
Annales Univ. Sci. Budapest., Sect. Comp. 27 (2007) 155-166

ON CERTAIN ARITHMETICAL FUNCTIONS
INVOLVING EXPONENTIAL DIVISORS II.
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Dedicated to the memory of Professor M.V. Subbarao

1. Introduction

Let n > 1 be an integer of canonical form n = pa1
1 · · · par

r . The integer d

is called an exponential divisor (e-divisor) of n if d = pb1
1 · · · pbr

r , where b1 | a1,
..., br | ar, notation: d |e n. By convention 1 |e 1. The integer n > 1 is
called exponentially squarefree (e-squarefree) if all the exponents a1, ..., ar are
squarefree. The integer 1 is also considered to be e-squarefree.

The exponential convolution (e-convolution) of arithmetic functions is
defined by

(f ¯ g)(n) =
∑

b1c1=a1

. . .
∑

brcr=ar

f(pb1
1 · · · pbr

r )g(pc1
1 · · · pcr

r ),

where n = pa1
1 · · · par

r .
These notions were introduced by M.V. Subbarao [8]. The e-convolution

¯ is commutative, associative and has the identity element µ2, where µ is the
Möbius function. Furthermore, a function f has an inverse with respect to ¯
iff f(1) 6= 0 and f(p1 · · · ps) 6= 0 for any distinct primes p1, ..., ps.

The inverse with respect to ¯ of the constant 1 function is called the
exponential analogue of the Möbius function and it is denoted by µ(e). Hence
for every n ≥ 1, ∑

d|en

µ(e)(d) = µ2(n).

Here µ(e)(1) = 1 and for n = pa1
1 · · · par

r > 1,

µ(e)(n) = µ(a1) · · ·µ(ar).
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Observe that |µ(e)(n)| = 1 or 0, according as n is e-squarefree or not. For
properties and generalizations of the e-convolution see [8], [3].

Other arithmetic functions regarding e-divisors, for example the number
and the sum of e-divisors of n, were investigated by several authors, see the
references given in the first part [11] of the present paper, devoted to the study
of functions involving the greatest common exponential divisor of integers.

An asymptotic formula for
∑

n≤x

|µ(e)(n)| was established by M.V. Subbarao

[8], improved by J. Wu [14], see also Part I of the present paper. We show that
the corresponding error term can further be improved on the assumption of the
Riemann hypothesis (RH), see Theorem 3.

In Theorem 2 we give a formula for
∑

n≤x

µ(e)(n) without and with assuming

RH. As far as we know there is no such result in the literature. We show that
the error terms depend on estimates for the number of squarefree integers ≤ x.

Consider now the exponential squarefree exponential divisors (e-squarefree
e-divisors) of n. Here d = pb1

1 · · · par
r is an e-squarefree e-divisor of n =

= pa1
1 · · · par

r > 1, if b1 | a1, ..., br | ar and b1, ..., br are squarefree. Note that
the integer 1 is e-squarefree and it is not an e-divisor of n > 1.

We introduce the functions t(e) and κ(e), where t(e)(n) and κ(e)(n) denote
the number of e-squarefree e-divisors of n and the maximal e-squarefree e-
divisor of n, respectively. These are the exponential analogues of the functions
representing the number of squarefree divisors of n (i.e. θ(n) = 2ω(n), where
ω(n) = r) and the maximal squarefree divisor of n (the squarefree kernel κ(n) =
=

∏
p|n

p ), respectively.

The functions t(e) and κ(e) are multiplicative and for n = pa1
1 · · · par

r > 1,

t(e)(n) = 2ω(a1) · · · 2ω(ar),

κ(e)(n) = p
κ(a1)
1 · · · pκ(ar)

r .

Asymptotic properties of the functions t(e)(n) and κ(e)(n) are given in
Theorems 4, 5 and 7.

2. Results

The function µ(e) is multiplicative and µ(e)(pa) = µ(a) for every prime
power pa. Hence µ(e)(n) ∈ {−1, 0, 1} for every n ≥ 1 and for every prime p,
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µ(e)(p) = 1, µ(e)(p2) = −1, µ(e)(p3) = −1, µ(e)(p4) = 0,... .
According to a well-known result of H. Delange, cf. [1] Ch. 6, the function

µ(e) has a non-zero mean value given by

m(µ(e)) =
∏
p

(
1 +

∞∑
a=2

µ(a)− µ(a− 1)
pa

)
.

An asymptotic formula for µ(e) can be obtained from the following general
result, which may be known.

Theorem 1. Let f be a complex valued multiplicative function such that
|f(n)| ≤ 1 for every n ≥ 1 and f(p) = 1 for every prime p. Then

∑

n≤x

f(n) = m(f)x + O(x1/2 log x),

where

m(f) =
∏
p

(
1 +

∞∑
a=2

f(pa)− f(pa−1)
pa

)

is the mean value of f .

Theorem 1 applies also for the multiplicative functions f = µ∗(e) and f =
= F , where µ∗(e)(pa) = µ∗(a) = (−1)ω(a) representing the unitary exponential
Möbius function, cf. [3], and F (pa) = λ(a) = (−1)Ω(a) the Liouville function,
with Ω(a) denoting the number of prime power divisors of a.

We prove for µ(e) the following more precise result.

Theorem 2. (i) The Dirichlet series of µ(e) is of form

∞∑
n=1

µ(e)(n)
ns

=
ζ(s)

ζ2(2s)
U(s), Re s > 1,

where U(s) :=
∞∑

n=1

u(n)
ns is absolutely convergent for Re s > 1/5.

(ii) ∑

n≤x

µ(e)(n) = m(µ(e))x + O(x1/2 exp(−c(log x)∆)),

where ∆ < 9/25 = 0, 36 and c > 0 are constants.
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(iii) Assume RH. Let 1/4 < r < 1/3 be an exponent such that D(x) :=
:=

∑
n≤x

µ2(n)− x/ζ(2) = O(xr+ε) for every ε > 0. Then the error term in (ii)

is O(x(2−r)/(5−4r)+ε) for every ε > 0.

The best known value – to our knowledge – of r is r = 17/54 ≈ 0, 314814,
obtained in [2], therefore the error term in (ii), assuming RH, is O(x91/202+ε)
for every ε > 0, where 91/202 ≈ 0, 450495.

Theorem 3. If RH is true, then

∑

n≤x

|µ(e)(n)| =
∏
p

(
1 +

∞∑
a=4

µ2(a)− µ2(a− 1)
pa

)
x + O(x1/5+ε)

for every ε > 0.

The function t(e) is multiplicative and t(e)(pa) = 2ω(a) for every prime
power pa. Here for every prime p, t(e)(p) = 1, t(e)(p2) = t(e)(p3) = t(e)(p4) =
= t(e)(p5) = 2, t(e)(p6) = 4, ... .

Theorem 4. (i) The Dirichlet series of t(e) is of form

∞∑
n=1

t(e)(n)
ns

= ζ(s)ζ(2s)V (s), Re s > 1,

where V (s) =
∞∑

n=1

v(n)
ns is absolutely convergent for Re s > 1/4.

(ii) ∑

n≤x

t(e)(n) = C1x + C2x
1/2 + O(x1/4+ε)

for every ε > 0, where C1, C2 are constants given by

C1 :=
∏
p

(
1 +

∞∑
a=6

2ω(a) − 2ω(a−1)

pa

)
,

C2 := ζ(1/2)
∏
p

(
1 +

∞∑
a=4

2ω(a) − 2ω(a−1) − 2ω(a−2) + 2ω(a−4)

pa/2

)
.

Theorem 5.

lim sup
n→∞

log t(e)(n) log log n

log n
=

1
2

log 2.
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The function κ(e) is multiplicative and κ(e)(pa) = pκ(a) for every prime
power pa. Hence for every prime p, κ(e)(p) = p, κ(e)(p2) = p2, κ(e)(p3) = p3,
κ(e)(p4) = p2,... .

To obtain an asymptotic formula for κ(e) we use the following general
theorem, of which parts (i) and (ii) are a variant of a result given in [6] and
cited in the first part [11] of this paper.

Theorem 6. Let k ≥ 2 be a fixed integer and f be a complex valued
multiplicative arithmetic function satisfying

(a) f(p) = f(p2) = ... = f(pk−1) = 1 for every prime p,
(b) there exists K > 0 such that |f(pa)| ≤ K for every prime power pa

with a ≥ k + 1,
(c) there exist M > 0 and β ≥ 1/(k + 1) such that |f(pk)| ≤ Mp−β for

every prime p.
Then
(i)

∞∑
n=1

f(n)
ns

=
ζ(s)
ζ(ks)

W (s), Re s > 1,

where the Dirichlet series W (s) :=
∞∑

n=1

w(n)
ns is absolutely convergent for Re s >

> 1/(k + 1).
(ii) ∑

n≤x

f(n) = Cfx + O(x1/kδ(x)),

where

Cf :=
∏
p

(
1 +

∞∑

a=k

f(pa)− f(pa−1)
pa

)

and
δ(x) = δA(x) := exp(−A(log x)3/5(log log x)−1/5),

A being a positive constant.
(iii) If RH is true, then the error term is O(x1/(k+1)+ε) for every ε > 0.

Theorem 7.

∑

n≤x

κ(e)(n) =
1
2

∏
p

(
1 +

∞∑
a=4

pκ(a) − p1+κ(a−1)

pa

)
x2 + O(x5/4δ(x)).
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If RH is true, then the error term is O(x6/5+ε) for every ε > 0.

3. Proofs

Proof of Theorem 1. Let g = f ∗µ in terms of the Dirichlet convolution.
Then g is multiplicative, g(p) = f(p) − 1 = 0, g(pa) = f(pa) − f(pa−1) and
|g(pa)| ≤ |f(pa)|+ |f(pa−1)| ≤ 2 for every prime p and every a ≥ 2. Therefore
|g(n)| ≤ `(n)2ω(n) for every n ≥ 1, where `(n) is the characteristic function of
the squarefull integers and we have

∑

n≤x

f(n) =
∑

de≤x

g(d) =
∑

d≤x

g(d)
(x

d
+ O(1)

)
= x

∑

d≤x

g(d)
d

+ O


∑

d≤x

|g(d)|

 =

= x

∞∑

d=1

g(d)
d

+ O

(
x

∑

d>x

`(d)2ω(d)

d

)
+ O


∑

d≤x

`(d)2ω(d)


 .

Here
`(n)2ω(n) =

∑

d2e=n

τ(d)h(e),

where τ is the divisor function and h is given by

∞∑
n=1

h(n)
ns

=
∏
p

(
1 +

2
p3s

− 1
p4s

− 2
p5s

)
,

absolutely convergent for Re s > 1/3, cf. [7]. We obtain

∑

n≤x

`(n)2ω(n) =
∑

e≤x

h(e)
∑

d≤(x/e)1/2

τ(d) =
∑

e≤x

h(e) O
(
(x/e)1/2 log(x/e)

)
=

= O


x1/2 log x

∑

e≤x

|h(e)|e−1/2


 = O

(
x1/2 log x

)
,

and by partial summation,

∑
n>x

`(n)2ω(n)

n
= O

(
x−1/2 log x

)
,
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which finishes the proof.

Proof of Theorem 2. (i) Let µ2(n) = µ(m) or 0, according as n = m2 or
not, and let E2(n) = m2 or 0, according as n = m2 or not. The given equality
is verified for µ(e) = µ2 ∗ µ2 ∗ u, equivalent to u = µ(e) ∗ λ ∗E2, in terms of the
Dirichlet convolution, where λ is the Liouville function. It is easy to check that
u(p) = u(p2) = u(p3) = u(p4) = 0, |(λ ∗ E2)(pa)| ≤ a for every prime power pa

with a ≥ 1, hence |u(pb)| ≤ 1+
b∑

a=1
|(λ ∗E2)(pa)| < b2 for every prime power pb

with b ≥ 5. We obtain that the Dirichlet series of the function u is absolutely
convergent for Re s > 1/5.

(ii) According to (i),
∑

n≤x

µ(e)(n) =
∑

n≤x

u(n)S(x/n), where

S(x) :=
∑

nd2≤x

µ2(n)µ(d).

We first estimate the sum S(x). Let % = %(x) such that 0 < % < 1 to be
defined later. If nd2 ≤ x, then both n > %−2 and d > %

√
x can not hold good

in the same time, therefore

S(x) =
∑

nd2≤x

d≤%
√

x

µ2(n)µ(d) +
∑

nd2≤x

n≤%−2

µ2(n)µ(d)−
∑

d≤%
√

x

n≤%−2

µ2(n)µ(d) =

= S1(x) + S2(x)− S3(x),

say. We use the following estimates of A. Walfisz [13]:

M(x) :=
∑

n≤x

µ(n) = O(xδ(x)), E(x) :=
∑

n≤x

µ2(n) =
x

ζ(2)
+ O(x1/2δ(x)).

Note that δ(x), defined in Section 2, is decreasing and xεδ(x) is increasing
for every ε > 0. By partial summation,

R(x) :=
∑
n>x

µ(n)
n2

= O(x−1δ(x)).

Here

S1(x) =
∑

d≤%
√

x

µ(d)E(x/d2) =
x

ζ(2)

∑

d≤%
√

x

µ(d)
d2

+ O


x1/2

∑

d≤%
√

x

δ(x/d2)
d


 =
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=
x

ζ(2)

(
1

ζ(2)
−R(%

√
x)

)
+ O


x1/2δ(%−2)

∑

d≤√x

1
d


 =

=
x

ζ2(2)
+ O

(
%−1x1/2δ(%

√
x)

)
+ O

(
x1/2δ(%−2) log x

)
,

S2(x) =
∑

n≤%−2

µ2(n)M((x/n)1/2) = O


 ∑

n≤%−2

(x/n)1/2δ((x/n)1/2)


 =

= O


δ(%

√
x)x1/2

∑

n≤%−2

1√
n


 = O

(
%−1x1/2δ(%

√
x)

)
,

S3(x) = M(%
√

x)E(%−2) = O
(
%−1x1/2δ(%

√
x)

)
.

We obtain that

S(x) =
x

ζ2(2)
+ O

(
%−1x1/2δ(%

√
x)

)
+ O

(
x1/2δ(1/%2) log x

)
.

Take % = exp(−(log x)β), where 0 < β < 1. Then

%
√

x = exp
(

1
2
(log x)− (log x)β

)
≥ exp

(
1
4
(log x)

)
= x1/4

for sufficiently large x. Hence δ(%
√

x) ≤ δ(x1/4) ¿ δB(x) with a suitable
constant B > 0. For β < 3/5 we obtain %−1δ(%

√
x) ¿ exp((log x)β −

−B(log x)3/5(log log x)−1/5) ¿ δC(x) with a suitable constant C > 0.
If η < 3/5, then δA(x) ¿ exp(−A(log x)η) and obtain that δ(%−2) ¿

¿ exp(−A(2(log x)β)η) = exp(−D(log x)βη) with a suitable D > 0, where
βη < 9/25.

Therefore,

S(x) =
x

ζ2(2)
+ O

(
x1/2 exp(−c(log x)∆

)
,

where ∆ < 9/25 and c > 0 are constants. Now,

∑

n≤x

µ(e)(n) =
∑

n≤x

u(n)S(x/n) =
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=
∑

n≤x

u(n)
(

x

ζ2(2)n
+ O

(
(x/n)1/2 exp(−c(log(x/n))∆)

))
=

=
x

ζ2(2)

∑

n≤x

u(n)
n

+ O


x1/2

∑

n≤x

|u(n)|
n1/2

exp(−c(log(x/n))∆)


 ,

where, using that xε exp(−c(log x)∆) is increasing for any ε > 0, the O-term is

O


x1/2

∑

n≤x

|u(n)|
n1/2

(x

n

)−ε (x

n

)ε

exp(−c(log(x/n)∆))


 =

= O


x1/2xε exp(−c(log x)∆)x−ε

∑

d≤x

|u(n)|
n1/2−ε


 =

= O
(
x1/2 exp(−c(log x)∆)

)

for 1/2− ε > 1/5. Furthermore,

∑

n≤x

u(n)
n

= U(1) + O

(∑
n>x

u(n)
n

)
,

with U(1) = ζ−2(2)m(µ(e)) and
∑

n>x

u(n)
n = O

(
x−3/5

∑
n>x

u(n)
n2/5

)
= O(x−3/5),

which finishes the proof of (ii).

(iii) Assume RH. We use that, see [10],

M(x) :=
∑

n≤x

µ(n) = O
(
x1/2ω(x)

)
,

where ω(x) := exp(A(log x)(log log x)−1), A being a positive constant, which
gives by partial summation,

R(x) :=
∑
n>x

µ(n)
n2

= O(x−3/2ω(x)).

Suppose that D(x) :=
∑

n≤x

µ2(n) − x/ζ(2) = O(xr+ε) for every ε > 0,

where 1/4 < r < 1/3. Then we obtain by similar computations that

S1(x) =
x

ζ2(2)
+ O

(
%−3/2x1/4ω(%

√
x)

)
+ O

(
x1/2%1−2(r+ε)

)
,
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S2(x) = O
(
%−3/2x1/4ω(%

√
x)

)
, S3(x) = O

(
%−3/2x1/4ω(%

√
x)

)
.

Therefore

S(x) =
x

ζ2(2)
+ O

(
%−3/2x1/4ω(%

√
x)

)
+ O

(
x1/2%1−2(r+ε)

)
.

Choose % = x−t, t > 0. Then %−3/2x1/4 = x(6t+1)/4, %
√

x = x1/2−t < x,
hence ω(%

√
x) < ω(x) ¿ xε for every ε > 0 and obtain

S(x) =
x

ζ2(2)
+ O

(
x(6t+1)/4+ε

)
+ O

(
x1/2−t(1−2r)+ε

)
.

Take (6t + 1)/4 = 1/2− t(1− 2r), this gives t = 1/(10− 8r) leading to the
common value (2− r)/(5− 4r) + ε of the exponents.

Proof of Theorem 3. Apply Theorem 6 for f(n) = |µ(e)(n)|, k = 4 on
the assumption of RH.

Proof of Theorem 4. The proof is similar to the proof of Theorem 1 of
[11], see also [12] for a more general result of this type.

(i) To obtain the given equality let f = µ2 ∗ µ, where µ2 is defined in the
Proof of Theorem 2, and let v = t(e) ∗ f . Here both f and v are multiplicative
and it is easy to check that f(p) = f(p2) = −1, f(p3) = 1, f(pa) = 0 for each
a ≥ 4, and v(p) = v(p2) = v(p3) = 0, v(pa) = 2ω(a)−2ω(a−1)−2ω(a−2)+2ω(a−4)

for a ≥ 4.

(ii) According to (i), t(e) = v∗τ(1, 2, ·), where τ(1, 2, n) =
∑

ab2=n

1 for which

∑

n≤x

τ(1, 2, n) = ζ(2)x + ζ(1/2)x1/2 + O(x1/4),

cf. [4], pp. 196-199. Therefore,
∑

n≤x

t(e)(n) =
∑

d≤x

v(d)
∑

e≤x/d

τ(1, 2, e)

and we obtain the above result by usual estimates.

Proof of Theorem 5. We use the following general result given in [9]:
Let F be a multiplicative function with F (pa) = f(a) for every prime power
pa, where f is positive and satisfying f(n) = O(nβ) for some fixed β > 0. Then

lim sup
n→∞

log F (n) log log n

log n
= sup

m

log f(m)
m

.
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Take F (n) = t(e)(n), f(a) = 2ω(a). Here ω(a) ≤ a/2 and log f(2)
2 = 1

2 log 2,
which proves the result.

Proof of Theorem 6. (i), (ii) Take f = qk ∗w, in terms of the Dirichlet
convolution, where qk denotes the characteristic function of the k-free integers
and use the estimate of A. Walfisz [13],

∑

n≤x

qk(n) =
x

ζ(k)
+ O(x1/kδ(x)).

For details cf. [6], [12].

(iii) If RH is true, then the error term of above is O(x1/(k+1)+ε), according
to the result of H.L. Montgomery and R.C. Vaughan [5], and take into account
that W (s) is absolutely convergent for Re s > 1/(k + 1).

Proof of Theorem 7. Apply Theorem 6 for f(n) = κ(e)(n)/n, k = 4,
β = 2, where f(p4) = 1/p2. Then by partial summation we obtain the result.
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[9] Suryanarayana D. and Sita Rama Chandra Rao R., On the true
maximum order of a class of arithmetical functions, Math. J. Okayama
Univ., 17 (1975), 95-101.

[10] Titchmarsh E.C., The theory of the Riemann zeta-function, Oxford,
1951.
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Ifjúság u. 6.
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