An Efficient Memory-Mapped Key-Value
Store for Flash Storage

Anastasios Papagiannis, Giorgos Saloustros,
Pilar Gonzalez-Férez, and Angelos Bilas

Institute of Computer Science (ICS)
Foundation for Research and Technology — Hellas (FORTH)

- SFORTH-ICS

L institute of Computer Science

Greece

Saving CPU Cycles In Data Access

» Data grows exponentially
Seagate report claims that data grow 2x every 2 years

» Need to process more data with same number of servers
Cannot increase number of servers - power, energy limitations

» Data access for data serving/analytics incurs high cost

» Today key-value stores used broadly for data access
Social networks, data analytics, loT
Consume a lot of CPU cycles/operation - Optimized for HDDs

» Important to reduce CPU cycles in key value stores

2 FOF%IH—IQS

Dominant indexing methods

» Inserts are important for key-value stores
Reads consist the majority of operations
However, need to handle bursty inserts of variable size items
» B-tree optimal for reads
Needs a single I/0O per insert as the dataset grows
» Main approach: Buffer writes in some manner
... and use single I/0 to the device for multiple inserts
Examples: LSM-Tree, B&-Tree, Fractal Tree
» Most popular: LSM-Tree

Used by most key value stores today
Great for HDDs - always perform large sequential I/Os

3 FORTH-ICS

of Computar Sciance

New Opportunities: From HDDs To Flash

» In many applications fast devices (SSDs) dominate

» Take advantage of device characteristics to increase serving
density in key value stores
Serve same amount data with less cycles

» High throughput even for random 1/Os at high concurrency

FDF&‘IH- IcCS

SSDs Performance For Various Request Sizes

Read Write
1 1 n
Samsung-SSD

N

Fany

Samsung-NVMe —H—
Intel-NVMe —&—

| _| > N

1N

M
Y

Throughput (GB/s)
©c U = ; N U1 W

M
[

ﬁa/}DD ==
0.5) o o= e

| | | | | | |

<t O W A O -t O W o O

- ™M LN ([N ™ LN

N 9 N

Request Size (KB) Request Size (KB)

1024

FOF%IH— IcS

User Space Caching Overhead

» User space cache: no system calls for hits - explicit 1/O for
misses

» Copies from user to kernel space during I/O

» Hits incur overhead in user-space index+data in every
traversal

FOF%IH— IcCS

Our Key Value Store: Kreon

» In this paper we deal with two main sources of overhead
Aggressive data reorganization (compaction)
User-space caching

» We increase I/O randomness for reducing CPU cycles
» We use memory-mapped I/O instead of a user-space cache

7 FOF%IH—IQS

Outline of this talk

» Motivation

» Discuss Kreon design and motivate decisions
Indexing data structure
DRAM caching and |I/O to devices
» Evaluation
Overall Efficiency — Throughput
|/O amplification
Efficiency breakdown
Tail latency

3 FORTHICS

Kreon Persistent Index

» Kreon introduces partial reorganization

» Allows to eliminate sorting [bLSM’12]

Key value pairs stored in a log [Atlas’15, WiscKey ‘16,
Tucana’16]

Index organized in unsorted levels /B-tree index per level

» Efficient merging — Spill
Reads less data from of L;,; compared to LSM
Inserts take place in buffered mode as in LSM

FORTH-ICS

9 Laid

Memory

Compaction

Kreon spill

Level (i+1)| Level(i)

Compaction Kreon spill

z : B I
1
e 1
N1 I BT E
i
|
= |
e I ’
9 : I B
= i
+ i
= |
: I N m
Q |
— 1
1
1
1

> 11 ; FDRIH—IEg

Kreon spill

Compaction

AJoWwBa N

|||||||||

(1)12A97

(T[T (N [ITITITD (IITITCEY e (TITITTTD

(T+1) [9n97

FORTHLICS

Kreon Performs Adaptive Reorganization

» With partial reorganization repeated scans are expensive
With repeated scans, it is worth to fully organize data

» Kreon reorganizes data during scans
Based on policy (current threshold based)

13 FORTH-ICS

Reduce caching overheads with memory mapped |/O

» Avoid overhead of user-kernel data copies
» Lower overhead for hits by using virtual memory mappings
Either served from TLB or page table traversal

» Eliminates serialization with common layout in memory
and storage

» Using memory mapped I/O has two implications
Requires common allocator for memory and device
Linux kernel mmap introduces challenges

14 FORTH-ICS

Challenges of Common Data Layout

» Small random read less overhead with mmap
» Log writes large —irrelevant

» Index updates could cause 4K random writes to device

Kreon generates large writes by using Copy-on-Write and extent allocation
on device

» Recovery with common data layout
Requires ordering operations in memory and on device
Kreon does this with CoW and sync

» Extent allocation works well with common data layout in key value
stores

Spills generate large frees for index
Key value stores usually experience group deletes

15 FORIH—IQS

mmap Challenges for Key Value Stores

» Cannot pin Ly in memory
|/O amortization relies on L, being in memory
Prioritize index nodes across levels and with respect to log
» Unnecessary read-modify write operation from device
Writes to newly allocated pages no need to read them
» Long pauses during user requests and high tail latency

mmap performs lazy memory cleaning and results in bursty I/O
Persistence requires msync which uses coarse grain locking

16 FORTH-ICS

of Computar Sciance

Kreon Implements a custom mmap path

» Introduces per page priorities
Separate LRUs per priority
Ly most significant priority, index, log

» Detects accesses to new pages and eliminates device fetch
Keeps a non persistent bitmap with page status (free/allocated)
Bitmap updated by Kreon’s allocator

» Improved tail latency
kmmap adds bounds in memory used
Eager eviction policy
Higher concurrency in msync

17 FORTH-ICS

Kreon increases concurrency during msync

» msync orders writing and persisting pages by blocking

» Opportunity in Kreon

Due to CoW the same page is never written/persisted
concurrently

» Kreon orders by using epochs

» msync evicts all pages of previous epoch

» Newly modified pages belong to new epoch
» Epochs are possible in Kreon due to CoW

18 IS

kmmap Operation

DRAM
Lolepq Lo|ep, Lolepy Lo|epq

Lilepy Lilepy Lilepy Lilepy Lilepy Lileps

Log|ep, Log|ep, Log|ep, Loglep,

Device

> 19 { EORTHIICS

kmmap Operation

DRAM
Lolep, Lo|epq Lolepy Lo|epq

Lilep, Lilepy Lilepy Lilepy Lilepr Lilepy

Log|ep, Log|ep, Log|ep, Log|ep,

Device
Lo|ep, Lilepy

> 20 { EORTHIICS

kmmap Operation

Device
Lolepy Loleps Loleps Lolep, - Exlepslialepsl Ealeps Ealepy Lilep:
Loglep; Loglep; Loglep; Loglep;

Outline of this talk

» Motivation

» Discuss Kreon design and motivate decisions
Indexing data structure
DRAM caching and 1/0 to devices
Persistence and failure atomicity
» Evaluation
Overall efficiency — throughput
|/O amplification
Tail latency
Efficiency breakdown

> 22 FORTH-ICS

Experimental Setup

» Compare Kreon with RocksDB version 5.6.1

» Platform
Two Intel Xeon E5-2630 with 256GB DRAM in total
Six Samsung 850 PRO (256GB) in RAID-0 configuration

» YCSB
Insert only, read only, and various mixes

» We examine two cases
Dataset contains 100M records resulting in a 120 GB dataset
Two configurations: small uses 192 GB of DRAM large uses 16 GB

23 FORTH-ICS

Overall Improvement over RocksDB

10 — | | | | | 16 | | | | |
€ 3 Large Dataset | - Large Dataset
& 6 Small Dataset I | g 12 Small Dataset I 1 7
S > 8 .
© 4 - B
£ 2 . g4 1
0 =11 R —mr
< < an @) L o) L L < < 28] Q L) L L
L) c c C c c o c o c c C c c © c
3 @ @ 2 & @ 8 & 3 @ @ 2 & &2 8 &
(a) Efficiency (cycles/op) (b) Throughput (ops/s)
Small up to 6x - average 2.7x, Small up to 5x - average 2.8x,

Large up to 8.3x - average 3.4x

24

Large up to 14x - average 4.7x

FORTH-ICS

of Computar Sciance

/0 ampdlification to devices

700 -

600 -

GB

400 -

300 -

200 -

100 -

500 -

I/O amplification

m RocksDB
m Kreon

300 -

250 -

200 -

150 -

100 -

50 -

Request size

m RocksDB
m Kreon

/ FORTH-ICS

Contribution of individual techniques

(o2}
o
1

Kcycles/operation
5 3

w
o
1

N
o
I

10 -

Load A breakdown

m RocksDB
m Kreon

6.3x

4.6X

Index/spill Caching-I/O

Kcycles/operation

25

Run C breakdown

m RocksDB

m Kreon
2.4x

Caching-1/O

© FORTH-ICS

kmmap impact on tail latency

10000000 1 Tall latency load A

1000000 -

o 100000 -

O

D

@ 10000 -

N’

>

O

c 1000 -

Q = RocksDB

L=

©

— 100 -
10 -
1

50 70 90 99 99.9 99.99
(%)percentile

27 FORTH-ICS

kmmap impact on tail latency

28

10 -

10000000 -
1000000 -
o 100000 -
o
>
@ 10000 -
N’
=
(&)
c 1000 -
Q
o
- 100 -
1

Tall latency load A

e RocksDB

= Kreon-mmap

O QO & & 9 O
6'\99@.%@9

(%)percentile

FORTH-ICS

kmmap impact on tail latency

10000000 -

» 393x lower 99.99% tail Tail latency load A

latency than RocksDB

» 99x lower 99.99% tail
latency than Kreon-mmap

1000000 -

100000 -

10000 -

= RocksDB

= Kreon-mmap

1000 -

Latency(us)/op

100 - = Kreon

10 -

1

S)
(%)percentile

29 FORTH-ICS

Conclusions

» Kreon: An efficient key-value store in terms of cycles/op
Trades device randomness for CPU efficiency
CPU most important resource today

» Main techniques
LSM —> Partially organized levels with full index per level

DRAM caching = via custom memory mapped I/0

» Up to 8.3x better efficiency compared to RocksDB
Both index and DRAM caching important

30 FORTH-ICS

of Computar Sciance

Questions ?

Giorgos Saloustros

Institute of Computer Science, FORTH — Heraklion, Greece
E-mail:
Web:

Supported by EC under Horizon 2020 Vineyard (GA 687628), ExaNest (GA 671553)

31 FOF{IH-IQS

mailto:gesalous@ics.forth.gr
http://www.ics.forth.gr/carv

