
http://dprg.cs.uiuc.edu/

Henge: Intent-Driven  
Multi-Tenant Stream Processing

Faria Kalim, Le Xu, Sharanya Bathey, Richa Meherwal, Indranil Gupta
Distributed Protocols Research Group

Department of Computer Science

University of Illinois at Urbana
Champaign

 1

Henge allows stream processing jobs to satisfy
user-specified performance requirements

while reducing costs

 by performing online resource reconfigurations in
a multi-tenant environment.

 2

A Typical Deployment

 3

Job 1

Job 2

Job 3

Job 4

Per-job clusters !
overprovisioning

 4

Job 1

Job 2

Job 3

Job 4

Low level metrics e.g., queue sizes, CPU load as performance
indicators

A Typical Deployment

 4

Job 1

Job 2

Job 3

Job 4

Low level metrics e.g., queue sizes, CPU load as performance
indicators

A Typical Deployment

 4

Job 1

Job 2

Job 3

Job 4

Low level metrics e.g., queue sizes, CPU load as performance
indicators

A Typical Deployment

Manual scaling

Intent-Driven Multi-Tenancy

 5

Intent-Driven Multi-Tenancy

Efficient resource usage across multiple users
➔ Multi-tenancy

 5

...

Intent-Driven Multi-Tenancy

 6

Efficient resource usage across multiple users
➔ Multi-tenancy

Application-aware adaptation to user requirements
➔ Intent-driven Multi-tenancy

Intent-Driven Multi-Tenancy

 6

Job Description Service Level
Objective

(SLO)
1 Finding ride price Latency < 5 s

2 Analyzing
earnings over

time

Throughput >
10K/hr.

CPU Load, Queue Sizes …

...

Efficient resource usage across multiple users
➔ Multi-tenancy

Application-aware adaptation to user requirements
➔ Intent-driven Multi-tenancy

Problem

 7

How can we
achieve user-facing service level objectives

for stream processing jobs
on multi-tenant clusters?

Problem

 7

How can we
achieve user-facing service level objectives

for stream processing jobs
on multi-tenant clusters?

Latency,
Throughput

Day 1 Day 2

Absolute Throughput SLOs are not Useful

Workload Variability

Ra
te

 (
Tu

pl
es

/s
)

Day 1 Day 2

 8

Day 1 Day 2

Absolute Throughput SLOs are not Useful

Workload Variability

SLO?

Ra
te

 (
Tu

pl
es

/s
)

Day 1 Day 2

 8

Day 1 Day 2

Absolute Throughput SLOs are not Useful

Workload Variability

SLO?

Ra
te

 (
Tu

pl
es

/s
)

Day 1 Day 2

 8

Day 1 Day 2

Absolute Throughput SLOs are not Useful

Workload Variability

SLO?

Ra
te

 (
Tu

pl
es

/s
)

Day 1 Day 2

 8

Day 1 Day 2

Absolute Throughput SLOs are not Useful

Workload Variability

SLO?

Ra
te

 (
Tu

pl
es

/s
)

Input

Output

Day 1 Day 2

 8

 9

Filter

…

…

Job Operations

Absolute Throughput SLOs are not Useful

 9

Filter

…

…

Job Operations

Juice: fraction* of the input data processed by the job per unit
time.

Absolute Throughput SLOs are not Useful

Jobs benefit even below SLO threshold

Job Utility Functions

 10

Expected
Utility

Latency
SLO
Threshold

Current
Utility

Utility function for a single job

Jobs benefit even below SLO threshold

Job Utility Functions

 10

Expected
Utility

Latency
SLO
Threshold

Current
Utility

Utility function for a single job

Jobs benefit even below SLO threshold

Job Utility Functions

 10

Henge’s goal ! Maximize the total utility of the
cluster

Background: Stream Processing Topologies
(Jobs)

Splitte
r

Coun
t

Operators

Spou
t

 11

Logical DAG for a Word Count Job

 12

Sink

Bolt

Bolt

Bolt

Spout Bolt

Spout

Spout

Spout

Sink

Sink

Sink

Diamond
Topology

Star Topology

Spou
t Splitter

Coun
t

Spou
t

Splitte
r

Coun
t

Coun
t

Coun
t

[“So”]
[“it”]
[“goes”]
…

[“goes”]

[“So it goes…”]

[“it”]

Background: Stream Processing Jobs
[“So”]

Executors
(Threads)

 13

Spou
t Splitter

Coun
t

Spou
t

Splitte
r

Coun
t

Coun
t

Coun
t

[“So”]
[“it”]
[“goes”]
…

[“goes”]

[“So it goes…”]

[“it”]

Background: Stream Processing Jobs
[“So”]

Executors
(Threads)

 13

Parallelism ! 2

 14

Background: A Physical Deployment

 14

Background: A Physical Deployment

Spout Splitter

Count Count

Workers

Henge’s Cluster-Wide State Machine

 15

Converged

 Total System Utility < Total Expected
Utility

Not
Converged

Henge’s Cluster-Wide State Machine

 15

Converged

 Total System Utility < Total Expected
Utility

Not
Converged

Reconfiguration
Reversion or

Reconfiguration

Reduction

Reconfiguration

 16

De-congest operator by increasing parallelism level of executors

1) Reconfiguration

Converged

2) Reconfiguration

Not
Converged

Reconfiguration

 16

De-congest operator by increasing parallelism level of executors
3) Black-list topologies that show less than Δ% improvement

1) Reconfiguration

Converged

2) Reconfiguration

Not
Converged

 17

SplitterSpout

Count Count

Workers

Bottlenecks

 18

Spout Splitter

Count Count

Workers

Splitter Splitter

Reconfiguration

Reconfigs.

Bottlenecks

 19

Spout Splitter

Count Count

Workers

Splitter Splitter

Reconfigs.

High
Load

Bottlenecks

 19

Spout Splitter

Count Count

Workers

Splitter Splitter

Reconfigs.

High
Load

Bottlenecks SLO-Satisfying Job

 20

Reconfigs.

High
Load

Reduction

Bottlenecks

 20

Reduction

Reconfigs.

High
Load

Reduction

Bottlenecks

Reduction

 21

Reconfigurations ! drop in utility

Not
Converged

Reduction

Reduction

 21

Reconfigurations ! drop in utility
If high CPU load on majority of machines, reduce parallelism for
operators that
 a) are in topologies that satisfy their SLO
 b) are not congested

Not
Converged

Reduction

Reversion

 22

Reconfigurations ! drop in utility and reduction is not possible
 Revert to a past configuration that provided best utility

Converged

Reversion

Not
Converged

Evaluation

 23

Real-world workloads:
 Yahoo!
 Twitter
 Web log traces

Experimental Setup:
 10-40 node Emulab cluster

Reducing cost and achieving high utilities

 24

Reducing cost and achieving high utilities

 24

93.5% utility at 40%
resources

Reducing cost and achieving high utilities

 24

93.5% utility at 40%
resources

100% utility at 60%
resources

 25

Adapting to a Diurnal Pattern

 25

Day 1 Day 2

 25

Reconfigurations

Max. Utility

Day 1 Day 2

Day 1 Day 2

 25

Reconfigurations

Max. Utility

Day 1 Day 2

Day 1 Day 2

Fewer reconfigurations are
required once a job has
adjusted to max load

 26

Can Henge do better than manual
configuration?

Henge does better in the
15th to 45th percentile,
and is comparable later.

 26

Can Henge do better than manual
configuration?

Scaling Cluster Size

 27

Scaling Cluster Size
Limited resources entail
more reconfigurations to

reach max. utility

 27

More Results

Henge can:
 handle dynamic workloads
 abrupt e.g., spikes & natural fluctuations
 gradual e.g., diurnal patterns
 satisfy hybrid SLOs
 scale with number of jobs & cluster size
 gracefully handle failures

 28

Summary

• Henge allows users to specify performance intents for their
jobs
• Henge’s goal is to maximize cluster-wide utility
• The scheduler performs fine-grained reconfigurations to allow

stream processing jobs to meet user-specified intents

 29

