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• An application linked with library OS components

• Run on virtual hardware (like) abstraction

• Language-specific

• MirageOS (OCaml)

• IncludeOS (C++)

• Legacy-oriented

• Rumprun (NetBSD-based)

• Can run nginx, redis, node.js, python,etc..

What is a unikernel?

VM
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Why unikernels?

• Lightweight
• Only what the application needs

• Isolated
• VM-isolation is the “gold standard”

• Well suited for the cloud
• Microservices
• Serverless
• NFV
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Virtualization is a mixed bag

• Good for isolation, but…

• Tooling for VMs not designed for lightweight (e.g., lightVM)
• How do you debug black-box VMs?
• Poor VM performance due to vmexits
• Deployment issues on already-virtualized infrastructure
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Why not run unikernels as processes?

• Unikernels are a single process anyway!

• Many benefits as a process
• Better performance
• Common tooling (gdb, perf, etc.)
• ASLR
• Memory sharing
• Architecture independence

• Isolation by limiting process interface to host
• 98% reduction in accessible kernel functions
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Outline

• Introduction
• Where does unikernel isolation come from?
• Unikernels as processes
• Isolation evaluation
• Performance evaluation
• Summary
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Isolation: definitions and assumptions

• Isolation: no cloud user can read/write state 
or modify its execution

• Focus on software deficiencies in the host
• Code reachable through interface is a metric for 

attack surface

• We trust HW isolation (page tables, etc.)

• We do not consider covert channels, timing 
channels or resource starvation
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Unikernel architecture
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Linux

monitor process (e.g., ukvm)

I/O devices

KVM

VT-x

• ukvm unikernel
monitor
• Userspace process
• Uses Linux/KVM

• Setup and loading
• Exit handling



Unikernel architecture
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Unikernel architecture
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Unikernel architecture
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Unikernel isolation comes from the interface

• 10 hypercalls

• 6 for I/O
• Network: packet level
• Storage: block level

• vs. >350 syscalls
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Hypercall
walltime

puts

poll

blkinfo

blkwrite

blkread

netinfo

netwrite

netread

halt



Observations

• Unikernels are not kernels!
• No page table management after setup
• No interrupt handlers: cooperative scheduling and poll

• The ukvm monitor doesn’t “do” anything!
• One-to-one mapping between hypercalls and system calls

• Idea: maintain isolation by limiting syscalls available to process

13



Unikernel as process architecture
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unikernel monitor
• Userspace process
• Uses seccomp to 

restrict interface

• Setup and loading
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Unikernel as process architecture

17

Linux

tender process

I/O devices

Setup

Set up 
I/O fds

1

Load unikernel2

Configure 
seccomp

3

• Tender: modified ukvm
unikernel monitor
• Userspace process
• Uses seccomp to 

restrict interface

• Setup and loading



Unikernel as process architecture
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Unikernel isolation comes from the interface

• 10 hypercalls
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Hypercall
walltime

puts

poll

blkinfo

blkwrite

blkread

netinfo

netwrite

netread

halt

• 6 for I/O
• Network: packet level
• Storage: block level

• vs. >350 syscalls



Unikernel isolation comes from the interface

• Direct mapping between 10 
hypercalls and system 
call/resource pairs
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Hypercall
walltime

puts

poll

blkinfo

blkwrite

blkread

netinfo

netwrite

netread

halt

• 6 for I/O
• Network: packet level
• Storage: block level

• vs. >350 syscalls

System Call Resource
clock_gettime

write stdout

ppoll net_fd

pwrite64 blk_fd

pread64 blk_fd

write net_fd

read net_fd

exit_group



Implementation: nabla !
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• Extended Solo5 unikernel
ecosystem and ukvm
• Prototype supports:

• MirageOS
• IncludeOS
• Rumprun

• https://github.com/solo5/solo5

https://github.com/solo5/solo5


Measuring isolation: common applications
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• Code reachable 
through interface is   
a metric for attack 
surface
• Used kernel ftrace

• Results:
• Processes: 5-6x more 
• VMs: 2-3x more



Measuring isolation: fuzz testing
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Measuring performance: throughput
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• Applications include:
• Web servers
• Python benchmarks
• Redis
• etc. 

• Results:
• 101%-245% higher 

throughput than ukvm



Measuring performance: CPU utilization
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• vmexits have an effect on 
instructions per cycle

• Experiment with MirageOS
web server
• Results:

• 12% reduction in cpu
utilization over ukvm



Measuring performance: startup time
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• Startup time is important 
for serverless, NFV

• Results:
• Ukvm has 30-370% higher 

latency than nabla

• Mostly due avoiding KVM 
overheads

H
el

lo
 w

or
ld

H
TT

P 
Po

st



Summary and Next Steps

• Unikernels should run as processes!
• Maintain isolation via thin interface
• Improve performance, etc.

• Next steps: can unikernels as 
processes be used to improve 
container isolation?
• Nabla containers 
• https://nabla-containers.github.io/
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Process

https://nabla-containers.github.io/
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