
Overload Control for Scaling
WeChat Microservices

WeChat

The new way to connect

Chat Moments Contacts Search Pay

1 Billion
monthly active users

WeChat’s Microservice Architecture

• Service DAG
– Vertex: a distinct service; Edge: call path

– Basic service: out-degree = 0

– Leap service: out-degree ≠ 0
o Entry service: in-degree = 0

Dealing with Overload

• It’s usually hard to estimate the dynamics of workload during
the development of microservices.

Subsequent Overload

How about random load shedding?

Dynamic Workload

Relative Statistics of WeChat Service Requests

DAGOR

• Overload detection

• Service admission control

• Requirements
– Service agnostic

o Benefit the ever evolving microservice system

o Decouple overload control from the business logic of services

– Independent but collaborative
o Decentralized overload control

o Service-oriented collaboration among nodes

– Efficient and fair

o Sustain best-effort success rate of service when load shedding becomes inevitable

o Bias-free overload control

Overload Detection

• Load indicator of a node: Queuing time
– Rationale: to manage queue length for SLA

• Why not response time?

• Why not CPU utilization?

Service Admission Control

Static

Shuffling on
an hourly basis

Exploit
histogram for
real-time
adjustment

DAGOR Workflow

Service agnostic

Independent but collaborative

Efficient and fair

Collaborative
Admission
Control

Overload Detection

Queuing Time vs. Response Time

Scalability

Overload Control
with Increasing Workload (M2)

Overload Control
with Different Types of Workload

Optimal Success Rate = 𝒇𝒔𝒂𝒕 𝒇

Fairness

CoDel DAGOR

Takeaways: DAGOR Design Principles

1. Must be decentralized and autonomous in each service/node
– Essential for the overload control framework to scale with the ever evolving

microservice system

2. Employ feedback mechanism for adaptive load shedding
– Essential for adjusting thresholds automatically

3. Prioritize user experience

Thank You ALL!

