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Saving CPU Cycles In Data Access

» Data grows exponentially
Seagate report claims that data grow 2x every 2 years

» Need to process more data with same number of servers
Cannot increase number of servers - power, energy limitations

» Data access for data serving/analytics incurs high cost

» Today key-value stores used broadly for data access
Social networks, data analytics, loT
Consume a lot of CPU cycles/operation - Optimized for HDDs

» Important to reduce CPU cycles in key value stores
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Dominant indexing methods

» Inserts are important for key-value stores
Reads consist the majority of operations
However, need to handle bursty inserts of variable size items
» B-tree optimal for reads
Needs a single I/0O per insert as the dataset grows
» Main approach: Buffer writes in some manner
... and use single I/0 to the device for multiple inserts
Examples: LSM-Tree, B&-Tree, Fractal Tree
» Most popular: LSM-Tree

Used by most key value stores today
Great for HDDs - always perform large sequential I/Os
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New Opportunities: From HDDs To Flash

» In many applications fast devices (SSDs) dominate

» Take advantage of device characteristics to increase serving
density in key value stores
Serve same amount data with less cycles

» High throughput even for random 1/Os at high concurrency
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SSDs Performance For Various Request Sizes
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User Space Caching Overhead

» User space cache: no system calls for hits - explicit 1/O for
misses

» Copies from user to kernel space during I/O

» Hits incur overhead in user-space index+data in every
traversal
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Our Key Value Store: Kreon

» In this paper we deal with two main sources of overhead
Aggressive data reorganization (compaction)
User-space caching

» We increase I/O randomness for reducing CPU cycles
» We use memory-mapped I/O instead of a user-space cache
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Outline of this talk

» Motivation

» Discuss Kreon design and motivate decisions
Indexing data structure
DRAM caching and |I/O to devices
» Evaluation
Overall Efficiency — Throughput
|/O amplification
Efficiency breakdown
Tail latency
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Kreon Persistent Index

» Kreon introduces partial reorganization

» Allows to eliminate sorting [bLSM’12]

Key value pairs stored in a log [Atlas’15, WiscKey ‘16,
Tucana’16]

Index organized in unsorted levels /B-tree index per level

» Efficient merging — Spill
Reads less data from of L;,; compared to LSM
Inserts take place in buffered mode as in LSM
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Kreon spill
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Kreon Performs Adaptive Reorganization

» With partial reorganization repeated scans are expensive
With repeated scans, it is worth to fully organize data

» Kreon reorganizes data during scans
Based on policy (current threshold based)
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Reduce caching overheads with memory mapped |/O

» Avoid overhead of user-kernel data copies
» Lower overhead for hits by using virtual memory mappings
Either served from TLB or page table traversal

» Eliminates serialization with common layout in memory
and storage

» Using memory mapped I/O has two implications
Requires common allocator for memory and device
Linux kernel mmap introduces challenges
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Challenges of Common Data Layout

» Small random read less overhead with mmap
» Log writes large —irrelevant

» Index updates could cause 4K random writes to device

Kreon generates large writes by using Copy-on-Write and extent allocation
on device

» Recovery with common data layout
Requires ordering operations in memory and on device
Kreon does this with CoW and sync

» Extent allocation works well with common data layout in key value
stores

Spills generate large frees for index
Key value stores usually experience group deletes
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mmap Challenges for Key Value Stores

» Cannot pin Ly in memory
|/O amortization relies on L, being in memory
Prioritize index nodes across levels and with respect to log
» Unnecessary read-modify write operation from device
Writes to newly allocated pages no need to read them
» Long pauses during user requests and high tail latency

mmap performs lazy memory cleaning and results in bursty I/O
Persistence requires msync which uses coarse grain locking
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Kreon Implements a custom mmap path

» Introduces per page priorities
Separate LRUs per priority
Ly most significant priority, index, log

» Detects accesses to new pages and eliminates device fetch
Keeps a non persistent bitmap with page status (free/allocated)
Bitmap updated by Kreon’s allocator

» Improved tail latency
kmmap adds bounds in memory used
Eager eviction policy
Higher concurrency in msync
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Kreon increases concurrency during msync

» msync orders writing and persisting pages by blocking

» Opportunity in Kreon

Due to CoW the same page is never written/persisted
concurrently

» Kreon orders by using epochs

» msync evicts all pages of previous epoch

» Newly modified pages belong to new epoch
» Epochs are possible in Kreon due to CoW
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kmmap Operation
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kmmap Operation
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kmmap Operation

Device
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Outline of this talk

» Motivation

» Discuss Kreon design and motivate decisions
Indexing data structure
DRAM caching and 1/0 to devices
Persistence and failure atomicity
» Evaluation
Overall efficiency — throughput
|/O amplification
Tail latency
Efficiency breakdown
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Experimental Setup

» Compare Kreon with RocksDB version 5.6.1

» Platform
Two Intel Xeon E5-2630 with 256GB DRAM in total
Six Samsung 850 PRO (256GB) in RAID-0 configuration

» YCSB
Insert only, read only, and various mixes

» We examine two cases
Dataset contains 100M records resulting in a 120 GB dataset
Two configurations: small uses 192 GB of DRAM large uses 16 GB
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Overall Improvement over RocksDB
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/0 ampdlification to devices
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Contribution of individual techniques
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kmmap impact on tail latency
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kmmap impact on tail latency
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kmmap impact on tail latency
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Conclusions

» Kreon: An efficient key-value store in terms of cycles/op
Trades device randomness for CPU efficiency
CPU most important resource today

» Main techniques
LSM —> Partially organized levels with full index per level

DRAM caching = via custom memory mapped I/0

» Up to 8.3x better efficiency compared to RocksDB
Both index and DRAM caching important
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Questions ?
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