Henge: Intent-Driven Multi-Tenant Stream Processing

Faria Kalim, Le Xu, Sharanya Bathey, Richa Meherwal, Indranil Gupta Distributed Protocols Research Group

Department of Computer Science University of Illinois at Urbana Champaign

Henge allows stream processing jobs to satisfy user-specified performance requirements

while reducing costs

by performing online **resource reconfigurations** in a multi-tenant environment.

A Typical Deployment

A Typical Deployment

Low level metrics e.g., queue sizes, CPU load as performance

A Typical Deployment

Low level metrics e.g., queue sizes, CPU load as performance

A Typical Deployment

Low level metrics e.g., queue sizes, CPU load as performance

Efficient resource usage across multiple users → Multi-tenancy

Efficient resource usage across multiple users

→ Multi-tenancy

Application-aware adaptation to user requirements

→ Intent-driven Multi-tenancy

Efficient resource usage across multiple users

 \rightarrow Multi-tenancy

Application-aware adaptation to user requirements

 \rightarrow Intent-driven Multi-tenancy

Service Level Job Description **Objective** (SLO)

Latency < 5 sFinding ride price 1

2 Analyzing Throughput > earnings over 10K/hr.

ŏ

Problem

How can we achieve user-facing service level objectives for stream processing jobs on multi-tenant clusters?

Problem

How can we achieve user-facing service level objectives for stream processing jobs ``, on multi-tenant clusters? ``, Latency, Throughput

Workload Variability

Workload Variability

Workload Variability

Workload Variability

Job Operations

Job Operations

Juice: <u>fraction</u>* of the input data processed by the job per unit time.

Jobs benefit even below SLO threshold

Job Utility Functions

Jobs benefit even below SLO threshold

Job Utility Functions

Background: Stream Processing Topologies (Jobs)

Logical DAG for a Word Count Job

Star Topology

Background: A Physical Deployment

Background: A Physical Deployment

Henge's Cluster-Wide State Machine

Total System Utility < Total Expected Utility

Henge's Cluster-Wide State Machine

Reconfiguration

De-congest operator by increasing parallelism level of executors

Reconfiguration

De-congest operator by increasing parallelism level of executors 3) **Black-list** topologies that show less than Δ % improvement

Bottlenecks

Reduction

Reduction

Reconfigurations \rightarrow drop in utility

Reduction

Reconfigurations \rightarrow drop in utility If high CPU load on majority of machines, **reduce** parallelism for operators that

a) are in topologies that satisfy their SLO

b) are not congested

Reversion

Reconfigurations \rightarrow drop in utility *and reduction is not possible* **Revert** to a past configuration that provided best utility

Evaluation

Real-world workloads: Yahoo! Twitter Web log traces Experimental Setup: 10-40 node Emulab cluster

Reducing cost and achieving high utilities

Reducing cost and achieving high utilities

Reducing cost and achieving high utilities

Adapting to a Diurnal Pattern

Can Henge do better than manual configuration?

Can Henge do better than manual configuration?

Scaling Cluster Size

Scaling Cluster Size

More Results

Henge can: handle dynamic workloads abrupt e.g., spikes & natural fluctuations gradual e.g., diurnal patterns satisfy hybrid SLOs scale with number of jobs & cluster size gracefully handle failures

Summary

- Henge allows users to specify performance intents for their jobs
- Henge's goal is to maximize cluster-wide utility
- The scheduler performs fine-grained **reconfigurations** to allow stream processing jobs to meet user-specified intents