Stratus

Cost-aware container scheduling in the public cloud

Andrew Chung

Jun Woo Park, Greg Ganger

PARALLEL DATA LABORATORY

Carnegie Mellon University

Carnegie Mellon Parallel Data Laboratory

Motivation

- IaaS CSPs provide per-time VM rental of diverse offerings
 - VM types and sizes
 - Contract types (e.g., reliable/on-demand, dynamically-priced/spot,...)
- Can add/remove VMs from virtual cluster (VC) any time
 - VMs paid-for by-the-second while rented
 - Pay for full VM even if only partially used!
- Mgmt complex, **but** sched research has not focused on **both**
 - 1. Dynamically-sized clusters
 - 2. Clusters with wide diversity of instance types, sizes, and contracts

Motivation

- IaaS CSPs provide per-time VM rental of diverse offerings
 - VM types and sizes
 - Contract types (e.g., reliable/on-demand, dynamically-priced/spot,...)

How can we take advantage of diverse offerings and virtual cluster elasticity to <u>lower cost of executing batch workloads?</u>

- Mgmt complex, **but** sched research has not focused on **both**
 - 1. Dynamically-sized clusters
 - 2. Clusters with wide diversity of instance types, sizes, and contracts

- **Property 1:** Wasted resource-time is wasted money
 - Money-saving key: Minimize <u>resource-time "bubbles"</u>
 - 1. Resource-cost-awareness: Pick right-sized, cost-eff VMs
 - 2. Efficiently using rental time: Keep VMs highly utilized when rented, release VMs if no pending tasks

Empty VM

Task slot	 Task slot
Taek elot	 Task slot
	 Task slot

- **Property 1:** Wasted resource-time is wasted money
 - Money-saving key: Minimize <u>resource-time "bubbles"</u>
 - 1. Resource-cost-awareness: Pick right-sized, cost-eff VMs
 - 2. Efficiently using rental time: Keep VMs highly utilized when rented, release VMs if no pending tasks

- **Property 1:** Wasted resource-time is wasted money
 - Money-saving key: Minimize <u>resource-time "bubbles"</u>
 - 1. Resource-cost-awareness: Pick right-sized, cost-eff VMs
 - 2. Efficiently using rental time: Keep VMs highly utilized when rented, release VMs if no pending tasks

- **Property 1:** Wasted resource-time is wasted money
 - Money-saving key: Minimize <u>resource-time "bubbles"</u>
 - 1. Resource-cost-awareness: Pick right-sized, cost-eff VMs
 - 2. Efficiently using rental time: Keep VMs highly utilized when rented, release VMs if no pending tasks

- **Property 1:** Wasted resource-time is wasted money
 - Money-saving key: Minimize <u>resource-time "bubbles"</u>
 - 1. Resource-cost-awareness: Pick right-sized, cost-eff VMs
 - 2. Efficiently using rental time: Keep VMs highly utilized when rented, release VMs if no pending tasks

- **Property 1:** Wasted resource-time is wasted money
 - Money-saving key: Minimize <u>resource-time "bubbles"</u>
 - 1. Resource-cost-awareness: Pick right-sized, cost-eff VMs
 - 2. Efficiently using rental time: Keep VMs highly utilized when rented, release VMs if no pending tasks
- **Property 2:** Possible to have no task queue time
 - Replaced by VM spin-up time
 - Allows bounded workload latency

Overview and goals

- Stratus: VC sched middleware for public clouds
 - Suited for collections of batch jobs
 - How to size VC and where to place tasks
- Goals: Lower the cost of executing batch workloads
 with minimum makespan impact
 - Cost-efficiency by reducing "resource bubbles"
 - Makespan-minimization by sched tasks as they arrive

Efficiently using rental time

- Ideally, all tasks assigned to VM finish at same time
 - 0% utilized (new) \rightarrow 100% utilized \rightarrow 0% utilized \rightarrow released
- Stratus packs tasks on VMs to align task runtimes
 - Does so with a new technique: *runtime binning*

Stratus: aligning task runtimes

Efficiently using rental time

- Ideally, all tasks assigned to VM finish at same time
 - 0% utilized (new) \rightarrow 100% utilized \rightarrow 0% utilized \rightarrow released
- Stratus packs tasks on VMs to align task runtimes
 - Does so with a new technique: *runtime binning*

Bad alignment of task runtimes

- RT bins: logical bins of disjoint time intervals sized exp
 - [now = 0, 1), [1, 2), [2, 4), [4, 8), [8, 16),..., and so on
- Task assigned to bin according to remaining runtime from now
 - Ex: Task A, which runs for 11 more time units, in blue bin ([8, 16))

- RT bins: logical bins of disjoint time intervals sized exp
 - [now = 0, 1), [1, 2), [2, 4), [4, 8), [8, 16),..., and so on
- Task assigned to bin according to remaining runtime from now
 - Ex: Task A, which runs for 11 more time units, in blue bin ([8, 16))
- VM assigned to bin based on longest remaining task RT
 - Ex: VM with only Task A assigned to blue bin \rightarrow blue border

- RT bins: logical bins of disjoint time intervals sized exp
 - [now = 0, 1), [1, 2), [2, 4), [4, 8), [8, 16),..., and so on
- Task assigned to bin according to remaining runtime from now
 - Ex: Task A, which runs for 11 more time units, in blue bin ([8, 16))
- VM assigned to bin based on longest remaining task RT
 - Ex: VM with only Task A assigned to blue bin \rightarrow blue border

- RT bins: logical bins of disjoint time intervals sized exp
 - [now = 0, 1), [1, 2), [2, 4), [4, 8), [8, 16),..., and so on
- Task assigned to bin according to remaining runtime from now
 - Ex: Task A, which runs for 11 more time units, in blue bin ([8, 16))
- VM assigned to bin based on longest remaining task RT
 - Ex: VM with only Task A assigned to blue bin \rightarrow blue border

- RT bins: logical bins of disjoint time intervals sized exp
 - [now = 0, 1), [1, 2), [2, 4), [4, 8), [8, 16),..., and so on
- Task assigned to bin according to remaining runtime from now
 - Ex: Task A, which runs for 11 more time units, in blue bin ([8, 16))
- VM assigned to bin based on longest remaining task RT
 - Ex: VM with only Task A assigned to blue bin \rightarrow blue border

- Packing preference for task in runtime bin β
 - VM in β > VM in greater RT bins > VM in lesser RT bins
 - Least impact to extend VM time-to-release

- Packing preference for task in runtime bin β
 - VM in β > VM in greater RT bins > VM in lesser RT bins
 - Least impact to extend VM time-to-release

- Packing preference for task in runtime bin β
 - VM in β > VM in greater RT bins > VM in lesser RT bins
 - Least impact to extend VM time-to-release

- Packing preference for task in runtime bin β
 - VM in β > VM in greater RT bins > VM in lesser RT bins
 - Least impact to extend VM time-to-release

- Packing preference for task in runtime bin β
 - VM in β > VM in greater RT bins > VM in lesser RT bins
 - Least impact to extend VM time-to-release

- Packing preference for task in runtime bin β
 - VM in β > VM in greater RT bins > VM in lesser RT bins
 - Least impact to extend VM time-to-release

Resource-cost-awareness

- Stratus performs dynamic selection of VC composition
 - Acquire new VMs only if tasks don't fit on any VMs
 - Release VMs as soon as they become empty
- Recall: diverse offerings and dynamic pricing of VMs
- **Key**: Resource-cost-aware scale-out that considers *both* packing of pending tasks & dynamic rental costs
 - Eval packing of combinations of tasks in <u>same runtime bin</u> on to candidate VMs based on cost-per-resource-<u>utilized</u>
 - Packing/scaling in isolation with another increases cost

•	• • • •	• • • • •			 • • • • •	• • • • • • •		••
•								•
								•
•								•
•								•
-								•
•								•
•								•
•								•
-								•
•								•
•								•
								•
•								•
•								•
•								•
•								•
								•
•						Pena	ing lasks	•
		• • • •	• • • • •	• • • • • • •	 	• • • • • • •	• • • • • • • •	
		・ 1 つ)	Λ		Q		
	/ V V · • • •		I Contraction of the second	' †		0		
l'arı	negie M	ellon						
'ara	Ilel Data	a Laborat	ory					

	\$-per-resou	urce-utilized: \$0.5
		Pending tasks
NOW 1 2 Carnegie Mellon Parallel Data Laboratory	4	8

		•
	\$-per-resource-utilized:	\$0.9
	Pending ta	asks
Now 1 2 Carnegie Mellon Parallel Data Laboratory	4 8	

• Mis-estimates can lead to low resource utilization

Example: 4 tasks on 2 instances

• Mis-estimates can lead to low resource utilization

Example: 4 tasks on 2 instances

• Mis-estimates can lead to low resource utilization

Example: 4 tasks on 2 instances

- Mis-estimates can lead to low resource utilization
- RT binning mitigates mis-estimates to some degree
- Adjusting mis-estimates
 - Over-estimates: No adjustment necessary (task done)
 - Under-estimates: Assume task has run for half of its runtime
- Instance-clearing: If VM experiences low utilization for extended period of time, migrate tasks and re-distribute

Experimental setup

- Simulation-based experiments
 - Workloads: Google and TwoSigma cluster traces
- Focus on batch jobs
 - Filter out jobs running > 1 day
- EC2 spot market for dynamically-priced markets
 - Same family VMs for comparable perf

Evaluation: Normalized cost

Fleet (Spot Fleet + ECS, Amazon offerings)

LowestPrice + BinPack policy

Evaluation: Normalized cost

Stratus

• 17% (Google) and 22% cost reduction (TwoSigma)

Summary

- Packing/scaling heuristics based on runtime binning
 - Allows for high utilization of resources during rental period
- Scale VC by simultaneous consideration of possible packings and available instance types and prices
 - Indep consideration of packing/scaling leads to higher cost
- ~17% cost reduction on Google and TwoSigma traces compared to next-best evaluated scheduler
 - Attains high resource utilization