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Problem
High Network and Storage Overheads
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Docker Container Runtime
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▰ Container Image & Layer
▻ Multiple read-only layers and one writable layer

▻ Different images may share layers

▻ All changes are stored in writable layer (COW)

▰ Graph Driver
▻ Overlay drivers: AUFS, OverlayFS/2

▻ Specialized drivers: Devicemapper, btrfs



Docker on Distributed Storage

▰ High Network Overheads

▰ Waste Disk Space

▰ Longer Workload Startup Time 
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Solution
Share Images & Layers across Daemons
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Share Layers 
Across Daemons
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▰ Daemons share storage
▻ Cluster often offer a shared storage layer to computing nodes

▰ Few data is read
▻ Only 6.4% of the image data is read by containers on average [1]

[1] Harter et al. Slacker: Fast Distribution with Lazy Docker Containers FAST’16



Challenges
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▰ Keep consistency between daemons

▰ Avoid potential performance degradation

▰ Avoid remote access to shared storage

But, How to … ?



Design Goals
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▰ Avoid Redundancy

▰ Collaboration

▰ Efficient Synchronization

▰ Avoid Remote Access

▰ Fault Tolerance



Wharf 
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▰ Global/Local State
▻ Global State: 1) Shared Data Store - image and layer data;  2) 

Shared Metadata Store - layer, image and xfering metadata

▻ Local State: 1) Metadata: network, volume, container plugins, 
etc. 2) Container Data: container writable layers

▰ Read/Write Operations
▻ All operations will access the shared metadata store, before 

the shared data store

▻ Read: read the global state. eg. list images

▻ Write: update the global state. eg. pull images



Fine-grained Locking 
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▰ Lock small portion of global state
▻ Only lock the metadata related to the operation (list 

images, pull layer, …)

▻ Operation can only be started after successfully accessing 
the metadata store

▰ Concurrent Read, Exclusive Write

▰ Extend the parallel model of Docker
▻ Use watcher to watch the pulling of layers

▻ Use dummy transfer to imitate real transfer



Concurrent Image Retrieval Workflow
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Evaluation
Wharf vs Docker

12

3



Experimental Setup
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▰ Three configurations
▻ Docker Local

▻ Docker NFS

▻ Wharf NFS

▰ Cluster Configuration
▻ 5 - 20 aws t2.medium instances. . 

▻ Wharf is based on Docker CE17.05

▻ Local image registry
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Pull Latencies

DockerNFS

DockerLocal

WharfNFS
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Network Overheads Data From Registry
DockerNFS

DockerLocal

WharfNFS
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Runtime Overheads 

Docker Wharf

Total Exec 7 m 26 s 7 m 47 s

Avg Exec (s) 158 154

Min Exec (s) 31 46

Max Exec (s) 252 263

Data Rev (MB) 3227 354

Data Sent (MB) 50 768

▰ Workload Spec
▻ Bioinformatics Workflow

▻ 1,000 parallel tasks

▰ Overhead mainly due to remote accesses



12 X
Faster pulling

2.6 - 4.7 %
Runtime degradation

9.1 X
Less data pulled, stored
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Summary 
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THANKS!
Any questions?

You can find us at
czheng2@nd.edu

mailto:czheng2@nd.edu

