
I Heard It through the Firewall:
Exploiting Cloud Management Services

as an Information Leakage Channel

Hyunwook Baek,
Eric Eide, Robert Ricci,
Jacobus Van der Merwe

University of Utah

1

Motivation

▪ Information leakage in cloud has concerned
cloud users from the beginning of cloud computing.
▪ Existing cloud information leakage channels:

– Cache [Ristenpart et al. 2009, Liu et al. 2015]
– Memory [Zhang et al. 2011, Meltdown, Spectre]
– Network device [Bates et al. 2012]

2

→ Hardware-level Shared Resources

▪ How about Software-level Shared Resources?

Motivation

3

User1

User2

Motivation

4

The two users’ requests shared:
- Processes
- Threads
- Variables
- Queues
- Execution paths
- ...

Goal

▪ Demonstrating exploitability of software-level shared

resources as an information leakage channel

▪ Especially, focusing on Shared Execution Paths

(i.e., cross-tenant batch-processing)

▪ Using OpenStack Network Management Service

(similar mechanism can be applied to other systems)
5

6

Background: polling_interval
def rpc_loop(self):

 while True:

 start = now()

 # update OVS changes

 # update Iptables changes

 # update conntrack changes

 elapsed = now() – start # job_done

 if elapsed < polling_interval:

 sleep(polling_interval – elapsed)

7

Background: polling_interval

rpc_loop() rpc_loop() rpc_loop()

elapsed sleep()

polling_interval (2 sec)

#job_done #job_done

Basic Idea

8

rpc_loop() rpc_loop() rpc_loop()

elapsed sleep()

polling_interval (2 sec)

loop_count_and_wait()

▪ The rpc_loop()
is shared by requests of
VMs running in the host.

▪ The total size of
the load of requests
∝ elapsed.x#job_done

Basic Idea

9

loop_count_and_wait()

▪ Observing
elapsed times
to distinguish
infrastructure level events
– Side Channel

Basic Idea

10

loop_count_and_wait()

▪ Manipulating elapsed
times to send messages
– Covert Channel

Problem

11

loop_count_and_wait()

▪ Cloud users (and VMs)
cannot directly
observe the elapsed times X

▪ Something ≈ elapsed
and observable by users?
→ Virtual Firewall Epoch

Epoch

12

rpc_loop() rpc_loop() rpc_loop()

iptables_restore

iptables_restore

iptables_restore

Epoch Epoch

Epoch

13

rpc_loop() rpc_loop() rpc_loop()

iptables_restore

iptables_restore

iptables_restore

Epoch

▪ Epoch ≈ max(elapsed, polling_interval)

elapsed elapsed

Epoch

Epoch

14

rpc_loop() rpc_loop() rpc_loop()

iptables_restore

iptables_restore

No security group is changed,
so this loop does not execute
iptables_restorea

▪ Epoch ≠ elapsed
if there is no change on the iptables.

Epoch

Solution

15

loop_count_and_wait()

▪ Observing Epochs
to distinguish
infrastructure level events
– Side Channel

Epochs

Solution

16

loop_count_and_wait()

▪ Manipulating Epochs
to send messages
– Covert Channel

Epochs

Epoch

17

▪ To monitor Epochs:
1. The virtual firewall should be updated

in every RPC loop iteration so that
the Iptables is also updated.

2. The update result should be observable
by the attacker.

3. The update request should have
small impact on the elapsed to minimize noise.

Epoch

18

▪ To manipulate Epochs:x
1. There should be a request that can make

a clearly distinguishable impact on elapsed.
2. The request should be processed

at the targeted RPC loop iteration.

Impact of Requests: One-time Impact

▪ Property 0)
Some requests
bring the same
result but their
load sizes
are different

19

Impact of Requests: One-time Impact

▪ Property 1)
Some requests
introduce
nearly no
additional load

▪ Useful for
monitoring Epochs

20

Impact of Requests: One-time Impact

▪ Property 1)
Some requests
introduce
nearly no
additional load

▪ Useful for
monitoring Epochs

21

Impact of Requests: One-time Impact

▪ Property 2)
Some other
requests
introduce clearly
distinguishable
additional load
▪ Useful for

manipulating Epochs

22

Impact of Requests: Long-term Impact

23

▪ Property 3)
Some requests
may permanently
increase the loads
of other requests.

▪ Useful for
manipulating Epochs

Epoch Patterns

24

rpc_loop() rpc_loop() rpc_loop()

iptables_restore iptables_restore iptables_restore

Epoch

elapsed elapsed

Epoch

TotalTotal

Sleep

Before After AfterBefore

25

Monitoring Epoch: UPDATE+PROBE

Request
Sender

Probe
Sender

Probe
Monitor

Update: add a new rule to its virtual firewall.
 E.g., Allow ICMP type:8 code:4 ingress

26

Monitoring Epoch: UPDATE+PROBE

Request
Sender

Probe
Sender

Probe
Monitor

Probe: generate a series of probe packets
ICMP type:8 code:4 ingress

27

Monitoring Epoch: UPDATE+PROBE

Continuous Monitoring

▪ Iterative UPDATE+PROBE method
– Monitoring modules are independent

▪ Reactive UPDATE+PROBE method
– The number of requests: 1 / epoch

▪ n-Reactive UPDATE+PROBE method
– can dynamically adjust the number of requests

28

Practical Epoch Monitor

▪ EpochMonitor
– A stand-alone

architecture for
epoch monitoring.

– Can easily support
any of the previously
introduced methods

29

Deployment: Boomerang Packets

30

• Layer 3 Boomerang with Single Interfaces

srcMAC: Router-MAC
dstMAC: VM-MAC
srcIP: VM-IP
dstIP: VM-IP

srcMAC: VM-MAC
dstMAC: Router-MAC
srcIP: VM-IP
dstIP: VM-IP

Single-node Covert Channel

▪ Covert Channel
– Both VMs keep

monitoring the epochs
using EpochMonitor.

– SVM also
reactively send
message to RVM
by manipulating
the duration of epochs.

– E.g., to send 0: do nothing
…… to send 1: attach/detach SG 31

32

▪ Error rate: 0
▪ Bandwidth: 0.21 bps

H

0 1 1 0 1 0 0 0

E

0 1 1 0 0 1 0 1

L

0 1 1 0 1 1 0 0

L

0 1 1 0 1 1 0 0

O

0 1 1 0 1 1 1 1

Single-node Covert Channel – Evaluation

Multi-node Covert Channel

▪ Covert Channel
– SVM send

message by
sending the same
message for
n seconds.

– This can be done
by manipulating
the duration
of epoch of
medium VMs, using the long-term impacting requests.

33

Multi-node Covert Channel – Evaluation

34

▪ Error rate: 0
▪ Bandwidth: 0.1 bps

H

0 1 1 0 1 0 0 0

E

0 1 1 0 0 1 0 1

L

0 1 1 0 1 1 0 0

 L

0 1 1 0 1 1 0 0

O

0 1 1 0 1 1 1 1

Infrastructure Event Snooper

▪ Snooping on
the host level events
▪ Any network-related

requests can leave
their mark on Epoch
▪ The attacker

keep monitoring Epochs
and extract event
information

35

Infrastructure Event Snooper

36

▪ VM creation / termination
▪ # of virtual interfaces per VM

2 Interfaces

C T C T

3 Interfaces

C T C T

4 Interfaces

C T C T

1 Interface

C T C T

Infrastructure Event Snooper

▪ Continuously monitor Epochs

▪ Classify events using LSTM Model

▪ Output:

– If any VM was created / terminated during an Epoch

– The number of virtual NIC attached to the VM

37

Infrastructure Event Snooper – Evaluation

▪ Training Data

– Two types of Host Machines

– Four types of VMs

each of which has different # of virtual NIC

– Two types of events: VM creation / VM termination

– 100 data points for each class

– 75% for training, 25% for validation

38

Infrastructure Event Snooper – Evaluation

▪ Test Data

– For each different type of Host Machine

– Created and terminated 100 VMs in a random order

– Each VM was configured to have

random number of virtual NIC between 1 and 4

– 478 labeled data points

39

Infrastructure Event Snooper – Evaluation

▪ Accuracy:
 83.1%

40

Infrastructure Event Snooper – Evaluation

▪ Accuracy:
 83.1%

▪ Accuracy
ignoring vNIC:
 93.3%

41

Evaluation – EpochMonitor

▪ Root Mean Square Error

– 1.54 milliseconds

▪ Maximum Error

– 25.5 milliseconds

– Sufficient for distinguishing different requests

(differences are larger than 100 milliseconds)

42

Mitigation – Refactoring

▪ Don’t use Cross-tenant Batch

43

 ...

 req_batch = aggregate_requests()

 ...

 update_something(req_batch) # observable event

 ...

Mitigation

▪ Increasing Polling Interval

– Pros: simple and may work for some cases

– Cons: increases the system delay by order of seconds

44

▪ Introducing Random Delay

– The same as above...

Mitigation

▪ Rate Limiting (Request Delaying)

– Request pattern is different from Dos-style attack
• e.g., 0.5 request per second

– If combined with a tailored policy,

may effectively mitigate the probing.
• e.g., if avg(# of requests for VM1 per sec) > 1 and

 std(# of requests for VM1 per sec) < 0.1 :

 delay future requests by 5 seconds

 45

Conclusion

▪ Showed software-level shared resources can be

exploited as an information leakage channel.

▪ Designed covert / side channels exploiting shared

execution paths.

▪ Demonstrated attacks using OpenStack Network

Management Service.
46

Possible Application

▪ Cooperative co-residency detection

– Detecting co-residency of the attacker’s own VMs.

– A VM keeps sending detectable signal through the control

plane (e.g., keep creating/deleting SG with many rules)

– If another VM successfully co-reside with the VM,

it can read the signal through the Update+Probe

– Trivially doable

47

Possible Application

▪ Un-cooperative co-residency detection

– Detecting co-residency with victim VMs.

– E.g., when load increases, the auto-scaling service

launches new VMs in the same physical machine

(e.g., affinity group in OpenStack)

– The attacker change the load on the victim VM

and monitors Epochs to detect when VMs come/leave

48

Possible Application

▪ Infrastructure Profiling

– E.g., a cloud provider launches large number of

‘spot instances’ in night time for specific type of machines.

– E.g., a cloud provider launches ‘High-end VMs’ with large

number of virtual interfaces only in specific types of

machines.

49

