
Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)

Greece

Anastasios Papagiannis, Giorgos Saloustros,

Pilar González-Férez, and Angelos Bilas

An Efficient Memory-Mapped Key-Value
Store for Flash Storage

Saving CPU Cycles In Data Access

 Data grows exponentially
 Seagate report claims that data grow 2x every 2 years

 Need to process more data with same number of servers
 Cannot increase number of servers - power, energy limitations

 Data access for data serving/analytics incurs high cost

 Today key-value stores used broadly for data access
 Social networks, data analytics, IoT

 Consume a lot of CPU cycles/operation - Optimized for HDDs

 Important to reduce CPU cycles in key value stores

2

Dominant indexing methods

 Inserts are important for key-value stores
 Reads consist the majority of operations
 However, need to handle bursty inserts of variable size items

 B-tree optimal for reads
 Needs a single I/O per insert as the dataset grows

 Main approach: Buffer writes in some manner
 … and use single I/O to the device for multiple inserts
 Examples: LSM-Tree, Bε-Tree, Fractal Tree

 Most popular: LSM-Tree
 Used by most key value stores today
 Great for HDDs - always perform large sequential I/Os

3

New Opportunities: From HDDs To Flash

 In many applications fast devices (SSDs) dominate

 Take advantage of device characteristics to increase serving
density in key value stores

 Serve same amount data with less cycles

 High throughput even for random I/Os at high concurrency

4

SSDs Performance For Various Request Sizes

5

User Space Caching Overhead

 User space cache: no system calls for hits - explicit I/O for
misses

 Copies from user to kernel space during I/O

 Hits incur overhead in user-space index+data in every
traversal

6

Our Key Value Store: Kreon

 In this paper we deal with two main sources of overhead

 Aggressive data reorganization (compaction)

 User-space caching

 We increase I/O randomness for reducing CPU cycles

 We use memory-mapped I/O instead of a user-space cache

7

Outline of this talk

 Motivation

 Discuss Kreon design and motivate decisions
 Indexing data structure

 DRAM caching and I/O to devices

 Evaluation
 Overall Efficiency – Throughput

 I/O amplification

 Efficiency breakdown

 Tail latency

 8

Kreon Persistent Index

 Kreon introduces partial reorganization

 Allows to eliminate sorting [bLSM’12]

 Key value pairs stored in a log [Atlas’15, WiscKey ‘16,
Tucana’16]

 Index organized in unsorted levels /B-tree index per level

 Efficient merging – Spill

 Reads less data from of 𝐿𝑖+1 compared to LSM

 Inserts take place in buffered mode as in LSM

9

 Compaction Kreon spill

10

Le
ve

l(
i)

Le

ve
l (

i+
1

)
M

em
o

ry

 Compaction Kreon spill

11

Le
ve

l(
i)

Le

ve
l (

i+
1

)
M

em
o

ry

 Compaction Kreon spill

12

Le
ve

l(
i)

Le

ve
l (

i+
1

)
M

em
o

ry

Kreon Performs Adaptive Reorganization

 With partial reorganization repeated scans are expensive

 With repeated scans, it is worth to fully organize data

 Kreon reorganizes data during scans

 Based on policy (current threshold based)

13

Reduce caching overheads with memory mapped I/O

 Avoid overhead of user-kernel data copies

 Lower overhead for hits by using virtual memory mappings

 Either served from TLB or page table traversal

 Eliminates serialization with common layout in memory
and storage

 Using memory mapped I/O has two implications

 Requires common allocator for memory and device

 Linux kernel mmap introduces challenges

14

Challenges of Common Data Layout

 Small random read less overhead with mmap
 Log writes large – irrelevant
 Index updates could cause 4K random writes to device

 Kreon generates large writes by using Copy-on-Write and extent allocation
on device

 Recovery with common data layout
 Requires ordering operations in memory and on device
 Kreon does this with CoW and sync

 Extent allocation works well with common data layout in key value
stores
 Spills generate large frees for index
 Key value stores usually experience group deletes

15

mmap Challenges for Key Value Stores

 Cannot pin 𝐿0 in memory

 I/O amortization relies on 𝐿0 being in memory

 Prioritize index nodes across levels and with respect to log

 Unnecessary read-modify write operation from device

 Writes to newly allocated pages no need to read them

 Long pauses during user requests and high tail latency

 mmap performs lazy memory cleaning and results in bursty I/O

 Persistence requires msync which uses coarse grain locking

16

Kreon Implements a custom mmap path

 Introduces per page priorities
 Separate LRUs per priority

 𝐿0 most significant priority, index, log

 Detects accesses to new pages and eliminates device fetch
 Keeps a non persistent bitmap with page status (free/allocated)

 Bitmap updated by Kreon’s allocator

 Improved tail latency
 kmmap adds bounds in memory used

 Eager eviction policy

 Higher concurrency in msync

17

Kreon increases concurrency during msync

 msync orders writing and persisting pages by blocking

 Opportunity in Kreon

 Due to CoW the same page is never written/persisted
concurrently

 Kreon orders by using epochs

 msync evicts all pages of previous epoch

 Newly modified pages belong to new epoch

 Epochs are possible in Kreon due to CoW

18

kmmap Operation

19

𝐿0|𝑒𝑝1 𝐿0|𝑒𝑝1 𝐿0|𝑒𝑝1 𝐿0|𝑒𝑝1

𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1

Log|𝑒𝑝1 Log|𝑒𝑝1 Log|𝑒𝑝1 Log|𝑒𝑝1

DRAM

Device

kmmap Operation

20

𝐿0|𝑒𝑝2 𝐿0|𝑒𝑝1 𝐿0|𝑒𝑝1 𝐿0|𝑒𝑝1

𝐿1|𝑒𝑝2 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1

Log|𝑒𝑝1 Log|𝑒𝑝2 Log|𝑒𝑝1 Log|𝑒𝑝1

DRAM

Device
𝐿0|𝑒𝑝1 𝐿1|𝑒𝑝1 Log|𝑒𝑝1

kmmap Operation

21

𝐿0|𝑒𝑝2

𝐿0|𝑒𝑝1 𝐿0|𝑒𝑝1

𝐿1|𝑒𝑝2

𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1

Log|𝑒𝑝1

Log|𝑒𝑝2

Log|𝑒𝑝1 Log|𝑒𝑝1

DRAM

Device

𝐿0|𝑒𝑝1 𝐿1|𝑒𝑝1

Log|𝑒𝑝1

𝐿0|𝑒𝑝1

Outline of this talk

 Motivation

 Discuss Kreon design and motivate decisions
 Indexing data structure

 DRAM caching and I/O to devices

 Persistence and failure atomicity

 Evaluation
 Overall efficiency – throughput

 I/O amplification

 Tail latency

 Efficiency breakdown

22

Experimental Setup

 Compare Κreon with RocksDB version 5.6.1

 Platform
 Two Intel Xeon E5-2630 with 256GB DRAM in total

 Six Samsung 850 PRO (256GB) in RAID-0 configuration

 YCSB
 Insert only, read only, and various mixes

 We examine two cases
 Dataset contains 100M records resulting in a 120 GB dataset

 Two configurations: small uses 192 GB of DRAM large uses 16 GB

23

Overall Improvement over RocksDB

(a) Efficiency (cycles/op)
Small up to 6x - average 2.7x,
Large up to 8.3x - average 3.4x

 (b) Throughput (ops/s)

Small up to 5x - average 2.8x,

Large up to 14x - average 4.7x
24

I/O amplification to devices

25

0

100

200

300

400

500

600

700

800

900

1000

Write Read

G
B

I/O amplification

RocksDB

Kreon

4x
6x

0

50

100

150

200

250

300

350

Write Read

K
B

Request size

RocksDB

Kreon

Contribution of individual techniques

26

0

10

20

30

40

50

60

70

80

90

100

Index/spill Caching-I/O

K
c
y
c
le

s
/o

p
e

ra
ti
o

n

Load A breakdown

RocksDB

Kreon

4.6x

0

5

10

15

20

25

30

Index Caching-I/O

K
c
y
c
le

s
/o

p
e

ra
ti
o

n

Run C breakdown

RocksDB

Kreon

6.3x

2.4x

2.6x

kmmap impact on tail latency

27

1

10

100

1000

10000

100000

1000000

10000000

50 70 90 99 99.9 99.99

L
a

te
n

c
y
(u

s
)/

o
p

(%)percentile

Tail latency load A

RocksDB

kmmap impact on tail latency

28

1

10

100

1000

10000

100000

1000000

10000000

L
a

te
n

c
y
(u

s
)/

o
p

(%)percentile

Tail latency load A

RocksDB

Kreon-mmap

kmmap impact on tail latency

29

 393x lower 99.99% tail
latency than RocksDB

 99x lower 99.99% tail
latency than Kreon-mmap

1

10

100

1000

10000

100000

1000000

10000000

L
a

te
n

c
y
(u

s
)/

o
p

(%)percentile

Tail latency load A

RocksDB

Kreon-mmap

Kreon

Conclusions

 Kreon: An efficient key-value store in terms of cycles/op

 Trades device randomness for CPU efficiency

 CPU most important resource today

 Main techniques

 LSM Partially organized levels with full index per level

 DRAM caching via custom memory mapped I/O

 Up to 8.3x better efficiency compared to RocksDB

 Both index and DRAM caching important

30

Questions ?

Giorgos Saloustros

Institute of Computer Science, FORTH – Heraklion, Greece

E-mail: gesalous@ics.forth.gr

Web: http://www.ics.forth.gr/carv

31

Supported by EC under Horizon 2020 Vineyard (GA 687628), ExaNest (GA 671553)

mailto:gesalous@ics.forth.gr
http://www.ics.forth.gr/carv

