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Cloud	Computing	Programs	

Open	Source	Data-Intensive	Scalable	Computing	(DISC)	
Platforms:	Hadoop	MapReduce	and	Spark	
◦ functional	API
◦ map	and reduce	User-Defined	Functions
◦ RDD	transformations	(filter,	flatMap,	zipPartitions,	etc.)	

Several	years	later,	introduction	of	high-level	SQL-like		
declarative	query	languages	(and	systems)
◦ Conciseness
◦ Pick	a	physical	execution	plan	from	a	number	of	alternatives



Query	Optimization
Two	steps	process	
◦ Logical optimizations	(e.g.,	filter	pushdown)
◦ Physical optimizations	(e.g.,	join	orders	and	implementation)

Physical	optimizer	in	RDMBS:
◦ Cost-based
◦ Data	statistics (e.g.,	predicate	selectivities,	cost	of	data	access,	etc.)

The	role	of	the	cost-based	optimizer	is	to
(1) enumerate	some	set	of	equivalent	plans
(2) estimate	the	cost	of	each
(3) select	a	sufficiently	good	plan



Query	Optimization:	Why	Important?
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Query	Optimization:	Why	Important?

Bad	plans	over	Big	Data	can	be	disastrous!



Challenges for Cost-based Optimizer	in	DISC

Lack of upfront	statistics:
◦ data	sits	in	HDFS	and	unstructured

Even	if	input	statistics	are	available:
◦ Correlations between	predicates
◦ Exponential	error	propagation	in	joins
◦ Arbitrary	UDFs
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Cost-based Optimizer	in	DISC:	State	of	the	Art

Pre-existing statistics
◦ Spark CBO[1]

Bad statistics
◦ Adaptive	Query	planning[2]

No upfront statistics
◦ Pilot	runs	(samples)[3]

Assumption	is	that	some	initial	
statistics	exist

• Samples	are	expensive
• Only	foreign-key	joins
• No	runtime	plan	revision

• Collect and store statistics
• No	runtime	plan	revision



Traditional Query Planning VS RIOS
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Runtime	Integrated	Optimizer	for	Spark
Key	idea:	Execute-Gather-Aggregate-Plan	strategy	(EGAP)
◦ Query	plans	are	lazily executed
◦ Statistics	are	gathered	at	runtime
◦ Aggregate statistics after	gathering
◦ Joins	are	greedily planned for execution
◦ Plan can	be	dynamically	changed if	a	bad	decision was	made

Neither	upfront	statistics	nor	pilot	runs	are	required
◦ Raw	dataset	size	is	required	for	initial	guess

Support	for	not	foreign-key	joins



Runtime	Optimizer:	an	Example
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Runtime	Optimizer:	Execute	Step
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Runtime	Optimizer:	Gather	step

BA
A

C
AA

AAB

AAC

A

B

C

S

S

S

S

Assumption: A < C



U

Runtime	Optimizer:	Aggregate	step

BA
A

C
AA

AAB

AAC

A

B

C

S

S

S

S

Assumption: A < C

Driver



Runtime	Optimizer:	Plan	step
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Runtime	Optimizer:	Execute	step
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Runtime	Optimizer:	Gather	step
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Runtime	Optimizer:	Plan	step
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Runtime	Optimizer:	Execute	step
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Runtime	Optimizer:	Wrong	Guess
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Runtime	Optimizer:	Wrong	Guess
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Runtime	Optimizer:	Wrong	Guess
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Runtime	Integrated	Optimizer	for	Spark

Spark batch execution model allows late binding of joins

Set of Statistics:
◦ Join	estimations	(based	on	sampling	or	sketches)
◦ Number	of	records
◦ Average	size	of	each	record

Statistics	are	aggregated using	a	Spark	job	or	accumulators

Join	implementations	are	picked	based	on	thresholds



Challenges	and	Optimizations

Execute	- Block	and	revise	execution	plans	without	wasting	
computation

Aggregate	- Efficient	accumulation	of	statistics

Plan	- Try	to	schedule	as	many	broadcast	joins	as	possible



Experiments

Q1:	What	are	the	performance	of	RIOS	compared	to	regular	Spark,
pilot	runs and Spark-CBO?

Q2:	How	expensive	are	wrong	guesses?



Minibenchmark	with	3	Fact	Tables
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Minibenchmark	with	3	Fact	Tables

Q1:	RIOS	is	always	faster	than	Spark	and	pilot	run
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Minibenchmark	with	3	Fact	Tables

Q2:	Not	much,	around	15%	in	the	worst	case
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TPCDS	and	TPCH	Queries
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TPCDS	and	TPCH	Queries

Q1:	RIOS	is	always	the	faster	approach
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Conclusions
RIOS:	cost-based query	optimizer	for	Spark

Statistics	are	gathered	at	runtime	(no	need	for	initial	statistics	or	pilot	
runs)

Late	bind	of	joins

Up	to	2x	faster	than	the	best	plan	generated	by	pilot	run,	and	>	100X	
than	previous	approaches	for	fact	table	joins.	





Experiment	Configuration

๏ Datasets:
• TPCDS
• TPCH

๏ Configuration:
• 16 machines, 4 cores (2 hyper threads per core) 

machines, 32GB of RAM, 1TB disk
• Spark 2.2.1
• Scale factor from 1 to 1000 (~1TB)
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Thank	you


