
The Elasticity and Plasticity in Semi-Containerized Co-
locating Cloud Workload: a view from Alibaba Trace

Qixiao Liu* and Zhibin Yu

Shenzhen Institute of Advanced Technology

Chinese Academy of Science

@SoCC 2018, Carlsbad, CA, U.S.A

1

Introduction

• Challenges in the cloud computing
– Low resource utilization
– Tail latency
– IRU-QoS dilemma
– Task scheduling, resource management, programming diagram, etc.

• Traces from industrial production environment
– The Google trace released in 2011

• 12.7m machines, 670k jobs (mixed workload), 29 days.

– Alibaba released in 2017
• 1.3k machines, 23k jobs (also mixed workload), in 1 day.

2

Fraction External

Google trace vs. Alibaba trace
• Google trace

1. Server heterogeneity

2. Priority information

3. Server failure

4. Mixed workload (production
and non-production), but are

 ‘equal’ as jobs

• Alibaba trace
1. All servers are equipped with 64 CPUs,

>99% of servers: same memory and
disk capacities.

2. No priority information

3. Negligible server failures

4. Online services and batch jobs are
traced separately

More elaborative views into the co-location
3

• Elasticity
– resist a distorting influence and

to return to its original size and
shape when that influence or
force is removed*

• Plasticity
– non-reversible changes of shape

in response to applied forces*

* Elasticity, plasticity (physics), wikipedia

4

Elastic computing

100%

0

Resource

Resource need

Resource provision

5

Elastic computing

100%

0

Resource

Resource need

Resource provision

6

Elastic computing in co-location

100%

0

Resource

Resource need

Resource provision

Resource used by

batch tasks

Task eviction

7

Resource utilization Batch job performance ?

Ideal elastic computing in co-location
 plus plasticity

100%

0

Resource

Resource need

Resource provision

Resource used by

batch tasks

8

Outline

• Trace overview

• Shape the workload

• Statistics analysis of containers and batch jobs

• Co-location analysis

• Discussion

• Conclusion

9

Alibaba cluster management architecture

• Mixed workload
– Online services

– Batch jobs

• Mixed entities (semi-containerization)
– Container

– Tasks

• Mixed architecture
– Concurrent schedulers: Sigma and Fuxi

– Level0-controller

– Novelty?

10

technical

legacy

It is in production.

Trace structure

Servers

Containers

Batch jobs

Static information:
ID, Machine ID;
Req CPU/mem/disk;
Create time;
Allocated CPU ID.

Static information:
Jobid/taskid;
Create/end time;
Req CPU/memory;
Status, #instance.

Static information:
Machine ID;
Config. CPU/mem/Disk;
Event and time.

Runtime statistics:
Container ID;
Sample point;
Used CPU/mem/disk;
CPU load, CPI,
mem miss.

Runtime statistics:
Jobid/taskid;
Instance start/end time;
Status;
Sequence;
Used CPU/memory

Runtime statistics:
Machine ID;
Sample point;
Used CPU/mem/disk;
CPU load, CPI,

Sampled every
5min

Sampled every
5min

Execution based

11

Outline

• Trace overview

• Shape the workload

• Statistics analysis of containers and batch jobs

• Co-location analysis

• Discussion

• Conclusion

12

Container
• 11089 containers, each runs one online service, for 24 hours

• Container requests CPUs, memory and disk
– Req. #CPU: 1, 4, 6, 8, 16
– Memory capacity (normalized): 0.002 to 0.318
– Disk capacity (normalized): 3e-11 to 0.113
– 25 <CPU, memory, disk> patterns for all containers, 19 are valid.

• Requested resource over server capacity (ROC):

 (Resource_req/Server capacity)*100%

CPU Memory Disk

ROC 9.5% 10.9% 4.9%

ROC SD 4.4% 8.8% 2.1%

13

Batch job
• Batch job structure: job, task, instance

• Job->task: DAG

• Task->instance: same computing logic, resource request

Batch job

Batch task Batch task

Batch
instance

Batch
instance

DAG

Same computing
logic

12.9k

80k

11.9m
14

Batch job
• Batch task requests CPU and memory

– #CPU: 0.45 to 8 (14 values in total, 0.05 basic unit)
– Memory: 0.0027 to 0.1273 (750 values)
– 989 <CPU, memory> patterns in 80k tasks

• Batch instance status:
– Failed, interrupted, ready, running, terminated, wait
– Failed/interrupted rate are 1.5%

• Google trace: ‘half submissions are resubmissions’

CPU Memory

ROC 0.8% 0.9%

ROC SD 0.5% 0.7%

15

Outline

• Trace overview

• Shape the workload

• Runtime statistics analysis of containers and batch jobs

• Co-location analysis

• Discussion

• Conclusion

16

Container resource utilization

– Resource overprovisioning
– Max vs. average resource used

• steady memory and disk utilization, but CPU varies significantly

Reserved but not used Avg. used max used

16 8 4 Mem A B C B Disk A C

CPU Memory Disk

17

0

1

2

3

4

L H L H

4 CPU 8 CPU

0

0.05

0.1

0.15

0.2

L H L H

4 CPU 8 CPU

Container performance

- Containers are guaranteed resources when load rises;

- Higher load increases resource utilization, but not hurting the
performance.

L/H: low /high

CPU utilization

18

CPI CPU load

Batch instance resource utilization

– Resource overcommit, the amount of its actual used resources is greater
than that it requested at submission.

– Both CPU and memory overcommit.

CPU utilization Memory utilization

19

Incremental resource allocation in Fuxi

• FUXI, VLDB 2014

20

Incremental resource allocation in Fuxi

• FUXI, VLDB 2014

• Start to run a batch instance
with its initial resource request,
increase its allocation when
more resources become
available.

• Batch instance with lower
resource request has a better
chance get to run

21

• Local queue in node

• Resource request:
– Initial resource request (low)

– Actual (peak) request (high)

0.1

1

10

100

1000

S
ta

rt
 D

el
ay

p
er

 t
as

k
(s

)

Cluster wide resource allocation efficiency

Instances from the same task, get scheduled at the same time
Start delay:

SD = 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒𝑖 −𝑅𝑒𝑓_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒𝑇

22

#servers: 1313

#instances per

task

Cluster wide resource allocation efficiency

23

0.1

1

10

100

1000
Mean SD

Max SD

 S
ta

rt
 D

el
ay

 (
s)

#instances per

task

The latest one most likely delay the result delivery of the task/job

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32

Cluster-wide batch instance performance

Normalized instance latency:
NIL = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑖/𝑅𝑒𝑓_𝑡𝑖𝑚𝑒𝑇

• most tasks have their avg NIL below 3.
 24

The mean NIL

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32

Mean NIL Max NIL

N
IL

 d
is

tr
ib

u
ti

o
n

Cluster-wide batch instance performance

• the max NIL of few tasks deviate from the average.

25

Outline

• Trace overview

• Shape the workload

• Statistics analysis of containers and batch jobs

• Co-location analysis

• Discussion

• Conclusion

26

Container deployment

Containers reserve resources
- 0~64 CPUs;
- 0~150% memory; overbooking
- 0~60% disk.

CPU

Memory

Disk

- Containers are deployed using different
policies;
- CPU remains the main constraint.

27

#
S

er
v
er

s

Batch instance scheduling in the co-location

BO: Batch instance only servers
CA, CB, CC: low, medium, full resources
reserved by containers

No obvious difference to schedule a
batch instance in the cluster:
- Similar accumulated instance

execution time on all servers,
although BO has more batch
instances running.

28

0

5000

10000

15000

BO CA CB CC

#batch instances

320
340
360
380
400

BO CA CB CC

Instance execution

time (hours)

Resource allocate to batch instances

Max #CPU allowed for batch instances to
use on servers does not depend on the
#CPU used by containers.

-32

-24

-16

-8

0

8

16

24

32

Max #CPU used by

containers on each server

(sampled every 5 min)

Max #CPU used by batch a

instance on each server (max

CPUs during execution)

29

Resource utilization in the cluster

30

0%
10%
20%
30%
40%
50%
60%
70%

CPU Memory Disk Container
R

es
o

u
rc

e
u
se

d

BO CA CB CC

Outline

• Trace overview

• Shape the workload

• Statistics analysis of containers and batch jobs

• Co-location analysis

• Discussion

• Conclusion

31

Discussion

• Elasticity
– Resource overprovisioning (containers).
– Resource overcommitment (batch instances).
– Resource overbooking.

• Plasticity
– Very low task eviction rate in the cluster (1.5%).
– Accumulated batch instance execution time on most servers is similar.
– SD increases radically when a task owns more than 1000 instances (there

are 1313 servers).
– No obvious difference between the maximum allowed #CPU for batch

instance to use on most servers

32

Outline

• Trace overview

• Shape the workload

• Statistics analysis of containers and batch jobs

• Co-location analysis

• Discussion

• Conclusion

33

Conclusion

• Alibaba presents a trace, using semi-containerized cluster
management

• Concurrent traces for online services and batch jobs allow more
elaborative characterization of the mixed workload

• Elasticity and plasticity in the cluster management promoted the batch
job performance.

Thanks for attention!! Also @poster

34

