
Unikernels as Processes
Dan Williams, Ricardo Koller (IBM Research)

Martin Lucina (robur.io/Center for the Cultivation of Technology)
Nikhil Prakash (BITS Pilani)

• An application linked with library OS components

• Run on virtual hardware (like) abstraction

• Language-specific

• MirageOS (OCaml)

• IncludeOS (C++)

• Legacy-oriented

• Rumprun (NetBSD-based)

• Can run nginx, redis, node.js, python,etc..

What is a unikernel?

VM

2

Why unikernels?

• Lightweight
• Only what the application needs

• Isolated
• VM-isolation is the “gold standard”

• Well suited for the cloud
• Microservices
• Serverless
• NFV

3

VM

Virtualization is a mixed bag

• Good for isolation, but…

• Tooling for VMs not designed for lightweight (e.g., lightVM)
• How do you debug black-box VMs?
• Poor VM performance due to vmexits
• Deployment issues on already-virtualized infrastructure

4

Why not run unikernels as processes?

• Unikernels are a single process anyway!

• Many benefits as a process
• Better performance
• Common tooling (gdb, perf, etc.)
• ASLR
• Memory sharing
• Architecture independence

• Isolation by limiting process interface to host
• 98% reduction in accessible kernel functions

5

Process

Outline

• Introduction
• Where does unikernel isolation come from?
• Unikernels as processes
• Isolation evaluation
• Performance evaluation
• Summary

6

Isolation: definitions and assumptions

• Isolation: no cloud user can read/write state
or modify its execution

• Focus on software deficiencies in the host
• Code reachable through interface is a metric for

attack surface

• We trust HW isolation (page tables, etc.)

• We do not consider covert channels, timing
channels or resource starvation

7

Host Kernel

app

Unikernel architecture

8

Linux

monitor process (e.g., ukvm)

I/O devices

KVM

VT-x

• ukvm unikernel
monitor
• Userspace process
• Uses Linux/KVM

• Setup and loading
• Exit handling

Unikernel architecture

9

Linux

monitor process (e.g., ukvm)

I/O devices

KVM

VT-x

Setup

Set up
I/O fds

1

• ukvm unikernel
monitor
• Userspace process
• Uses Linux/KVM

• Setup and loading
• Exit handling

Unikernel architecture

10

Linux

monitor process (e.g., ukvm)

Virtual CPU
context

I/O devices

KVM

VT-x

Setup

Set up
I/O fds

1

Load
unikernel

2

• ukvm unikernel
monitor
• Userspace process
• Uses Linux/KVM

• Setup and loading
• Exit handling

Unikernel architecture

11

Linux

monitor process (e.g., ukvm)

I/O devices

KVM

VT-x

Setup

Set up
I/O fds

1

Exit handling

Load
unikernel

2

I/O

• ukvm unikernel
monitor
• Userspace process
• Uses Linux/KVM

• Setup and loading
• Exit handling

Virtual CPU
context

Unikernel isolation comes from the interface

• 10 hypercalls

• 6 for I/O
• Network: packet level
• Storage: block level

• vs. >350 syscalls

12

Hypercall
walltime

puts

poll

blkinfo

blkwrite

blkread

netinfo

netwrite

netread

halt

Observations

• Unikernels are not kernels!
• No page table management after setup
• No interrupt handlers: cooperative scheduling and poll

• The ukvm monitor doesn’t “do” anything!
• One-to-one mapping between hypercalls and system calls

• Idea: maintain isolation by limiting syscalls available to process

13

Unikernel as process architecture

14

Linux

tender process

I/O devices

• Tender: modified ukvm
unikernel monitor
• Userspace process
• Uses seccomp to

restrict interface

• Setup and loading

Unikernel as process architecture

15

Linux

tender process

I/O devices

Setup

Set up
I/O fds

1

• Tender: modified ukvm
unikernel monitor
• Userspace process
• Uses seccomp to

restrict interface

• Setup and loading

Unikernel as process architecture

16

Linux

tender process

I/O devices

Setup

Set up
I/O fds

1

Load unikernel2

• Tender: modified ukvm
unikernel monitor
• Userspace process
• Uses seccomp to

restrict interface

• Setup and loading

Unikernel as process architecture

17

Linux

tender process

I/O devices

Setup

Set up
I/O fds

1

Load unikernel2

Configure
seccomp

3

• Tender: modified ukvm
unikernel monitor
• Userspace process
• Uses seccomp to

restrict interface

• Setup and loading

Unikernel as process architecture

18

Linux

tender process

I/O devices

Setup

Set up
I/O fds

1

Exit handling

Load unikernel2

I/O

Configure
seccomp

3

• Tender: modified ukvm
unikernel monitor
• Userspace process
• Uses seccomp to

restrict interface

• Setup and loading
• “Exit” handling

Unikernel isolation comes from the interface

• 10 hypercalls

19

Hypercall
walltime

puts

poll

blkinfo

blkwrite

blkread

netinfo

netwrite

netread

halt

• 6 for I/O
• Network: packet level
• Storage: block level

• vs. >350 syscalls

Unikernel isolation comes from the interface

• Direct mapping between 10
hypercalls and system
call/resource pairs

20

Hypercall
walltime

puts

poll

blkinfo

blkwrite

blkread

netinfo

netwrite

netread

halt

• 6 for I/O
• Network: packet level
• Storage: block level

• vs. >350 syscalls

System Call Resource
clock_gettime

write stdout

ppoll net_fd

pwrite64 blk_fd

pread64 blk_fd

write net_fd

read net_fd

exit_group

Implementation: nabla !

21

• Extended Solo5 unikernel
ecosystem and ukvm
• Prototype supports:

• MirageOS
• IncludeOS
• Rumprun

• https://github.com/solo5/solo5

https://github.com/solo5/solo5

Measuring isolation: common applications

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

nginx
nginx-large

node-express

redis-get

redis-set

U
ni

qu
e

ke
rn

el
fu

nc
tio

ns
 a

cc
es

se
d process

ukvm
nabla

22

• Code reachable
through interface is
a metric for attack
surface
• Used kernel ftrace

• Results:
• Processes: 5-6x more
• VMs: 2-3x more

Measuring isolation: fuzz testing

23

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300

U
ni

qu
e

ke
rn

el
 fu

nc
tio

ns

accept
nabla
block

 0

 30

 0 10

• Used kernel ftrace
• Used trinity

system call fuzzer to
try to access more of
the kernel

• Results:
• Nabla policy reduces

by 98% over a
“normal” process

Measuring performance: throughput

 80%

 100%

 120%

 140%

 160%

 180%

 200%

py_tornado

py_cham
eleon

node_fib

m
irage_HTTP

py_2to3

node_express

nginx_large

redis_get

redis_set

includeos_TCP

nginx

includeos_UDP

No
rm

al
ize

d
th

ro
ug

hp
ut

245

no I/O with I/O

ukvm
nabla
QEMU/KVM

24

• Applications include:
• Web servers
• Python benchmarks
• Redis
• etc.

• Results:
• 101%-245% higher

throughput than ukvm

Measuring performance: CPU utilization

 0
 20
 40
 60
 80

 100
 120

(a
)

 C
PU

 %

 0
 20
 40
 60
 80

 100

(b
)

 V
M

ex
its

/m
s

 0

 0.5

 1

 1.5

 0 5000 10000 15000 20000

(c
)

 IP
C

 (i
ns

/c
yc

le
)

Requests/sec

nabla
ukvm

25

• vmexits have an effect on
instructions per cycle

• Experiment with MirageOS
web server
• Results:

• 12% reduction in cpu
utilization over ukvm

Measuring performance: startup time

0

250

500

750
H
el
lo

w
or
ld

QEMU/KVM

0

10

20

30
ukvm

0

10

20

30
nabla

0

10

20

30
process

0

500

QEMU/KVM

ukvm

nabla

process

2 4 6 8 10 12 14 16
0

500

1000

1500

H
T
T
P

P
O
S
T

2 4 6 8 10 12 14 16
0

50

100

150

200

2 4 6 8 10 12 14 16

Number of cores

0

50

100

150

200

2 4 6 8 10 12 14 16
0

50

100

150

200

0 2 4 6 8 10 12 14

0

500

1000

1500

26

• Startup time is important
for serverless, NFV

• Results:
• Ukvm has 30-370% higher

latency than nabla

• Mostly due avoiding KVM
overheads

H
el

lo
 w

or
ld

H
TT

P
Po

st

Summary and Next Steps

• Unikernels should run as processes!
• Maintain isolation via thin interface
• Improve performance, etc.

• Next steps: can unikernels as
processes be used to improve
container isolation?
• Nabla containers
• https://nabla-containers.github.io/

27

Process

https://nabla-containers.github.io/

28

