
Wharf: Sharing Docker Image
in a Distributed File System

Chao Zheng, Lukas Rupprecht, Vasily Tarasov,
Douglas Thain, Mohamed Mohamed, Dimitrios Skourtis,

Amit S. Warke and Dean Hildebrand

Problem
High Network and Storage Overheads

2

1

Docker Container Runtime

3

▰ Container Image & Layer
▻ Multiple read-only layers and one writable layer

▻ Different images may share layers

▻ All changes are stored in writable layer (COW)

▰ Graph Driver
▻ Overlay drivers: AUFS, OverlayFS/2

▻ Specialized drivers: Devicemapper, btrfs

Docker on Distributed Storage

▰ High Network Overheads

▰ Waste Disk Space

▰ Longer Workload Startup Time

4

Solution
Share Images & Layers across Daemons

5

2

Share Layers
Across Daemons

6

▰ Daemons share storage
▻ Cluster often offer a shared storage layer to computing nodes

▰ Few data is read
▻ Only 6.4% of the image data is read by containers on average [1]

[1] Harter et al. Slacker: Fast Distribution with Lazy Docker Containers FAST’16

Challenges

7

▰ Keep consistency between daemons

▰ Avoid potential performance degradation

▰ Avoid remote access to shared storage

But, How to … ?

Design Goals

8

▰ Avoid Redundancy

▰ Collaboration

▰ Efficient Synchronization

▰ Avoid Remote Access

▰ Fault Tolerance

Wharf

9

▰ Global/Local State
▻ Global State: 1) Shared Data Store - image and layer data; 2)

Shared Metadata Store - layer, image and xfering metadata

▻ Local State: 1) Metadata: network, volume, container plugins,
etc. 2) Container Data: container writable layers

▰ Read/Write Operations
▻ All operations will access the shared metadata store, before

the shared data store

▻ Read: read the global state. eg. list images

▻ Write: update the global state. eg. pull images

Fine-grained Locking

10

▰ Lock small portion of global state
▻ Only lock the metadata related to the operation (list

images, pull layer, …)

▻ Operation can only be started after successfully accessing
the metadata store

▰ Concurrent Read, Exclusive Write

▰ Extend the parallel model of Docker
▻ Use watcher to watch the pulling of layers

▻ Use dummy transfer to imitate real transfer

Concurrent Image Retrieval Workflow

11

Evaluation
Wharf vs Docker

12

3

Experimental Setup

13

▰ Three configurations
▻ Docker Local

▻ Docker NFS

▻ Wharf NFS

▰ Cluster Configuration
▻ 5 - 20 aws t2.medium instances. .

▻ Wharf is based on Docker CE17.05

▻ Local image registry

14

Pull Latencies

DockerNFS

DockerLocal

WharfNFS

15

Network Overheads Data From Registry
DockerNFS

DockerLocal

WharfNFS

16

Runtime Overheads

Docker Wharf

Total Exec 7 m 26 s 7 m 47 s

Avg Exec (s) 158 154

Min Exec (s) 31 46

Max Exec (s) 252 263

Data Rev (MB) 3227 354

Data Sent (MB) 50 768

▰ Workload Spec
▻ Bioinformatics Workflow

▻ 1,000 parallel tasks

▰ Overhead mainly due to remote accesses

12 X
Faster pulling

2.6 - 4.7 %
Runtime degradation

9.1 X
Less data pulled, stored

17

Summary

18

THANKS!
Any questions?

You can find us at
czheng2@nd.edu

mailto:czheng2@nd.edu

