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Saving CPU Cycles In Data Access 

 Data grows exponentially 
 Seagate report claims that data grow 2x every 2 years 

 Need to process more data with same number of servers 
 Cannot increase number of servers - power, energy limitations 

 Data access for data serving/analytics incurs high cost  

 Today key-value stores used broadly for data access 
 Social networks, data analytics, IoT 

 Consume a lot of CPU cycles/operation - Optimized for HDDs 

 Important to reduce CPU cycles in key value stores 
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Dominant indexing methods 

 Inserts are important for key-value stores 
 Reads consist the majority of operations 
 However, need to handle bursty inserts of variable size items    

 B-tree optimal for reads 
 Needs a single I/O per insert as the dataset grows 

 Main approach: Buffer writes in some manner 
 … and use single I/O to the device for multiple inserts 
 Examples: LSM-Tree, Bε-Tree, Fractal Tree 

 Most popular: LSM-Tree 
 Used by most key value stores today 
 Great for HDDs - always perform large sequential I/Os 
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New Opportunities: From HDDs To Flash 

 In many applications fast devices (SSDs) dominate 

 Take advantage of device characteristics to increase serving 
density in key value stores 

 Serve same amount data with less cycles 

 High throughput even for random I/Os at high concurrency 
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SSDs Performance For Various Request Sizes 
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User Space Caching Overhead 

 User space cache: no system calls for hits - explicit I/O for 
misses 

 Copies from user to kernel space during I/O 

 Hits incur overhead in user-space index+data in every 
traversal 
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Our Key Value Store: Kreon 

 In this paper we deal with two main sources of overhead 

 Aggressive data reorganization (compaction) 

 User-space caching 

 We increase I/O randomness for reducing CPU cycles  

 We use memory-mapped I/O instead of a user-space cache 
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Outline of this talk 

 Motivation 

 Discuss Kreon design and motivate decisions 
 Indexing data structure 

 DRAM caching and I/O to devices 

 Evaluation 
 Overall Efficiency – Throughput 

 I/O amplification 

 Efficiency breakdown 

 Tail latency 
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Kreon Persistent Index 

 Kreon introduces partial reorganization  

 Allows to eliminate sorting [bLSM’12] 

 Key value pairs stored in a log [Atlas’15, WiscKey ‘16, 
Tucana’16] 

 Index organized in unsorted levels /B-tree index per level 

 Efficient merging – Spill 

 Reads less data from of 𝐿𝑖+1 compared to LSM 

 Inserts take place in buffered mode as in LSM 
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     Compaction                            Kreon spill 
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Kreon Performs Adaptive Reorganization    

 With partial reorganization repeated scans are expensive  

 With repeated scans, it is worth to fully organize data 

 Kreon reorganizes data during scans 

 Based on policy (current threshold based) 
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Reduce caching overheads with memory mapped I/O 

 Avoid overhead of user-kernel data copies 

 Lower overhead for hits by using virtual memory mappings 

 Either served from TLB or page table traversal 

 Eliminates serialization with common layout in memory 
and storage  

 Using memory mapped I/O has two implications 

 Requires common allocator for memory and device 

 Linux kernel mmap introduces challenges 
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Challenges of Common Data Layout 

 Small random read less overhead with mmap 
 Log writes large – irrelevant 
 Index updates could cause 4K random writes to device 

 Kreon generates large writes by using Copy-on-Write and extent allocation 
on device 

 Recovery with common data layout 
 Requires ordering operations in memory and on device 
 Kreon does this with CoW and sync 

 Extent allocation works well with common data layout in key value 
stores 
 Spills generate large frees for index 
 Key value stores usually experience group deletes 
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mmap Challenges for Key Value Stores 

 Cannot pin 𝐿0 in memory 

 I/O amortization relies on  𝐿0 being in memory 

 Prioritize index nodes across levels and with respect to log 

 Unnecessary read-modify write operation from device 

 Writes to newly allocated pages no need to read them 

 Long pauses during user requests and high tail latency 

 mmap performs lazy memory cleaning and results in bursty I/O  

 Persistence requires msync which uses coarse grain locking 
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Kreon Implements a custom mmap path 

 Introduces per page priorities 
 Separate LRUs per priority 

 𝐿0 most significant priority, index, log 

 Detects accesses to new pages and eliminates device fetch 
 Keeps a non persistent bitmap with page status (free/allocated) 

 Bitmap updated by Kreon’s allocator 

 Improved tail latency 
 kmmap adds bounds in memory used 

 Eager eviction policy 

 Higher concurrency in msync  
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Kreon increases concurrency during msync   

 msync orders writing and persisting pages by blocking 

 Opportunity in Kreon 

 Due to CoW the same page is never written/persisted 
concurrently 

 Kreon orders by using epochs 

 msync evicts all pages of previous epoch  

 Newly modified pages belong to new epoch 

 Epochs are possible in Kreon due to CoW 
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kmmap Operation 
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Outline of this talk 

 Motivation 

 Discuss Kreon design and motivate decisions 
 Indexing data structure 

 DRAM caching and I/O to devices 

 Persistence and failure atomicity 

 Evaluation 
 Overall efficiency – throughput 

 I/O amplification 

 Tail latency 

 Efficiency breakdown 
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Experimental Setup 

 Compare Κreon with RocksDB version 5.6.1 

 Platform 
 Two Intel Xeon E5-2630 with 256GB DRAM in total 

 Six Samsung 850 PRO (256GB) in RAID-0 configuration 

 YCSB 
 Insert only, read only, and various mixes 

 We examine two cases 
 Dataset contains 100M records resulting in a 120 GB dataset 

 Two configurations: small uses 192 GB of DRAM large uses 16 GB 
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Overall Improvement over RocksDB  

(a) Efficiency (cycles/op)  
Small up to 6x - average 2.7x, 
Large up to 8.3x - average 3.4x 

 (b) Throughput (ops/s) 

Small up to  5x - average 2.8x, 

Large up to 14x - average 4.7x 
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I/O amplification to devices 
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Contribution of individual techniques 
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kmmap  impact on tail latency 
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kmmap  impact on tail latency 
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 393x lower 99.99% tail 
latency than RocksDB 

 99x lower 99.99% tail 
latency than Kreon-mmap 
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Conclusions 

 Kreon: An efficient key-value store in terms of cycles/op 

 Trades device randomness for CPU efficiency 

 CPU most important resource today 

 Main techniques 

 LSM  Partially organized levels with full index per level 

 DRAM caching  via custom memory mapped I/O 

 Up to 8.3x better efficiency compared to RocksDB 

 Both index and DRAM caching important 
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Questions ? 

Giorgos Saloustros 

Institute of Computer Science, FORTH – Heraklion, Greece 

E-mail: gesalous@ics.forth.gr 

Web: http://www.ics.forth.gr/carv 
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