and I(b1, C) ≤ I(b2, C). 
Then the association between b and the query q is measured by: 

 
{ :  and ( ) ( )}

( , )
{ :  and ( ) ( )}

x x B r x r b
score b q

x x B r b r x
∈ ≤

=
∈ ≤

                   (2) 

The numerator in Formula 2 is the number of the concepts in B 
that are associated with both A and C equally with or less than b.  
The denominator is the number of the concepts in B that are 
associated with both A and C equally with or more than b. Figure 
3.2.2 shows the top 4 implicitly related concepts for the sample 
query. 

 
Figure 3.2.2 Top 4 implicitly related concepts for the query 
"How do interactions between HNF4 and COUP-TF1 suppress 
liver function?". 

In Figure 3.2.2, the top 4 implicitly related concepts are all highly 
associated with “liver”: “Hepatocytes” are liver cells; 
“Hepatoblastoma” is a malignant liver neoplasm occurring in 
young children; the vast majority of “Gluconeogenesis” takes 
place in the liver; and “Hepatitis B virus” is a virus that could 
cause serious damage to the function of liver. 
The top-k ranked concepts in B are used for query expansion: if 
I(b, A) ≥ I(b, C),  then b is considered as an implicit related 
concept of A. A document having b but not A will receive a partial 
weight of A. The expansion is similar for C when I(b, A) < I(b, C). 
 

3.3 Conceptual IR model 
We now discuss our conceptual IR model. We first give the basic 
conceptual IR model in section 3.3.1. Then we explain how the 
domain-specific knowledge is incorporated in the model using 
query expansion in section 3.3.2. A pseudo-feedback strategy is 
introduced in section 3.3.3. In section 3.3.4, we give a strategy to 
improve the ranking by avoiding incorrect match of abbreviations. 
3.3.1 Basic model 
Given a query q and a document d, our model measures two 
similarities, concept similarity and word similarity: 

( , ) ( ,  )( , ) ( , )
concept word

sim q d sim q d sim q d=  

Concept similarity 
Two vectors are derived from a query q,  

1 2

1 11 12 1

2 21 22 2

( , )
( , ,..., )
( , ,..., )

m

n

q v v
v c c c

v c c c

=
=
=

 

where v1 is a vector of concepts describing the biological object(s) 
and v2 is a vector of concepts describing the biological process(es). 
Given a vector of concepts v, let s(v) be the set of concepts in v. 
The weight of vi  is then measured by: 

( ) max{log : ( ) ( ) and 0}i i v
v

Nw v s v s v n
n

= ⊆ >  

where v is a vector that contains a subset of concepts in vi and nv is 
the number of documents having all the concepts in v.  
The concept similarity between q and d is then computed by 

2

1
( )( , ) i i

concept i
w vsim q d α

=

= ×∑  

where αi is a parameter to indicate the completeness of vi that 
document d has covered. αi is measured by:  

 and i

i

i

c
c d c v

c
c v

idf

idf
α ∈ ∈

∈

=
∑
∑

                                  (3) 

where idfc is the inverse document frequency of concept c.  
An example: suppose we have a query “How does Nurr-77 delete 
T cells before they migrate to the spleen or lymph nodes and how 
does this impact autoimmunity?”. After identifying the concepts in 
the query, we have: 

1

2

('Nurr-77')
('T cells', 'spleen', 'autoimmunity', 'lymph nodes')

v
v
=
=  

Suppose that some document frequencies of different 
combinations of concepts are as follows: 

25          df('Nurr-77')
0            df('T cells', 'spleen', 'autoimmunity', 'lymph nodes')
326        df('T cells', 'spleen', 'autoimmunity')
82          df('spleen', 'autoimmunity', 'lymph nodes')
147        df('T cells', 'autoimmunity', 'lymph nodes')
2332      df('T cells', 'spleen', 'lymph nodes')

 

The weight of vi is then computed by (note that there does not exist 
a document having all the concepts in v2): 

1

2

( ) log( / 25)
( ) log( /82)

w v N
w v N

=
=

. 

Now suppose a document d contains concepts ‘Nurr-77’, 'T cells', 
'spleen', and 'lymph nodes', but not ‘autoimmunity’, then the value 
of parameter αi is computed as follows: 

1

2

1
('T cells')+ ('spleen')+ ('lymph nodes')

('T cells')+ ('spleen')+ ('lymph nodes')+ ('autoimmunity')
idf idf idf

idf idf idf idf

α

α

=

=  

Word similarity 
The similarity between q and d on the word level is computed 
using Okapi [17]:  

10.5 ( 1)log( )( , )
0.5word w q

N n k tf
sim q d

n K tf∈

− + +
=

+ +∑             (4) 

where N is the size of the document collection; n is the number of 
documents containing w; K=k1 × ((1-b)+b × dl/avdl) and k1=1.2, 

C 
Function 
of Liver 

Implicitly related concepts (B) 

Hepatocytes 
Hepatoblastoma 
Gluconeogenesis 
Hepatitis B virus 

HNF4 and 
COUP-tf I 

A 
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b=0.75 are constants. dl is the document length of d and avdl is the 
average document length; tf is the term frequency of w within d. 

The model 
Given two documents d1 and d2, we say 1 2( , ) ( , )sim q d sim q d> or 
d1 will be ranked higher than d2, with respect to the same query q, 
if either 

1) 1 2( , ) ( , )
concept concept

sim q d sim q d>  or  

2) 1 2 1 2 and ( , ) ( , ) ( , ) ( , )
concept concept word word

sim q d sim q d sim q d sim q d= >  

This conceptual IR model emphasizes the similarity on the concept 
level. A similar model but applied to non-biomedical domain has 
been given in [15].  

3.3.2 Incorporating domain-specific knowledge 
Given a concept c, a vector u is derived by incorporating its 
domain-specific knowledge: 

1 2 3( , , , )u c u u u=  

where u1 is a vector of its synonyms, hyponyms, and lexical 
variants; u2 is a vector of its hypernyms; and u3 is a vector of its 
implicitly related concepts. An occurrence of any term in u1 will 
be counted as an occurrence of c. idfc in Formula 3 is updated as: 

1,
logc

c u

N
D

idf =  

1,c uD is the set of documents having c or any term in 1u . The 
weight that a document d receives from u is given by: 

max{ :  and }tw t u t d∈ ∈  

where wt = β  .cidf×  The weighting factor β is an empirical tuning 
parameter determined as: 
1. β = 1 if t is the original concept, its synonym, its hyponym, or 

its lexical variant; 
2. β = 0.95 if t is a hypernym; 
3. β = 0.90× (k–i+1)/k if t is an implicitly related concept. k is 

the number of selected top ranked implicitly related concepts 
(see section 3.2.2); i is the position of t in the ranking of 
implicitly related concepts. 

3.3.3 Pseudo-feedback 
Pseudo-feedback is a technique commonly used to improve 
retrieval performance by adding new terms into the original query. 
We used a modified pseudo-feedback strategy described in [2].  
Step 1. Let C be the set of concepts in the top 15 ranked 
documents. For each concept c in C, compute the similarity 
between c and the query q, the computation of sim(q,c) can be 
found in [2]. 
Step 2. The top-k ranked concepts by sim(q,c) are selected. 
Step 3. Associate each selected concept c' with the concept cq in 
q that 1) has the same semantic type as c', and 2) is most related to 
c' among all the concepts in q.  The association between c' and cq 
is computed by: 

P( ', )
( ', ) log

P( ')P( )
q

q
q

c c
I c c

c c
=  

where P(x) = n/N, n is the number of documents having x and N is 
the size of the document collection. A document having c' but not 

cq receives a weight given by: (0.5× (k-i+1)/k) ,qcidf× where i is the 
position of c' in the ranking of step 2. 

3.3.4 Avoid incorrect match of abbreviations 
Some gene symbols are very short and thus ambiguous. For 
example, the gene symbol “APC” could be the abbreviation for 
many non-gene long-forms, such as “air pollution control”, 
“aerobic plate count”, or “argon plasma coagulation”. This step is 
to avoid incorrect match of abbreviations in the top ranked 
documents.  
Given an abbreviation X with the long-form L in the query, we 
scan the top-k ranked (k=1000) documents and when a document 
is found with X, we compare L with all the long-forms of X in that 
document. If none of these long-forms is equal or close to L (i.e., 
the edit distance between L and the long-form of X in that 
document is 1 or 2), then the concept similarity of X is subtracted. 

3.4 Passage extraction 
The goal of passage extraction is to highlight the most relevant 
fragments of text in paragraphs. A passage is defined as any span 
of text that does not include the HTML paragraph tag (i.e., <P> or 
</P>). A passage could be a part of a sentence, a sentence, a set of 
consecutive sentences or a paragraph (i.e., the whole span of text 
that are inside of <P> and </P> HTML tags). It is also possible to 
have more than one relevant passage in a single paragraph. Our 
strategy for passage extraction assumes that the optimal passage(s) 
in a paragraph should have all the query concepts that the whole 
paragraph has. Also they should have higher density of query 
concepts than other fragments of text in the paragraph.  

Suppose we have a query q and a paragraph p represented by a 
sequence of sentences 1 2... .np s s s=  Let C be the set of concepts in 
q that occur in p and S = Φ. 

Step 1. For each sequence of consecutive sentences 1... ,i i js s s+ 1 ≤ 
i ≤ j ≤ n, let S = S 1{ ... }i i js s s+∪ if 1...i i js s s+ satisfies that: 

1) Every query concept in C occurs in 1...i i js s s+ and 
2) There does not exist k, such that i < k < j and every query 
concept in C occurs in 1...i i ks s s+ or 1 2... .k k js s s+ +  

Condition 1 requires 1...i i js s s+ having all the query concepts in p 
and condition 2 requires 1...i i js s s+ be the minimal. 
Step 2. Let 1min{ 1: ... }i i jL j i s s s S+= − + ∈ . For every 

1...i i js s s+ in S, let 1{ ... }i i jS S s s s+= − if (j – i + 1) > L. This step is to 
remove those sequences of sentences in S that have lower density 
of query concepts.  

Step 3. For every two sequences of consecutive 
sentences 1 1 1 2 2 21 1... ,  and ...i i j i i js s s S s s s S+ +∈ ∈ , if  

1 2 1 2

2 1

,     and
1

i i j j
i j
≤ ≤
≤ +                                 (5) 

then do 

 
Repeat this step until for every two sequences of consecutive 
sentences in S, condition (5) does not apply. This step is to merge 
those sequences of sentences in S that are adjacent or overlapped. 

Finally the remaining sequences of sentences in S are returned as 
the optimal passages in the paragraph p with respect to the query.  
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4. EXPERIMENTAL RESULTS 
The evaluation of our techniques and the experimental results are 
given in this section. We first describe the datasets and evaluation 
metrics used in our experiments and then present the results. 

4.1 Data sets and evaluation metrics 
Our experiments were performed on the platform of the Genomics 
track of TREC 2006. The document collection contains 162,259 
full-text documents from 49 Highwire biomedical journals. The set 
of queries consists of 28 queries collected from real biologists.  
The performance is measured on three different levels (passage, 
aspect, and document) to provide better insight on how the 
question is answered from different perspectives. Passage MAP: 
As described in [8], this is a character-based precision calculated 
as follows: “At each relevant retrieved passage, precision will be 
computed as the fraction of characters overlapping with the gold 
standard passages divided by the total number of characters 
included in all nominated passages from this system for the topic 
up until that point. Similar to regular MAP, relevant passages that 
were not retrieved will be added into the calculation as well, with 
precision set to 0 for relevant passages not retrieved. Then the 
mean of these average precisions over all topics will be calculated 
to compute the mean average passage precision”. Aspect MAP: A 
question could be addressed from different aspects. For example, 
the question “what is the role of gene PRNP in the Mad cow 
disease?” could be answered from aspects like “Diagnosis”, 
“Neurologic manifestations”, or “Prions/Genetics”. This measure 
indicates how comprehensive the question is answered. Document 
MAP: This is the standard IR measure. The precision is measured 
at every point where a relevant document is obtained and then 
averaged over all relevant documents to obtain the average 
precision for a given query. For a set of queries, the mean of the 
average precision for all queries is the MAP of that IR system. 
The output of the system is a list of passages ranked according to 
their similarities with the query. The performances on the three 
levels are then calculated based on the ranking of the passages. 

4.2 Results 
The Wilcoxon signed-rank test was employed to determine the 
statistical significance of the results. In the tables of the following 
sections, statistically significant improvements (at the 5% level) 
are marked with an asterisk. 

4.2.1 Conceptual IR model vs. term-based model 
The initial baseline was established using word similarity only 
computed by the Okapi (Formula 4). Another run based on our 
basic conceptual IR model was performed without using query 
expansion, pseudo-feedback, or abbreviation correction. The 
experimental result is shown in Table 4.2.1. Our basic conceptual 
IR model significantly outperforms the Okapi on all three levels, 
which suggests that, although it requires additional efforts to 
identify concepts, retrieval on the concept level can achieve 
substantial improvements over purely term-based retrieval model.  

4.2.2 Contribution of different types of  knowledge 
A series of experiments were performed to examine how each type 
of domain-specific knowledge contributes to the retrieval 
performance. A new baseline was established using the basic 
conceptual IR model without incorporating any type of domain-
specific knowledge. Then five runs were conducted by adding 
each individual type of domain-specific knowledge. We also 

conducted a run by adding all types of domain-specific knowledge. 
Results of these experiments are shown in Table 4.2.2. 

We found that any available type of domain-specific 
knowledge improved the performance in passage retrieval. The 
biggest improvement comes from the lexical variants, which is 
consistent with the result reported in [3]. This result also indicates 
that biologists are likely to use different variants of the same 
concept according to their own writing preferences and these 
variants might not be collected in the existing biomedical 
thesauruses. It also suggests that the biomedical IR systems can 
benefit from the domain-specific knowledge extracted from the 
literature by text mining systems.  

Synonyms provided the second biggest improvement.  
Hypernyms, hyponyms, and implicitly related concepts provided 
similar degrees of improvement. The overall performance is an 
accumulative result of adding different types of domain-specific 
knowledge and it is better than any individual addition. It is clearly 
shown that the performance is significantly improved (107% on 
passage level, 63.1% on aspect level, and 49.6% on document 
level) when the domain-specific knowledge is appropriately 
incorporated. Although it is not explicitly shown in Table 4.2.3, 
different types of domain-specific knowledge affect different 
subsets of queries. More specifically, each of these types (with the 
exception of “the lexical variants” which affects a large number of 
queries) affects only a few queries. But for those affected queries, 
their improvement is significant. As a consequence, the 
accumulative improvement is very significant.  

4.2.3 Pseudo-feedback and abbreviation correction 
Using the “Baseline+All” in Table 4.2.2 as a new baseline, the 
contribution of abbreviation correction and pseudo-feedback is 
given in Table 4.2.3. There is little improvement by avoiding 
incorrect matching of abbreviations. The pseudo-feedback 
contributed about 4.6% improvement in passage retrieval.  

4.2.4 Performance compared with best-reported results 
We compared our result with the results reported in the Genomics 
track of TREC 2006 [8] on the conditions that 1) systems are 
automatic systems and 2) passages are extracted from paragraphs. 
The performance of our system relative to the best reported results 
is shown in Table 4.2.4 (in TREC 2006, some systems returned the 
whole paragraphs as passages. As a consequence, excellent 
retrieval results were obtained on document and aspect levels at 
the expense of performance on the passage level.  We do not 
include the results of such systems here).  
Table 4.2.4 Performance compared with best-reported results. 

  Passage MAP Aspect MAP Document MAP
Best reported results 0.1486 0.3492 0.5320
Our results 0.1823 0.3811 0.5391
Improvement 22.68% 9.14% 1.33%

The best reported results in the first row of Table 4.2.4 on three 
levels (passage, aspect, and document) are from different systems. 
Our result is from a single run on passage retrieval in which it is 
better than the best reported result by 22.68% in passage retrieval 
and at the same time, 9.14% better in aspect retrieval, and 1.33% 
better in document retrieval (Since the average precision of each 
individual query was not reported, we can not apply the Wilcoxon 
signed-rank test to calculate the significance of difference between 
our performance and the best reported result.).  
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Table 4.2.1 Basic conceptual IR model vs. term-based model 
Run Passage Aspect Document 

  MAP Imprvd qs # (%) MAP Imprvd qs # (%) MAP Imprvd qs # (%)  
Okapi 0.064 N/A 0.175 N/A 0.285 N/A 
Basic conceptual IR model 0.084* (+31.3%) 17 (65.4%) 0.233* (+33.1%) 12 (46.2%) 0.359* (+26.0%) 15 (57.7%) 

Table 4.2.2 Contribution of different types of domain-specific knowledge 
Run Passage Aspect Document 

  MAP Imprvd qs # (%) MAP Imprvd qs # (%) MAP Imprvd qs # (%)  
Baseline 
= Basic conceptual IR model 0.084 N/A 0.233 N/A 0.359 N/A 

Baseline+Synonyms 0.105 (+25%) 11 (42.3%) 0.246 (+5.6%) 9 (34.6%) 0.420 (+17%) 13 (50%) 
Baseline+Hypernyms 0.088 (+4.8%) 11 (42.3%) 0.225 (-3.4%) 9 (34.6%) 0.390 (+8.6%) 16 (61.5%) 
Baseline+Hyponyms 0.087 (+3.6%) 10 (38.5%) 0.217 (-6.9%) 7 (26.9%) 0.389 (+8.4%) 10 (38.5%) 
Baseline+Variants 0.150* (+78.6%) 16 (61.5%) 0.348* (+49.4%) 13 (50%) 0.495* (+37.9%) 10 (38.5%) 
Baseline+Related 0.086 (+2.4%) 9 (34.6%) 0.220 (-5.6%) 9 (34.6%) 0.387 (+7.8%) 13 (50%) 
Baseline+All 0.174* (107%) 25 (96.2%) 0.380* (+63.1%) 19 (73.1%) 0.537* (+49.6%) 14 (53.8%) 

Table 4.2.3 Contribution of abbreviation correction and pseudo-feedback 
Run Passage Aspect Document 

  MAP Imprvd qs # (%) MAP Imprvd qs # (%) MAP Imprvd qs # (%)  

Baseline+All 0.174 N/A 0.380 N/A 0.537 N/A 
Baseline+All+Abbr 0.175 (+0.6%) 5 (19.2%) 0.375 (-1.3%) 4 (15.4%) 0.535 (-0.4%) 4 (15.4%) 
Baseline+All+Abbr+PF 0.182 (+4.6%) 10 (38.5%) 0.381 (+0.3%) 6 (23.1%) 0.539 (+0.4%) 9 (34.6%) 

 
A separate experiment has been done using a second testbed, the 
Ad Hoc Task of TREC Genomics 2005, to evaluate our 
knowledge-intensive conceptual IR model for document retrieval 
of biomedical literature. The overall performance in terms of MAP 
is 35.50%, which is about 22.92% above the best reported result 
[9]. Notice that the performance was only measured on the 
document level for the Ad Hoc Task of TREC Genomics 2005. 

5. RELATED WORKS 
Many studies used manually-crafted thesauruses or knowledge 
databases created by text mining systems to improve retrieval 
effectiveness based on either word-statistical retrieval systems or 
conceptual retrieval systems.  

[11][1] assessed query expansion using the UMLS 
Metathesaurus. Based on a word-statistical retrieval system, [11] 
used definitions and different types of thesaurus relationships for 
query expansion and a deteriorated performance was reported. [1] 
expanded queries with phrases and UMLS concepts determined by 
the MetaMap, a program which maps biomedical text to UMLS 
concepts, and no significant improvement was shown. We used 
MeSH, Entrez gene, and other non-thesaurus knowledge resources 
such as an abbreviation database for query expansion. A critical 
difference between our work and those in [11][1] is that our 
retrieval model is based on concepts, not on individual words. 

The Genomics track in TREC provides a common platform to 
evaluate methods and techniques proposed by various groups for 
biomedical information retrieval. As summarized in [8][9][10], 
many groups utilized domain-specific knowledge to improve 
retrieval effectiveness. Among these groups, [3] assessed both 
thesaurus-based knowledge, such as gene information, and non 
thesaurus-based knowledge, such as lexical variants of gene 
symbols, for query expansion. They have shown that query 
expansion with acronyms and lexical variants of gene symbols 
produced the biggest improvement, whereas, the query expansion 

with gene information from gene databases deteriorated the 
performance. [21] used a similar approach for generating lexical 
variants of gene symbols and reported significant improvements. 
Our system utilized more types of domain-specific knowledge, 
including hyponyms, hypernyms and implicitly related concepts. 
In addition, under the conceptual retrieval framework, we 
examined more comprehensively the effects of different types of 
domain-specific knowledge in performance contribution. 

[20][15] utilized WordNet, a database of English words and 
their lexical relationships developed by Princeton University, for 
query expansion in the non-biomedical domain. In their studies, 
queries were expanded using the lexical semantic relations such as 
synonyms, hypernyms, or hyponyms. Little benefit has been 
shown in [20]. This has been due to ambiguity of the query terms 
which have different meanings in different contexts. When these 
synonyms having multiple meanings are added to the query, 
substantial irrelevant documents are retrieved. In the biomedical 
domain, this kind of ambiguity of query terms is relatively less 
frequent, because, although the abbreviations are highly 
ambiguous, general biomedical concepts usually have only one 
meaning in the thesaurus, such as UMLS, whereas a term in 
WordNet usually have multiple meanings (represented as synsets 
in WordNet).  Besides, we have implemented a post-ranking step 
to reduce the number of incorrect matches of abbreviations, which 
will hopefully decrease the negative impact caused by the 
abbreviation ambiguity. Besides, we have implemented a post-
ranking step to reduce the number of incorrect matches of 
abbreviations, which will hopefully decrease the negative impact 
caused by the abbreviation ambiguity. The retrieval model in [15] 
emphasized the similarity between a query and a document on the 
phrase level assuming that phrases are more important than 
individual words when retrieving documents. Although the 
assumption is similar, our conceptual model is based on the 
biomedical concepts, not phrases.  
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[13] presented a good study of the role of knowledge in the 
document retrieval of clinical medicine. They have shown that 
appropriate use of semantic knowledge in a conceptual retrieval 
framework can yield substantial improvements. Although the 
retrieval model is similar, we made a study in the domain of 
genomics, in which the problem structure and task knowledge is 
not as well-defined as in the domain of clinical medicine [18]. 
Also, our similarity function is very different from that in [13]. 

In summary, our approach differs from previous works in four 
important ways: First, we present a case study of conceptual 
retrieval in the domain of genomics, where many knowledge 
resources can be used to improve the performance of biomedical 
IR systems. Second, we have studied more types of domain-
specific knowledge than previous researchers and carried out more 
comprehensive experiments to look into the effects of different 
types of domain-specific knowledge in performance contribution. 
Third, although some of the techniques seem similar to previously 
published ones, they are actually quite different in details. For 
example, in our pseudo-feedback process, we require that the unit 
of feedback is a concept and the concept has to be of the same 
semantic type as a query concept. This is to ensure that our 
conceptual model of retrieval can be applied. As another example, 
the way in which implicitly related concepts are extracted in this 
paper is significantly different from that given in [19]. Finally, our 
conceptual IR model is actually based on complex concepts 
because some biomedical meanings, such as biological processes, 
are represented by multiple simple concepts.  

6. CONCLUSION 
This paper proposed a conceptual approach to utilize domain-
specific knowledge in an IR system to improve its effectiveness in 
retrieving biomedical literature. We specified five different types 
of domain-specific knowledge (i.e., synonyms, hyponyms, 
hypernyms, lexical variants, and implicitly related concepts) and 
examined their effects in performance contribution. We also 
evaluated other two techniques, pseudo-feedback and abbreviation 
correction.  Experimental results have shown that appropriate use 
of domain-specific knowledge in a conceptual IR model yields 
significant improvements (23%) in passage retrieval over the best 
known results. In our future work, we will explore the use of other 
existing knowledge resources, such as UMLS and the Wikipedia, 
and evaluate techniques such as disambiguation of gene symbols 
for improving retrieval effectiveness. The application of our 
conceptual IR model in other domains such as clinical medicine 
will be investigated. 
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