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Introduction 

• Challenges in the cloud computing 
– Low resource utilization  
– Tail latency 
– IRU-QoS dilemma 
– Task scheduling, resource management, programming diagram, etc. 

• Traces from industrial production environment 
– The Google trace released in 2011 

• 12.7m machines, 670k jobs (mixed workload), 29 days. 

– Alibaba released in 2017 
• 1.3k machines, 23k jobs (also mixed workload), in 1 day. 
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Google trace vs. Alibaba trace  
• Google trace 

1. Server heterogeneity 
 
 

2. Priority information 
 

3. Server failure 
 

4. Mixed workload (production 
and non-production), but are  

      ‘equal’ as jobs 
 

 
 

• Alibaba trace 
1. All servers are equipped with 64 CPUs, 

>99% of servers: same memory and 
disk capacities. 

2. No priority information 
 

3. Negligible server failures 
 

4. Online services and batch jobs are 
traced separately 
 

More elaborative views into the co-location 
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• Elasticity 
– resist a distorting influence and 

to return to its original size and 
shape when that influence or 
force is removed* 

• Plasticity 
– non-reversible changes of shape 

in response to applied forces* 

 

* Elasticity, plasticity (physics), wikipedia 
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Elastic computing in co-location  
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Resource utilization Batch job performance  ? 



Ideal elastic computing in co-location 
 plus plasticity 
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Outline 

• Trace overview 

• Shape the workload 

• Statistics analysis of containers and batch jobs 

• Co-location analysis 

• Discussion 

• Conclusion 

 

9 



Alibaba cluster management architecture 

• Mixed workload  
– Online services 

– Batch jobs 

• Mixed entities (semi-containerization) 
– Container 

– Tasks 

• Mixed architecture 
– Concurrent schedulers: Sigma and Fuxi 

– Level0-controller 

 

– Novelty?     
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Trace structure 

 
 
 

Servers 

 
 
 

Containers 

 
 
 

Batch jobs 

Static information: 
ID, Machine ID; 
Req CPU/mem/disk; 
Create time; 
Allocated CPU ID. 

Static information: 
Jobid/taskid; 
Create/end time; 
Req CPU/memory; 
Status, #instance. 

Static information: 
Machine ID; 
Config. CPU/mem/Disk; 
Event and time. 

Runtime statistics: 
Container ID; 
Sample point; 
Used CPU/mem/disk; 
CPU load, CPI,  
mem miss. 

Runtime statistics: 
Jobid/taskid; 
Instance start/end time; 
Status; 
Sequence; 
Used CPU/memory 

Runtime statistics: 
Machine ID; 
Sample point; 
Used CPU/mem/disk; 
CPU load, CPI,  

Sampled every 
5min 

Sampled every 
5min 

Execution based 
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Outline 

• Trace overview 

• Shape the workload 

• Statistics analysis of containers and batch jobs 

• Co-location analysis 

• Discussion 

• Conclusion 
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Container 
• 11089 containers, each runs one online service, for 24 hours 

• Container requests CPUs, memory and disk 
– Req. #CPU: 1, 4, 6, 8, 16 
– Memory capacity (normalized):  0.002 to 0.318 
– Disk capacity (normalized):  3e-11 to 0.113 
– 25 <CPU, memory, disk> patterns for all containers, 19 are valid. 

• Requested resource over server capacity (ROC):  

   (Resource_req/Server capacity)*100% 
 
 

CPU Memory Disk 

ROC 9.5% 10.9% 4.9% 

ROC SD 4.4% 8.8% 2.1% 
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Batch job 
• Batch job structure: job, task, instance 

• Job->task: DAG 

• Task->instance: same computing logic, resource request 

Batch job 

Batch task Batch task 

Batch 
instance 

Batch 
instance 

DAG 

Same computing 
logic 

12.9k 

80k 

11.9m 
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Batch job 
• Batch task requests CPU and memory 

– #CPU: 0.45 to 8 (14 values in total, 0.05 basic unit) 
– Memory: 0.0027 to 0.1273 (750 values) 
– 989 <CPU, memory> patterns in 80k tasks 

 
 
 

• Batch instance status: 
– Failed, interrupted, ready, running, terminated, wait  
– Failed/interrupted rate are 1.5% 

• Google trace: ‘half submissions are resubmissions’ 

CPU Memory 

ROC 0.8% 0.9% 

ROC SD 0.5% 0.7% 
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Outline 

• Trace overview 

• Shape the workload 

• Runtime statistics analysis of containers and batch jobs 

• Co-location analysis 

• Discussion 

• Conclusion 
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Container resource utilization 

– Resource overprovisioning 
– Max vs. average resource used 

• steady memory and disk utilization, but CPU varies significantly 
 

Reserved but not used Avg. used max used 

16 8 4 Mem A B C B Disk A C 

CPU Memory Disk 
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Container performance 

- Containers are guaranteed resources when load rises; 

- Higher load increases resource utilization, but not hurting the 
performance. 

L/H: low /high 

CPU utilization 
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Batch instance resource utilization 

– Resource overcommit, the amount of its actual used resources is greater 
than that it requested at submission. 

– Both CPU and memory overcommit. 
 

CPU utilization Memory utilization 
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Incremental resource allocation in Fuxi  

• FUXI, VLDB 2014 
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Incremental resource allocation in Fuxi  

• FUXI, VLDB 2014 

 

• Start to run a batch instance 
with its initial resource request, 
increase its allocation when 
more resources become 
available. 

 

• Batch instance with lower 
resource request has a better 
chance get to run 
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• Local queue in node 

 

• Resource request: 
– Initial resource request (low) 

– Actual (peak) request (high) 
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Cluster wide resource allocation efficiency  

Instances from the same task, get scheduled at the same time 
Start delay: 

SD = 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒𝑖 −𝑅𝑒𝑓_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒𝑇 
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Cluster wide resource allocation efficiency  
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#instances per 

task 

The latest one most likely delay the result delivery of the task/job 
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Cluster-wide batch instance performance 

Normalized instance latency: 
NIL = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑖/𝑅𝑒𝑓_𝑡𝑖𝑚𝑒𝑇 

 
• most tasks have their avg NIL below 3.  
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The mean NIL 
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Cluster-wide batch instance performance 

• the max NIL of few tasks deviate from the average.  
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Outline 

• Trace overview 

• Shape the workload 

• Statistics analysis of containers and batch jobs 

• Co-location analysis 

• Discussion 

• Conclusion 
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Container deployment 

Containers reserve resources  
- 0~64 CPUs; 
- 0~150% memory; overbooking 
- 0~60% disk. 

CPU 

Memory 

Disk 

- Containers are deployed using different 
policies; 
- CPU remains the main constraint. 
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Batch instance scheduling in the co-location 

BO: Batch instance only servers 
CA, CB, CC: low, medium, full resources 
reserved by containers 
 
No obvious difference to schedule a 
batch instance in the cluster: 
- Similar accumulated instance 

execution time on all servers, 
although BO has more batch 
instances running. 
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Resource allocate to batch instances 

Max #CPU allowed for batch instances to 
use on servers does not depend on the 
#CPU used by containers. 
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Resource utilization in the cluster 
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Outline 

• Trace overview 

• Shape the workload 

• Statistics analysis of containers and batch jobs 

• Co-location analysis 

• Discussion 

• Conclusion 
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Discussion 

• Elasticity 
– Resource overprovisioning (containers). 
– Resource overcommitment (batch instances). 
– Resource overbooking. 

• Plasticity 
– Very low task eviction rate in the cluster (1.5%). 
– Accumulated batch instance execution time on most servers is similar. 
– SD increases radically when a task owns more than 1000 instances (there 

are 1313 servers). 
– No obvious difference between the maximum allowed #CPU for batch 

instance to use on most servers 
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Outline 

• Trace overview 

• Shape the workload 

• Statistics analysis of containers and batch jobs 

• Co-location analysis 

• Discussion 

• Conclusion 
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Conclusion 

• Alibaba presents a trace, using semi-containerized cluster 
management 

 

• Concurrent traces for online services and batch jobs allow more 
elaborative characterization of the mixed workload 

 

• Elasticity and plasticity in the cluster management promoted the batch 
job performance. 

 

Thanks for attention!! Also @poster 
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