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Data Analytics Systems

• Various workloads running in data analytics 
systems concurrently 

• The workflow of an analytics application can be 
expressed as a DAG

 2



Data Analytics Systems

• Various workloads running in data analytics 
systems concurrently 

• The workflow of an analytics application can be 
expressed as a DAG

 2



Data Analytics Systems

• Various workloads running in data analytics 
systems concurrently 

• The workflow of an analytics application can be 
expressed as a DAG

 2



Data Analytics Systems

• Various workloads running in data analytics 
systems concurrently 

• The workflow of an analytics application can be 
expressed as a DAG

 2



Data Analytics Systems

• Various workloads running in data analytics 
systems concurrently 

• The workflow of an analytics application can be 
expressed as a DAG

 3



Data Analytics Systems

• Various workloads running in data analytics 
systems concurrently 

• The workflow of an analytics application can be 
expressed as a DAG

 3

Directed Acyclic Graph (DAG)
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Resource Scheduling

• Resource schedulers for various objectives, e.g., 
fairness, cluster utilization, application completion 
time, etc.

 4



Resource Scheduling

• Resource schedulers for various objectives, e.g., 
fairness, cluster utilization, application completion 
time, etc.

 4

Efficient resource scheduling is an important 
and practical issue in data analytics systems



Current Solutions 

• Static allocation according to peak demands 

• “Task-based” resource schedulers adopted in 
“executor-based” systems 

• Assign executors to machines randomly
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Need for an Elastic Scheduler
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Executor resource usage exhibits significant 
temporal variations



Need for an Elastic Scheduler
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Resource CPU Memory Network Disk

Terasort

Peak/Avg. 1.8 1.7 6.2 1.5

Peak/Trough 60 3.3 237 6.1

K-means

Peak/Avg. 1.7 1.2 11.5 5.6

Peak/Trough 75 6 53 100

Pagerank
Peak/Avg. 3.9 1.3 20.2 9.1

Peak/Trough 50 11.5 119 50

Logistic Regression

Peak/Avg. 2.1 1.4 5.5 6.1

Peak/Trough 50 12 409.6 42.5
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Resource CPU Memory Network Disk

Terasort

Peak/Avg. 1.8 1.7 6.2 1.5

Peak/Trough 60 3.3 237 6.1

K-means

Peak/Avg. 1.7 1.2 11.5 5.6

Peak/Trough 75 6 53 100

Pagerank
Peak/Avg. 3.9 1.3 20.2 9.1

Peak/Trough 50 11.5 119 50

Logistic Regression

Peak/Avg. 2.1 1.4 5.5 6.1

Peak/Trough 50 12 409.6 42.5

Static allocation using peak demands would cause 
severe resource wastage and performance issues



Our Idea
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Dynamically allocate and explicitly size resources to 
executors over time, and strategically assign 

executors to machines
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Dynamically allocate and explicitly size resources to 
executors over time, and strategically assign 

executors to machines

Elasecutor, a novel executor scheduler for 
data analytics systems



Outline

• Motivation 

• Elasecutor Design 
‒Elastic Executor Scheduling 
‒Demand Prediction 
‒Dynamic Reprovisioning 

• Implementation 

• Evaluation 

• Conclusion
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Elastic Executor Scheduling

• Challenge 
− Scheduling executors with their multi-resource demand 

time-series 
−Multi-dimensional packing 
−APX-hard 
−Analyzed in detail in section 3.2.1 

• Objective 
−Minimizing makespan 
− i.e., avoid resource underutilization and minimize 

machine-level resource fragmentation
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Elastic Executor Scheduling - DRR

• Dominant Remaining Resource: “dominant” = 
“maximum” 

• An example: We select  as the time point to 
calculate DRR for machine 1.  and  , and its DRR is 
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DRR is defined as the maximum remaining resource 

along the time dimension up to time 𝑡



Why DRR

• Convert multi-dimensional metrics into scalars 

• Better reflect resource utilization 
− “Maximum”, not “Minimum” 

• Better than alternative metric TRC 
− TRC sums up the relative remaining capacity of each 

resource
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Improvement of DRR over TRC as an alternative metric for executor placement



Elastic Executor Scheduling - MinFrag

• Base on BFD (Best Fit Decreasing) 

• Iteratively assigning the “largest” executor to a 
machine that yields the minimum DRR
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Heartbeat 
received

Search executors in the 
queue

Calculate DRR for any executor 
placed on the machine

Choose the one producing 
minimum DRR to schedule

Update placement 
results

Termination

Repeat the 
process



Elastic Executor Scheduling - MinFrag
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(a) Available resources of machine 

(b) Resource demands of executor 1

(c) Resource demands of executor 2

𝐷𝑅𝑅(1,𝑗) = max{ 53
112

,
165
448

 } =
53
112

𝐷𝑅𝑅(2,𝑗) = max{ 13
32

,
43
128

 } =
13
32



Prediction Module

• Recurring workloads 
−Average resource time series of the latest 3 runs as the 

prediction result 

• New workloads 
− Support Vector Regression
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Dynamic Reprovisioning

• To prevent possible prediction errors and 
unpredicted issues 

• Mechanism 
−Monitoring stage execution time  
−Once observing  longer than 1.1x expected one 
−Allocating all remaining resource to the executor for 

one monitoring period
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Implementation

• Spark 2.1.0 

• Allocation Module (Cgroups, modified OpenJDK) 

• Scheduling Module 

• Resource Usage Depository 

• Reprovisioning Module 

• Prediction Module 

• Monitor Surrogate
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Elasecutor System
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Testbed Experiments

• Testbed Setup 
‒35 dell servers  
‒Each server with two CPUs, 64GB RAM, and a quad-port 

10GbE NIC 
‒A 10GbE Switch 

• Methodology 
‒120 recurring applications with different workloads, 

input data sizes, and resource settings 
‒12 new applications 
‒Arriving according to a Poisson process
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Schemes Compared

• Static 
− Statically allocating CPU and memory for each executor 

based on peak demands 
− Launching a fixed number of executors 

• Dynamic 
− Scaling the number of executors dynamically,  
− each executor allocated a multiple of <1 core, 2GB 

RAM> 

• Tetris (SIGCOMM’14) 

−Allocating peak demanded resources to executors 
−BFD-like algorithm for executor placement
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Evaluation - Makespan
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applications

(a) Makespan Reduction (b) Stability of makespan
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Makespan measures the total time used to complete all 
applications

(a) Makespan Reduction (b) Stability of makespan

High makespan reduction and more stable 
performance guarantee



Evaluation - ACT
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The CDFs of reduction in application completion time
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The CDFs of reduction in application completion time

Significant ACT improvement and more consistent 
application level performance



Evaluation - Resource Utilization
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Evaluation - Microbenchmark 
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CDFs of reductions in ACT and AET by comparing Elasecutor 
with and without reprovisioning module
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CDFs of reductions in ACT and AET by comparing Elasecutor 
with and without reprovisioning module

Reprovisioning is important for prediction based 
resource schedulers to improve application QoS 



Conclusion

• Elasecutor 
− Elastically allocating resources to avoid overallocation 
−Placing executors strategically to minimize multi-

resource fragmentation 

• Experiment results 
−Reducing makespan by more than 42% on average  
−Reducing the median application completion time by 

up to 40% 
− Improving cluster resource utilization by up to 55%
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Thanks! 
Q & A
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Overhead
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Monitor surrogate ‘s resource consumption 

Resource scheduler’s processing delay



Predictability

• Workloads: Sort, WordCount, Terasort,  Bayes, K-
means, LR, PageRank, NWeight
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Statistical analysis of CoVsThe CDFs of coefficient of 
variations 
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Statistical analysis of CoVsThe CDFs of coefficient of 
variations 

5.5
For most recurring workloads, it is accurate enough 
to use the profiling results from previous runs with 

the same setting to represent the resource 
demands



Resource Utilization
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Tetris Elasecutor



Resource Utilization
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Tetris Elasecutor

Utilize resource efficiently and save cost for 
operators


