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- DNN training 1s computationally expensive
- Needs to train it in distributed fashion
- People use cloud for DDNN training

Major cloud providers all have an ecosystem for cloud-
pbased DDNN training.



Distributed Training
INDEPENDENT FORWARD/BACKWARD PASSES +
COORDINATED PARAMETER EXCHANGE
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Distributed Training
INDEPENDENT FORWARD/BACKWARD PASSES +
COORDINATED PARAMETER EXCHANGE
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Cloud-based Distributed Training Today
IN THE CONTEXT OF THE CLOUD
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Cloud-based Distributed Training Today
FORWARD AND BACKWARD PASSES IN WORKER
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Cloud-based Distributed Training Today
AGGREGATION AND OPTIMIZATION IN PS
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DDNN training iIs communication bound

Problem gets worse over
time: shifting bottleneck.
With modern GPUs most
of the time Is spent on
communication.

Making GPUs taster will
do little to increase
throughput

Wasting compute
resources.
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DDNN training iIs communication bound
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Bottlenecks in Cloud-based DDNN training
MAPPING OF TRAINING WORKLOAD TO THE CLOUD IS

INEFFICIENT.
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Bottlenecks in Cloud-based DDNN training
FRAMEWORK BOTTLENEC
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Bottlenecks in Cloud-based DDNN training
FRAMEWORK BOTTLENECKS
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Bottlenecks in Cloud-based DDNN training
MAPPING OF TRAINING WORKLOAD TO THE CLOUD IS

INEFFICIENT.
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Bottlenecks in Cloud-based DDNN training
BANDWIDTH BOTTLENECK




Bottlenecks in Cloud-based DDNN training
INSUFFICIENT BANDWIDTH

Minimum bandwidth required 1300 Gbps
for each of the popular NNs for

communication to not 1000 Gbps
bottleneck computation?

AlexNet: 1200 Gbps

8 workers, GTX 1080 Ti, central ResNet: 100 Gbps
parameter servers. MxNet

GoogleNet / Inception: 40 Gbps

25 Gbps
10 Gbps Cloud Bandwidth
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Bottlenecks in Cloud-based DDNN training
MAPPING OF TRAINING WORKLOAD TO THE CLOUD IS

INEFFICIENT.
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Bottlenecks in Cloud-based DDNN training
DEPLOYMENT-RELATED OVERHEAD
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Bottlenecks in Cloud-based DDNN training

DEPLOYMENT-RELATED OVERHEAD

* Transient congestion, or
oversubscription by design

* (Cross-rack communication
cost I1s higher than Intra-
rack communication.

 Comm. bottlenecked by
slowest link.
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Parameter Hub Optimizations
CODESIGNING SOFTWARE, HARDWARE AND CLUSTER
CONFIGURATION FOR EFFICIENT CLOUD-BASED DDNN

TRAINING

—— )

19




Eliminating framework bottlenecks:
PHub Optimizations: streamlining DDNN training pipeline
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Eliminating framework bottlenecks:
PHub Optimizations: streamlining DDNN training pipeline
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Software Optimizations
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Software Optimizations
GRADIENT AGGREGATION AND OPTIMIZATION

Great locality. No synchronization

—

—

Sequentially aggregates the
same portion of gradients
within each queue. (Tall
Aggregation)
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Software Optimizations
TALL AGGREGATION AND OPTIMIZATION

- Chunk a gradient into a series of virtual
gradients deterministically.

- A virtual gradient Is mapped to a
particular core on the server.

- Virtual gradients are transferred
Independently.

- A chunk is only processed by a single
core : maintaining maximum locality.

Aggregated

—

Core Mappings
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Gradient Array for Key 0 from 8 workers
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Software Optimizations
TALL AGGREGATION AND OPTIMIZATION

When Aggregation is done, PHub:
- PHub optimizes a chunk with the same
core that aggregates that chunk.

Aggregated

n 8 workers
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Software Optimizations
TALL AGGREGATION AND OPTIMIZATION

When Aggregation is done, PHub:

- PHub optimizes a chunk with the same
core that aggregates that chunk.

- Allows overlapping of aggregation,
optimization and gradient transmission.

Aggregated
Optimized

m 8 workers
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Software Optimizations
NOT ENOUGH ON THEIR OWN!
Typical server configuration i1s unbalanced
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Eliminating bandwidth bottlenecks:

PBox hardware: balanced computation and communication
resources.
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Eliminating bandwidth bottlenecks:
PBox hardware: balanced computation and communication
resources.
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Hardware Optimization
THE PBOX
* Balanced computation and communication

* Extends the balance and locality notion
across NUMA domains and NICs.




Hardware Optimization
THE PBOX
* Balanced computation and communication

* Extends the balance and locality notion
across NUMA domains and NICs.




Hardware Optimization
THE PBOX
* Balanced computation and communication

* Extends the balance and locality notion
across NUMA domains and NICs.




Eliminating deployment bottlenecks:

PHub hierarchical reduction: reducing cross rack traffic

Seeeeeeeeen
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Eliminating deployment bottlenecks:
PHub hierarchical reduction: reducing cross rack traffic
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PBox Deployment
RACK SCALE PARAMETER SERVICE
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PBox Deployment
RACK SCALE PARAMETER SERVICE
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Two-Phase Hierarchical Aggregation
ADAPTING TO THE DATACENTER NETWORK TOPOLOGY

Cluster
Network
N times traffic
reduction!
Rack 2. Inter-Rack
aggregation
PBox 1. Intra-Rack central PBOX
aggregation
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Up to 2.7x performance in 10Gbps cloud-
like environment

AlexNet VGG 11 VGG 19 GoogleNet Inception V3 ResNet18 ResNet50 ResNet269 ResNext 269

8 Workers. GTX 1080 Ti. MxNet: InfiniBand-enhanced baseline. PBox. Batch Size 64 for
ResNext, 128 for ResNet 269, 256 for all others.
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Framework Bottlenecks

* Data Copy
* Aggregation and Optimization
* Synchronization
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Scalability

LINEAR SCALING IN COMM. ONLY BENCHMARK
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Scalability

PCI-E TO MEMORY SUBSYSTEM BRIDGE
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Overhead

Scalability Beyond a Single Rack
EMULATING HIERARCHICAL AGGREGATION
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Cost Analysis — for infrastructure builders
25% BETTER THROUGHPUT/$
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PAUL G.
ALLEN

Parameter Hub

A software, hardware and cluster configuration codesign that target three major
bottlenecks in the cloud for more efficient DDNN training
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