
Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)

Greece

Anastasios Papagiannis, Giorgos Saloustros,

Pilar González-Férez, and Angelos Bilas

An Efficient Memory-Mapped Key-Value
Store for Flash Storage

Saving CPU Cycles In Data Access

 Data grows exponentially
 Seagate report claims that data grow 2x every 2 years

 Need to process more data with same number of servers
 Cannot increase number of servers - power, energy limitations

 Data access for data serving/analytics incurs high cost

 Today key-value stores used broadly for data access
 Social networks, data analytics, IoT

 Consume a lot of CPU cycles/operation - Optimized for HDDs

 Important to reduce CPU cycles in key value stores

2

Dominant indexing methods

 Inserts are important for key-value stores
 Reads consist the majority of operations
 However, need to handle bursty inserts of variable size items

 B-tree optimal for reads
 Needs a single I/O per insert as the dataset grows

 Main approach: Buffer writes in some manner
 … and use single I/O to the device for multiple inserts
 Examples: LSM-Tree, Bε-Tree, Fractal Tree

 Most popular: LSM-Tree
 Used by most key value stores today
 Great for HDDs - always perform large sequential I/Os

3

New Opportunities: From HDDs To Flash

 In many applications fast devices (SSDs) dominate

 Take advantage of device characteristics to increase serving
density in key value stores

 Serve same amount data with less cycles

 High throughput even for random I/Os at high concurrency

4

SSDs Performance For Various Request Sizes

5

User Space Caching Overhead

 User space cache: no system calls for hits - explicit I/O for
misses

 Copies from user to kernel space during I/O

 Hits incur overhead in user-space index+data in every
traversal

6

Our Key Value Store: Kreon

 In this paper we deal with two main sources of overhead

 Aggressive data reorganization (compaction)

 User-space caching

 We increase I/O randomness for reducing CPU cycles

 We use memory-mapped I/O instead of a user-space cache

7

Outline of this talk

 Motivation

 Discuss Kreon design and motivate decisions
 Indexing data structure

 DRAM caching and I/O to devices

 Evaluation
 Overall Efficiency – Throughput

 I/O amplification

 Efficiency breakdown

 Tail latency

 8

Kreon Persistent Index

 Kreon introduces partial reorganization

 Allows to eliminate sorting [bLSM’12]

 Key value pairs stored in a log [Atlas’15, WiscKey ‘16,
Tucana’16]

 Index organized in unsorted levels /B-tree index per level

 Efficient merging – Spill

 Reads less data from of 𝐿𝑖+1 compared to LSM

 Inserts take place in buffered mode as in LSM

9

 Compaction Kreon spill

10

Le
ve

l(
i)

Le

ve
l (

i+
1

)
M

em
o

ry

 Compaction Kreon spill

11

Le
ve

l(
i)

Le

ve
l (

i+
1

)
M

em
o

ry

 Compaction Kreon spill

12

Le
ve

l(
i)

Le

ve
l (

i+
1

)
M

em
o

ry

Kreon Performs Adaptive Reorganization

 With partial reorganization repeated scans are expensive

 With repeated scans, it is worth to fully organize data

 Kreon reorganizes data during scans

 Based on policy (current threshold based)

13

Reduce caching overheads with memory mapped I/O

 Avoid overhead of user-kernel data copies

 Lower overhead for hits by using virtual memory mappings

 Either served from TLB or page table traversal

 Eliminates serialization with common layout in memory
and storage

 Using memory mapped I/O has two implications

 Requires common allocator for memory and device

 Linux kernel mmap introduces challenges

14

Challenges of Common Data Layout

 Small random read less overhead with mmap
 Log writes large – irrelevant
 Index updates could cause 4K random writes to device

 Kreon generates large writes by using Copy-on-Write and extent allocation
on device

 Recovery with common data layout
 Requires ordering operations in memory and on device
 Kreon does this with CoW and sync

 Extent allocation works well with common data layout in key value
stores
 Spills generate large frees for index
 Key value stores usually experience group deletes

15

mmap Challenges for Key Value Stores

 Cannot pin 𝐿0 in memory

 I/O amortization relies on 𝐿0 being in memory

 Prioritize index nodes across levels and with respect to log

 Unnecessary read-modify write operation from device

 Writes to newly allocated pages no need to read them

 Long pauses during user requests and high tail latency

 mmap performs lazy memory cleaning and results in bursty I/O

 Persistence requires msync which uses coarse grain locking

16

Kreon Implements a custom mmap path

 Introduces per page priorities
 Separate LRUs per priority

 𝐿0 most significant priority, index, log

 Detects accesses to new pages and eliminates device fetch
 Keeps a non persistent bitmap with page status (free/allocated)

 Bitmap updated by Kreon’s allocator

 Improved tail latency
 kmmap adds bounds in memory used

 Eager eviction policy

 Higher concurrency in msync

17

Kreon increases concurrency during msync

 msync orders writing and persisting pages by blocking

 Opportunity in Kreon

 Due to CoW the same page is never written/persisted
concurrently

 Kreon orders by using epochs

 msync evicts all pages of previous epoch

 Newly modified pages belong to new epoch

 Epochs are possible in Kreon due to CoW

18

kmmap Operation

19

𝐿0|𝑒𝑝1 𝐿0|𝑒𝑝1 𝐿0|𝑒𝑝1 𝐿0|𝑒𝑝1

𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1

Log|𝑒𝑝1 Log|𝑒𝑝1 Log|𝑒𝑝1 Log|𝑒𝑝1

DRAM

Device

kmmap Operation

20

𝐿0|𝑒𝑝2 𝐿0|𝑒𝑝1 𝐿0|𝑒𝑝1 𝐿0|𝑒𝑝1

𝐿1|𝑒𝑝2 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1

Log|𝑒𝑝1 Log|𝑒𝑝2 Log|𝑒𝑝1 Log|𝑒𝑝1

DRAM

Device
𝐿0|𝑒𝑝1 𝐿1|𝑒𝑝1 Log|𝑒𝑝1

kmmap Operation

21

𝐿0|𝑒𝑝2

𝐿0|𝑒𝑝1 𝐿0|𝑒𝑝1

𝐿1|𝑒𝑝2

𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1 𝐿1|𝑒𝑝1

Log|𝑒𝑝1

Log|𝑒𝑝2

Log|𝑒𝑝1 Log|𝑒𝑝1

DRAM

Device

𝐿0|𝑒𝑝1 𝐿1|𝑒𝑝1

Log|𝑒𝑝1

𝐿0|𝑒𝑝1

Outline of this talk

 Motivation

 Discuss Kreon design and motivate decisions
 Indexing data structure

 DRAM caching and I/O to devices

 Persistence and failure atomicity

 Evaluation
 Overall efficiency – throughput

 I/O amplification

 Tail latency

 Efficiency breakdown

22

Experimental Setup

 Compare Κreon with RocksDB version 5.6.1

 Platform
 Two Intel Xeon E5-2630 with 256GB DRAM in total

 Six Samsung 850 PRO (256GB) in RAID-0 configuration

 YCSB
 Insert only, read only, and various mixes

 We examine two cases
 Dataset contains 100M records resulting in a 120 GB dataset

 Two configurations: small uses 192 GB of DRAM large uses 16 GB

23

Overall Improvement over RocksDB

(a) Efficiency (cycles/op)
Small up to 6x - average 2.7x,
Large up to 8.3x - average 3.4x

 (b) Throughput (ops/s)

Small up to 5x - average 2.8x,

Large up to 14x - average 4.7x
24

I/O amplification to devices

25

0

100

200

300

400

500

600

700

800

900

1000

Write Read

G
B

I/O amplification

RocksDB

Kreon

4x
6x

0

50

100

150

200

250

300

350

Write Read

K
B

Request size

RocksDB

Kreon

Contribution of individual techniques

26

0

10

20

30

40

50

60

70

80

90

100

Index/spill Caching-I/O

K
c
y
c
le

s
/o

p
e

ra
ti
o

n

Load A breakdown

RocksDB

Kreon

4.6x

0

5

10

15

20

25

30

Index Caching-I/O

K
c
y
c
le

s
/o

p
e

ra
ti
o

n

Run C breakdown

RocksDB

Kreon

6.3x

2.4x

2.6x

kmmap impact on tail latency

27

1

10

100

1000

10000

100000

1000000

10000000

50 70 90 99 99.9 99.99

L
a

te
n

c
y
(u

s
)/

o
p

(%)percentile

Tail latency load A

RocksDB

kmmap impact on tail latency

28

1

10

100

1000

10000

100000

1000000

10000000

L
a

te
n

c
y
(u

s
)/

o
p

(%)percentile

Tail latency load A

RocksDB

Kreon-mmap

kmmap impact on tail latency

29

 393x lower 99.99% tail
latency than RocksDB

 99x lower 99.99% tail
latency than Kreon-mmap

1

10

100

1000

10000

100000

1000000

10000000

L
a

te
n

c
y
(u

s
)/

o
p

(%)percentile

Tail latency load A

RocksDB

Kreon-mmap

Kreon

Conclusions

 Kreon: An efficient key-value store in terms of cycles/op

 Trades device randomness for CPU efficiency

 CPU most important resource today

 Main techniques

 LSM  Partially organized levels with full index per level

 DRAM caching  via custom memory mapped I/O

 Up to 8.3x better efficiency compared to RocksDB

 Both index and DRAM caching important

30

Questions ?

Giorgos Saloustros

Institute of Computer Science, FORTH – Heraklion, Greece

E-mail: gesalous@ics.forth.gr

Web: http://www.ics.forth.gr/carv

31

Supported by EC under Horizon 2020 Vineyard (GA 687628), ExaNest (GA 671553)

mailto:gesalous@ics.forth.gr
http://www.ics.forth.gr/carv

