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- DNN training is computationally expensive
- Needs to train it in distributed fashion
- People use cloud for DDNN training

Major cloud providers all have an ecosystem for cloud-
based DDNN training.
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Distributed Training
INDEPENDENT FORWARD/BACKWARD PASSES + 
COORDINATED PARAMETER EXCHANGE
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Cloud-based Distributed Training Today
IN THE CONTEXT OF THE CLOUD
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Cloud-based Distributed Training Today
FORWARD AND BACKWARD PASSES IN WORKER
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Cloud-based Distributed Training Today
AGGREGATION AND OPTIMIZATION IN PS
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DDNN training is communication bound
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- Problem gets worse over 

time: shifting bottleneck.
- With modern GPUs most 

of the time is spent on 
communication.

- Making GPUs faster will 
do little to increase 
throughput

- Wasting compute 
resources.
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DDNN training is communication bound
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Bottlenecks in Cloud-based DDNN training
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MAPPING OF TRAINING WORKLOAD TO THE CLOUD IS 
INEFFICIENT.
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Bottlenecks in Cloud-based DDNN training

Network 
Core

ToR

Worker 1

PS 1

ToR

PS 2

Worker 2

FRAMEWORK BOTTLENECKS

GPU

Training
Framework

…

Network

11



Bottlenecks in Cloud-based DDNN training
FRAMEWORK BOTTLENECKS
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Bottlenecks in Cloud-based DDNN training
MAPPING OF TRAINING WORKLOAD TO THE CLOUD IS 
INEFFICIENT.
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Bottlenecks in Cloud-based DDNN training
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Bottlenecks in Cloud-based DDNN training
INSUFFICIENT BANDWIDTH
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25 Gbps

10 Gbps Cloud Bandwidth

1000 Gbps

1300 Gbps

GoogleNet / Inception: 40 Gbps

ResNet: 100 Gbps

AlexNet: 1200 Gbps
Minimum bandwidth required 
for each of the popular NNs for 
communication to not 
bottleneck computation?

8 workers, GTX 1080 Ti, central 
parameter servers. MxNet



Bottlenecks in Cloud-based DDNN training
MAPPING OF TRAINING WORKLOAD TO THE CLOUD IS 
INEFFICIENT.

Network 
Core

ToR

Worker 1

PS 1

ToR

PS 2

Worker 2

16



Bottlenecks in Cloud-based DDNN training
DEPLOYMENT-RELATED OVERHEAD

Network 
Core

ToR

Worker 1

PS 1

ToR

PS 2

Worker 2

17



Bottlenecks in Cloud-based DDNN training
DEPLOYMENT-RELATED OVERHEAD

• Transient congestion, or 
oversubscription by design

• Cross-rack communication 
cost is higher than Intra-
rack communication.

• Comm. bottlenecked by 
slowest link.
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Parameter Hub Optimizations
CODESIGNING SOFTWARE, HARDWARE AND CLUSTER 
CONFIGURATION FOR EFFICIENT CLOUD-BASED DDNN 
TRAINING
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Network 
Core

Eliminating framework bottlenecks: 
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PHub Optimizations: streamlining DDNN training pipeline
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Network 
Core
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Software Optimizations
GRADIENT AGGREGATION AND OPTIMIZATION

Each core reads the input Q 
from different workers and 

writes to different locations to 
the output queue

For each input Q, launch a 
series of threads for 

aggregation. This is used in 
MxNet. (Wide Aggregation)

Requires synchronization. Great locality. No synchronization

Sequentially aggregates the 
same portion of gradients 
within each queue. (Tall 

Aggregation)

Organize processors into 
hierarchy. Perform NUMA 

aware tree reduction.

NUMA 
0

NUMA 
1

Great locality. No synchronization Too much coherence and 

synchronization
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Software Optimizations
TALL AGGREGATION AND OPTIMIZATION

- Chunk a gradient into a series of virtual 
gradients deterministically.

- A virtual gradient is mapped to a 
particular core on the server.

- Virtual gradients are transferred 
independently.

- A chunk is only processed by a single 
core : maintaining maximum locality.

Gradient Array for Key 0 from 8 workers
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Software Optimizations
TALL AGGREGATION AND OPTIMIZATION

When Aggregation is done, PHub:
- PHub optimizes a chunk with the same 

core that aggregates that chunk.

Gradient Array for Key 0 from 8 workers

A
g

g
re

g
at

ed

25



Software Optimizations
TALL AGGREGATION AND OPTIMIZATION

When Aggregation is done, PHub:
- PHub optimizes a chunk with the same 

core that aggregates that chunk.
- Allows overlapping of aggregation, 

optimization and gradient transmission.
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Network 
Core

ToR
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Software Optimizations
NOT ENOUGH ON THEIR OWN!
Typical server configuration is unbalanced
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Network 
Core
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Eliminating bandwidth bottlenecks: 

PBox hardware: balanced computation and communication 
resources.
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PBox hardware: balanced computation and communication 
resources.
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Network 
Core
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Hardware Optimization
THE PBOX
• Balanced computation and communication
• Extends the balance and locality notion 

across NUMA domains and NICs.
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Hardware Optimization
THE PBOX
• Balanced computation and communication
• Extends the balance and locality notion 

across NUMA domains and NICs.
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Network 
Core

Hardware Optimization
THE PBOX
• Balanced computation and communication
• Extends the balance and locality notion 

across NUMA domains and NICs.
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Network 
Core
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Eliminating deployment bottlenecks: 

PHub hierarchical reduction: reducing cross rack traffic
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PBox Deployment
RACK SCALE PARAMETER SERVICE
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PBox Deployment
RACK SCALE PARAMETER SERVICE
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Two-Phase Hierarchical Aggregation
ADAPTING TO THE DATACENTER NETWORK TOPOLOGY
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Up to 2.7x performance in 10Gbps cloud-
like environment
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8 Workers. GTX 1080 Ti. MxNet: InfiniBand-enhanced baseline. PBox. Batch Size 64 for 
ResNext, 128 for ResNet 269, 256 for all others.



Framework Bottlenecks
• Data Copy
• Aggregation and Optimization
• Synchronization
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Scalability
LINEAR SCALING IN COMM. ONLY BENCHMARK
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Scalability
PCI-E TO MEMORY SUBSYSTEM BRIDGE
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120 Machines training ResNet 50



Scalability Beyond a Single Rack
EMULATING HIERARCHICAL AGGREGATION
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Cost Analysis – for infrastructure builders
25% BETTER THROUGHPUT/$
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Accounting for network devices 
(switch ports, network adapters, 
network cables), GPU costs, and 
PBox’s entire machine cost. 

Core oversubscription 2:1

44



Parameter Hub
A software, hardware and cluster configuration codesign that target three major 

bottlenecks in the cloud for more efficient DDNN training
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