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Saving CPU Cycles In Data Access 

 Data grows exponentially 
 Seagate report claims that data grow 2x every 2 years 

 Need to process more data with same number of servers 
 Cannot increase number of servers - power, energy limitations 

 Data access for data serving/analytics incurs high cost  

 Today key-value stores used broadly for data access 
 Social networks, data analytics, IoT 

 Consume a lot of CPU cycles/operation - Optimized for HDDs 

 Important to reduce CPU cycles in key value stores 
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Dominant indexing methods 

 Inserts are important for key-value stores 
 Reads consist the majority of operations 
 However, need to handle bursty inserts of variable size items    

 B-tree optimal for reads 
 Needs a single I/O per insert as the dataset grows 

 Main approach: Buffer writes in some manner 
 … and use single I/O to the device for multiple inserts 
 Examples: LSM-Tree, Bε-Tree, Fractal Tree 

 Most popular: LSM-Tree 
 Used by most key value stores today 
 Great for HDDs - always perform large sequential I/Os 
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New Opportunities: From HDDs To Flash 

 In many applications fast devices (SSDs) dominate 

 Take advantage of device characteristics to increase serving 
density in key value stores 

 Serve same amount data with less cycles 

 High throughput even for random I/Os at high concurrency 
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SSDs Performance For Various Request Sizes 
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User Space Caching Overhead 

 User space cache: no system calls for hits - explicit I/O for 
misses 

 Copies from user to kernel space during I/O 

 Hits incur overhead in user-space index+data in every 
traversal 
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Our Key Value Store: Kreon 

 In this paper we deal with two main sources of overhead 

 Aggressive data reorganization (compaction) 

 User-space caching 

 We increase I/O randomness for reducing CPU cycles  

 We use memory-mapped I/O instead of a user-space cache 
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Outline of this talk 

 Motivation 

 Discuss Kreon design and motivate decisions 
 Indexing data structure 

 DRAM caching and I/O to devices 

 Evaluation 
 Overall Efficiency – Throughput 

 I/O amplification 

 Efficiency breakdown 

 Tail latency 
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Kreon Persistent Index 

 Kreon introduces partial reorganization  

 Allows to eliminate sorting [bLSM’12] 

 Key value pairs stored in a log [Atlas’15, WiscKey ‘16, 
Tucana’16] 

 Index organized in unsorted levels /B-tree index per level 

 Efficient merging – Spill 

 Reads less data from of 𝐿𝑖+1 compared to LSM 

 Inserts take place in buffered mode as in LSM 
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     Compaction                            Kreon spill 

10 

Le
ve

l(
i)

 
Le

ve
l (

i+
1

) 
M

em
o

ry
 



     Compaction                            Kreon spill 

11 

Le
ve

l(
i)

 
Le

ve
l (

i+
1

) 
M

em
o

ry
 



     Compaction                            Kreon spill 

12 

Le
ve

l(
i)

 
Le

ve
l (

i+
1

) 
M

em
o

ry
 



Kreon Performs Adaptive Reorganization    

 With partial reorganization repeated scans are expensive  

 With repeated scans, it is worth to fully organize data 

 Kreon reorganizes data during scans 

 Based on policy (current threshold based) 
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Reduce caching overheads with memory mapped I/O 

 Avoid overhead of user-kernel data copies 

 Lower overhead for hits by using virtual memory mappings 

 Either served from TLB or page table traversal 

 Eliminates serialization with common layout in memory 
and storage  

 Using memory mapped I/O has two implications 

 Requires common allocator for memory and device 

 Linux kernel mmap introduces challenges 
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Challenges of Common Data Layout 

 Small random read less overhead with mmap 
 Log writes large – irrelevant 
 Index updates could cause 4K random writes to device 

 Kreon generates large writes by using Copy-on-Write and extent allocation 
on device 

 Recovery with common data layout 
 Requires ordering operations in memory and on device 
 Kreon does this with CoW and sync 

 Extent allocation works well with common data layout in key value 
stores 
 Spills generate large frees for index 
 Key value stores usually experience group deletes 
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mmap Challenges for Key Value Stores 

 Cannot pin 𝐿0 in memory 

 I/O amortization relies on  𝐿0 being in memory 

 Prioritize index nodes across levels and with respect to log 

 Unnecessary read-modify write operation from device 

 Writes to newly allocated pages no need to read them 

 Long pauses during user requests and high tail latency 

 mmap performs lazy memory cleaning and results in bursty I/O  

 Persistence requires msync which uses coarse grain locking 
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Kreon Implements a custom mmap path 

 Introduces per page priorities 
 Separate LRUs per priority 

 𝐿0 most significant priority, index, log 

 Detects accesses to new pages and eliminates device fetch 
 Keeps a non persistent bitmap with page status (free/allocated) 

 Bitmap updated by Kreon’s allocator 

 Improved tail latency 
 kmmap adds bounds in memory used 

 Eager eviction policy 

 Higher concurrency in msync  
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Kreon increases concurrency during msync   

 msync orders writing and persisting pages by blocking 

 Opportunity in Kreon 

 Due to CoW the same page is never written/persisted 
concurrently 

 Kreon orders by using epochs 

 msync evicts all pages of previous epoch  

 Newly modified pages belong to new epoch 

 Epochs are possible in Kreon due to CoW 

18 



kmmap Operation 
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Outline of this talk 

 Motivation 

 Discuss Kreon design and motivate decisions 
 Indexing data structure 

 DRAM caching and I/O to devices 

 Persistence and failure atomicity 

 Evaluation 
 Overall efficiency – throughput 

 I/O amplification 

 Tail latency 

 Efficiency breakdown 
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Experimental Setup 

 Compare Κreon with RocksDB version 5.6.1 

 Platform 
 Two Intel Xeon E5-2630 with 256GB DRAM in total 

 Six Samsung 850 PRO (256GB) in RAID-0 configuration 

 YCSB 
 Insert only, read only, and various mixes 

 We examine two cases 
 Dataset contains 100M records resulting in a 120 GB dataset 

 Two configurations: small uses 192 GB of DRAM large uses 16 GB 
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Overall Improvement over RocksDB  

(a) Efficiency (cycles/op)  
Small up to 6x - average 2.7x, 
Large up to 8.3x - average 3.4x 

 (b) Throughput (ops/s) 

Small up to  5x - average 2.8x, 

Large up to 14x - average 4.7x 
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I/O amplification to devices 
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Contribution of individual techniques 
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kmmap  impact on tail latency 
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kmmap  impact on tail latency 
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 393x lower 99.99% tail 
latency than RocksDB 

 99x lower 99.99% tail 
latency than Kreon-mmap 
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Conclusions 

 Kreon: An efficient key-value store in terms of cycles/op 

 Trades device randomness for CPU efficiency 

 CPU most important resource today 

 Main techniques 

 LSM  Partially organized levels with full index per level 

 DRAM caching  via custom memory mapped I/O 

 Up to 8.3x better efficiency compared to RocksDB 

 Both index and DRAM caching important 
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