
Automatic Adaptive Grid Refinement for the Euler Equations

Marsha J. Berger*
Courant Institute of Mathematical Sciences

251 Mercer St.
New York University
New York, NY 10012

Antony Jameson+

Princeton University
Dept. of Mechanical and Aerospace Engineering

Princeton, NJ 08544

Abstract

We present a method of adaptive grid
refinement for the solution of the steady Euler
equations for transonic flow. Our algorithm
automatically decides where the coarse grid
accuracy Is insufficient, and creates locally uniform
refined grids in these regions. This typically occurs
at the leading and trailing edges. The solution is
then integrated to steady state using the same
integrator (FLO52) in the interior of each grid. We
examine the boundary conditions needed on the
fine grids, and discuss the importance of treating
the fine/coarse grid interface conservatively.
Numerical results are presented.

1. Introduction

In computing transonic flow fields about
complex geometries, it is difficult to resolve all
features of the solution to the same accuracy with a
uniform grid. As much as possible, the regions
where the solution needs finer grid resolution are
finely zoned in the initial (pre-solution) grid
generation phase. However, it is not always known
in advance where those regions arc, or how finely
zoned to make them. The location of the inaccurate
regions changes with different flow parameters,
mach number, angle of attack, etc.

Algorithms are commonly found in the

literature where the user computes a solution, re-
grids, and re-solves [1]. In this paper, we present an
algorithm for automatic local grid refinement. We
describe a simple procedure to discover the regions
of high error (typically the leading and trailing
edges and in the neighborhood of shock waves),
and to re-grid by Introducing any number of local
rectangular fine grids. This both removes the
guesswork and obtains comparable solutions at less
cost than those obtained by uniformly refining the
grid over the entire flow field.

*Supported in part by Department of Energy Contract No.
DEAC0276ER03077-V.
+Supported in part by the Office of Naval Research under Grant
N00014-81-K-0379 and by NASA Langley Research Center
under Grant NAG-1-186

A wide variety of approaches to adapting

the grid for better solution resolution have been
tried. Rai and Anderson [2] have a method of
clustering the grid lines in the neighborhood of a

shock by “attracting” the lines into the
region. Harten and Hyman [3] have an algorithm
where each grid point can move within a base grid
cell which stays fixed. In one dimension this
method can have the same sharp resolution as a
shock fitting scheme. Recent work by Usab and
Mur man [4] proposed grid refinement procedures
similar to ours, but does not incorporate the
automatic error estimation in our approach.

In section 2 of this paper, we describe the
algorithm for local grid refinement, that is, the
error estimation and grid generation. We also
describe how to integrate the solution on these
multiple grids to steady state, which we do using
FLOS2 [5]. Since the refined grids are locally
uniform patches in the same coordinate system as
the coarse grid, we are able to use an existing
integration routine with very little modification.
Section 3 deals with the boundary conditions
needed on the fine grid. Our strategy is to solve an
Initial boundary value problem on each grid. If a
fine grid touches the airfoil, or has a farfield
boundary, the same boundary conditions are
applied as would be used for a single grid
computation. The only new type boundary that
arises is the fine/coarse grid interface. We discuss
the importance of treating this interface
conservatively, even if the Interface is in a smooth
flow region, and describe in some detail the
procedure which we implement. Finally, section 4
compares the multiple grid results to a single grid
finely zoned run.

The same issues that arise in the interfaces
between fine and coarse grids (conservation, the
data structures and bookeeping needed for this
information), arise in the solution of a problem
with complex geometry by component grids. By
the latter we mean multiple grids in different
coordinate systems. In the future we intend to apply
our results that direction. Also, since our algorithm
keeps grids locally uniform, a simple user interface

is possible. This allows for example, the use of a
vectorized integrator. The method does not have
the major drawbacks of moving grid point
methods, namely, grid skewness and the “all points
to the worst zone” problem, and thus seems very
suitable for 3D calculations well. In this paper, we
present a systematic study to verify that this
method works. We demonstrate that with no loss in
the convergence rate, we can capture the accuracy
of the solution on a grid twice as fine by using a
coarse, global grid, and adaptively refining only
those regions where the error is high.

2. Multiple Grid Method of Achieve Refinement

This section presents the algorithm we use
to solve the 2D Euler equations for steady flow
about an airfoil. We describe the overall algorithm
before going into detail about the main steps. A
more detailed discussion of the structure of this
algorithm is found in [6].

The solution procedure (described in

section 2.3) starts by time-stepping on a single
global grid. Since the initial conditions are uniform
flow, we wait until the solution has settled down to,
say, a residual ≈ 10-2 before applying the error
estimator and subsequent adaptive strategy. The
error estimator (described in section 2.1) is then
applied at every point on the coarse grid. Those
grid points where the estimate is high are flagged
as needing finer grid resolution. The grid
generation algorithm creates fine grids in the same
coordinate system as the coarse grid, so that every
flagged point is contained in a fine grid. An
important point is that the fine grids are rectangles
in the computational plane. For example, the
refinement at the leading edge In figure 2.la is the
center rectangle In the computational domain
shown In figure 2.lb. Since the grid is periodic in
the ξ direction, with the break at the trailing edge,
the trailing edge refined grids are the left most and
rightmost rectangles in figure 2.lb.

Figure 2.1 Fine grids at the leading and trailing
edges.

The use of rectangles as the basis for
refinement is a crucial decision. First, It allows for
a very simple user interface. The integrator which
is used on the global coarse grid can also be used
without change on each fine grid. Secondly, the use
of rectangles makes the data structure problem
tractable, since only four corner points are needed
to fix the sub-grid location. The storage overhead is
thus on a per grid basis, rather than on a per grid
point basis, an4 is negligible. Other methods
typically use pointers for each refined cell of the
coarse grid, or possibly each row. Finally, this
approach to adaptive grid refinement does not
suffer from the two main problems in moving grid
point methods. These problems are the difficulty in
controlling grid skewness, and the problem of
adequately resolving several features of the
solution when all points rush to the strongest
feature [7]. It is clear that some mechanism to add
points in a simple way as well as moving them is
called for. In our method, if a refined grid, is found
to need further refinement (the error estimate at
fine grid points is still too high), another, finer
rectangle is added which will be nested in the
existing sub-grid in the same way the sub-grid is
nested in the coarse grid.

We emphasize that these grids are not
patched into one global grid, but are kept
independently, each with its own solution vector.
This means that some coarse grid solution storage
is wasted (unless it participates in the solution
process itself, such as in a multi-grid method),
since we will always use the fine grid solution
when it exists. The benefits seem to greatly
outweigh this waste, since by preventing
fragmentation the solution process on each grid can
still be vectorized, and the loss in computing some
extra coarse grid points is offset by the gain in
efficiency due to regularity, and the simplicity of
the data structures.

Given this grid structure, the solution on
each grid is initialized by interpolation from the
coarse grid, and the time stepping continues.
Section 2.3 describes the integration strategy for
multiple grids, and reviews both the finite volume
discretization scheme and the generalized Runge
Kutta time stepping method which is used to
advance the solution on each grid.

2.1. Error Estimation

In regions of smooth flow, the cirteria we

use for refining the grid is an estimate of the error
in the solution on the finest existing grid in that
region. Although there is no theory for equations of
mixed type, in the purely elliptic or purely
hyperbolic case there are estimates for the global
error in the solution in terms of the local truncation

error [8]. Accordingly, we will estimate the local
truncation error in the solution using ideas similar
to Richardson extrapolation or deferred correction
[6]. To solve

 () () 0=+ yx uguf

we compute

Q(h)U = 0,

where U is the numerical approximation to u, and
the difference operators approximating fx and gy
based on a stcpsize h am in Q. The local truncation
error is

Q(h)u = τ hP,

where p = 2 for a second order method. The term τ
contains derivatives of the solution u. The goal of
refining is to determine when τ is big, and reduce h,
so that the same accuracy is attained over the entire
flow field. The idea is to estimate the error using
Richardson extrapolaton-type estimates by
differencing on a grid with mesh spacing 2h using
every other point of the computed solution U. We
compute

Q(2h)U ≈ (2p-1) τ hp.

In the steady state calculation, the residual Q(h)U is
driven to zero, but the coarsened grid residual will
not be zero. Thus we can use

() ph
p

UhQ τ≈
−12

2

as an estimate of the error at each point.

Notice that it is unnecessary to know the
exact form of the truncation error τ for this method.
Secondly, this residual calculation is identical to
the first stage of the regular Runge Kutta
integration step but on a 2h grid. For the error
estimation step, the computer code is merely
changed to read i+ 2 Instead of i+1 (and so on)
when updating the ith point. (In fact, this can
sometimes be done automatically in Fortran by
changing the dimension statements when declaring
the arrays in an integration subroutine). The
computational overhead of this estimator is thus
less than one extra integration step for the whole
computation.

In regions where the flow is
discontinuous, this procedure no longer gives a
valid error estimate. However, it acts as a trigger
for mesh refinement in the presence of a strong
shock. We have found in our results however, that

the largest error is at the leading edge and then
trailing edge of the airfoil. Of course, this depends
on the underlying global grid resolution. For strong
shocks, a fine grid is also created in the region of
the shock. This general procedure has the
advantage that it is not necessary to know the
location of the shock before the start of the
computation.

2.2. Gild Generation

The output from the error estimation
routine is a list of (coarse) grid points with high
error estimates, indicating that a refined zone is
needed in that region. The grid generation routine
separates the points into appropriate groups so that
a (logically) rectangular grid can be placed around
each group. This proceeds in two phases. First, the
points that are in different parts of the domain
(such as leading edge and trailing edge) are
separated into different groups. Around each group,
a rectangle is formed which is large enough to
include all points in that group. This new grid is
then slightly enlarged (by one or two coarse grid
points), to ensure that the fine grid boundary,
where special interpolation formulas will be used
for the boundary differencing, is in a region with a
estimate. Figure 2.2 illustrates procedure
schematically.

The only possible exception to this above
procedure is shown in Figure 2.3. It may happen
that two different grids are created around one
cluster of points, in order to minimize the size of
the (unnecessarily) refined region. Details of this
exceptional case can be found in [9].

Figure 2.2 Fine grid generation around flagged
points.

We make one last remark about the
rectangular grids. It may happen that the zone
needing refinement is oblique to the underlying
grid, for example, for an oblique shock. It could be
advantageous to be able to align the fine grid so
that the coordinates were approximately nor mal
and tangent to the discontinuity. A rotated
difference scheme has been used by Jarneson [10]
for the potential equation. Recent results by Davis
[11] for the Euler equations show much better
performance for first order upwind schemes if they
are rotated to align with the shock. The grid
generation procedure has the capability to produce

gilds with this alignment property. However,
interpolation procedures have not yet been
developed which treat the fine/coarse grid Interface
conservatively. Work is still in progress on this
point.

2.3. Integration Procedure

It is very easy to solve the equations on
the grid structure described above. We take one
step on all grids using the Runge Kutta finite
integrator described below. Since we are interested
in the steady state solution, we use pseudo-time
steps with a fixed Courant number. For time
dependent calculations, for reasons of both stability
and efficiency, it is best to take several smaller
time steps on the fine grids for every one coarse
grid step. We have experimented with taking
several steps on a large fine grid for every coarse
grid

Figure 2.3 Two fine grids generated around one group of
flagged points.

step. The optimal strategy for the number of
iterations to be done on each grid at a time is still
an open question. This will be an especially
important consideration in large computations
where secondary storage is used.

We briefly review the finite volume
Runge Kurta time stepping procedure which is the
integrator for this adaptive algorithm. For details,
see [12] and the discussion of the FLO52 program.
The full Euler equations in 2D are written in
integral form,

 ,0=−�+��
∂
∂

Ω∂ gdxfdywdxdy
t

where

��
�
�
�

�

�

��
�
�
�

�

�

+
=

��
�
�
�

�

�

��
�
�
�

�

�

+
=

��
�
�
�

�

�

��
�
�
�

�

�

=

vH

pv

uv

v

g

uH

uv

pu

u

f

E

v

u
w

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ
ρ
ρ

2

2

The equations are approximated in a computational
domain where the variables are cell-centered. The

flux is evaluated at the boundary of a given cell
using the aver age of the values in the adjacent
cells. This spatial discretization procedure leads to
a system of ordinary differential equations. These
have the form

() ,0=−+ DwQwhw
dt
d

where Qw is the approximation to the term, and
where h is the cell area. The dissipation is
introduced by a combination of second and fourth
order differences, which arc switched on by
pressure gradients. The same dissipation formulas
arc used in the integration step on each grid, except
at the boundaries of the fine grids, where the fourth
order stencil is too large. In this ease we use only
the second order dissipation.

The ODE are integrated using a modified
four stage Runge Kutta scheme in which the
dissipative terms are only evaluated once. At each
time step the solution is updated by the following
sequence:

() () () ()()0001

4
DwQw

h
t

ww −∆−=

() () () ()()0102

3
DwQw

h
t

ww −∆−=

() () () ()()0203

2
DwQw

h
t

ww −∆−=

() () () ()()0304

4
DwQw

h
t

ww −∆−=

where w(0) is the value a; the beginning of the time
step, and w(4) is the final updated value. The time
step limit for this scheme is almost the same as that
of a standard fourth order Runge Kutta scheme.

The farfield boundary values are partially
specified from freestream values, and partially
extrapolated from the Riemann invariants,
depending on whether the flow is supersonic or sub
sonic, and whether the boundary is an inflow or
outflow boundary. At the body, only the pressure is
needed to advance the variables in the cells nearest
the wall. The pressure is computed by an
extrapolation formula based on the nor mal
momentum equations. The slight modification of
this required at the coarse/fine interface is
described in section 3.

3. Fine Grid Boundary Conditions

In this section we discuss the difference
equations used at the interface between a coarse
and fine grid. The procedure which we have

developed is designed for use with the finite
volume difference scheme. More general
procedures arc described in [13].

Figure 3.1 Fine/coarse grid inter face.

We illustrate the procedure using a
refinement ratio of 2 between grids. In figure 3.1,
the coarse grid variables arc marked with o, the fine
grid variables with an x. Notice that there are
coarse points “underneath” the fine grid. The
solution is computed over the entire coarse grid
including these points when a coarse grid
integration step is taken. However, the coarse grid
points underneath the fine grid are updated after
each coarse step by replacing the solution there
with the volume weighted average of the solution
at the four nearest fine points. The final output uses
the values from the finest grid covering each
region.

To take a step on the fine grid, the flux
across the line ξ = 0 into the fine grid must be
calculated. It is advantageous to introduce an
outside column of solution values (denoted by the
plus signs in figure 3.1). The flux can then be
calculated in the same way for the first cell and the
interior cells of the fine grid. This also mimics the
coarse grid setup, where an extra column is kept on
each side of the periodic boundary. The easiest way
to determine this column of fine grid values is by
interpolation from the coarse grid. Point p would be
set by linear interpolation from coarse grid points
vj,j vi, j+1, vi+1, j. vi+1, j+1. To maintain accuracy, the
values at vj+1j and vi+1, j+1 on the coarse grid would
be replaced by the volume weighted average of the
four neighboring fine grid points after every coarse
grid integration step. In this way, each grid can still
be integrated independently, in a manner that still
vectorizes, and only a small amount of “fixup”
work along the boundaries of the fine grids need be
done.

Unfortunately, there is no reason for this
procedure to be conservative, which in this case
means that the sum of the fluxes into the coarse
cells at the interface (computed for example using

the value
2

,1, jiji vv ++
 is equal to that computed

on the fine grid into the fine cells on the right of the

interface. It is important to maintain conservation
in order to guarantee the correct shock location in
transonic flow fields. This is especially relevant
since there will often be a fine grid in the region of
a shock, and so the interface between the fine and
coarse grids will be near the shock.

An alternative interface procedure which

is conservative is to calculate the flux on the coarse
grid, and divide it in half for the adjacent two fine
cells. This would bypass setting the outside
variables, and calculate a boundary flux for the fine
grid directly. Unfortunately, this is unstable, as can
be seen from a linear analysis of the interface. The
treatment in this case yields the linear relationship

v0,1 + v1,1 + vo,2 + v1,2 = 2(ui,j + ui+1 j),

where u approximates the solution on the coarse
grid, and v approximates the solution on the fine
grid. It turns out that boundary scheme which
couples the fine points across the interface can give
rise to an oscillatory wave emanating from the
interface into the fine grid, and supported by the
central differenced (linearized finite volume)
scheme. Another alternative, that of calculating the
flux directly from the one coarse point and adjacent
two fine points, is stable, but of lower order
accuracy. In effect, It treats the solution In the
column of plus signs as piecewise constant in each
a cell, instead of linear.

The procedure we have chosen is a

variation of interpolation. The cells with plus signs
are obtained from interpolation from the coarse
grid, and the fine grids are then advanced. The
coarse grid fluxes arc determined as usual during
the regular Integration step, but then the value at
each coarse grid point nearest the interface is
“fixed” so that the flux at the interface equals the
sum of the two fine cell fluxes. In this way,
conservation is enforced, second order accuracy is
maintained, and the only extra computational work
is done along the boundary. (This method thus
avoids having to check every coarse point to
determine whether it is located at an interface,
which would he unacceptable overhead). In
experiments with these interface equations, when
the interface is forced to be right at the location of a
shock, no loss of accuracy is observed in the
solution.

A special treatment is required when the

interface coincides with the body. In order to
interpolate for a fine point value at the body, a
coarse grid value is needed at the body as well.
Since only the pressure is computed at the body,
values are needed for the density, x and y
momentum, and energy. These are computed by
setting the momentum normal to the body to 0,

setting the tangential momentum to be identical to
that one cell over, and setting the energy to its
steady state constant value. In practice, there is
little difference between this procedure and simple
linear extrapolation of the missing coarse grid
values from the interior.

4. Numerical Results

We present results comparing the solution
computed on a coarse grid, on a coarse grid with
patched fine grids, and on a uniformly refined grid.
In all cases, by refining a fraction of the grid, the
accuracy of the solution on a uniformly fine grid is
recovered at less than half the

The first test case is for non-lifting

subsonic flow over a NACA 0012. The Mach
number is .500 with zero degrees angle of attack.
Figure 4.1 shows the pressure coefficient for a run
with a grid size 32 by 8, shown In Figure 4.2. The
drag coefficient is .0049. Figure 4.3 is from a grid
of size 64 by 16 with drag coefficient .0011. The
grid is shown in Figure 4.4. Figure 4.5 is the
solution on a grid of size 128 by 32 grid, shown In
Figure 4.6. The drag coefficient here is .0002. The
drag coefficient is converging like h2 to its
expected value of zero. Figure 4.7 shows a refined
grid solution based on a 32 by 8 underlying coarse
grid, with refined grid patches as shown in Figure
4.8. The drag coefficient in this case is .0009.
Figure 4.9 shows a refined grid solution based on a
64 by 16 under lying coarse grid. The refined grid
for this ease is shown in Figure 4.10. The drag
coefficient is reduced to .0001. In both cases, the
accuracy of the solution on the uniformly next finer
level grid is recovered by using small grid patches
at the leading and trailing edges of the airfoil.

The second test case is transonic flow
containing a shock wave. Figure 4.11 shows the
pressure coefficient for a NACA 0012 airfoil at
Mach .8 with zero degrees angle of attack. The
mesh used for this computation is 64 by 16 cells.
When the grid is refined (using an error tolerance
of .005), as shown in Figure 4.12, the solution
obtained is almost identical to the solution
computed on a 128 by 32 mesh (compare Figures
4.13 and 4.14). In the coarse grid run, the entropy
behind the shock was computed to be .0072, In the
multiple grid run it was .0052, and in the fine grid
run the entropy was .0054. In this mesh refined
solution, 21% of the coarse grid was refined by a
factor of 2 in both coordinate directions. The cost
of integrating the mesh refined run was thus
roughly half the cost of the 128 by 32 grid run. If
the error tolerance for mesh refinement is less
stringent (.025), so that only the leading and
trailing edges are refined (Figure 4.15), the solution
is only slightly worse across the shock is .0046 in

this case. In this run only 10% of the coarse grid is
refined, and so the overall cost of the solution is
roughly 35% of the fine grid cost.

5. References

 [1] S. Nakamura and T.L. Holst “A New

Solution-Adaptive Grid Generation
Method for Transonic Airfoil Flow
Calculations”, NASA Tech. Memo
81330, October, 1981.

[2] M.M Rai and D. Anderson, “The Use of

Adaptive Grids in Conjunction with
Shock-Capturing Method”, AIAA Paper
81-1012. Presented at the AIAA 5th
Computational Fluid Dynamics
Conference, Palo, Alto, California, June
1981.

[3] A. Harten and J.M. Hyman, “Self-

Adjusting Grid Methods for One
Dimensional Hyperbolic Conservation
Laws”, Los Alamos Report LA-9105,
1981.

[4] W. Usab, Jr. and Earl M. Murman,

“Embedded Mesh Solutions of the Euler
Equation Using a Multiple- grid Method”,
AIAA Paper 83-1946-CP. Presented at the
6th AIAA Computational Fluid Dynamics
Conferenocs, Danvers, Mass. July, 1983.

[5] A. Jameson, W. Schmidt, and B. Turkel,

“Numerical Solutions of the Euler
Equations by Finite Volume Methods
Using Runge-Kutta Time-Stepping
Schemes”, AIAA Paper 81-1259.

[6] M. Berger arid J. Oliger, Adaptive Mesh
Refinement for Hyperbolic Partial
Differential Equations, To appear in J.
Comp. Phys.

[7] D. Anderson, “Adaptive Mesh Schemes

Based on Grid Speeds”, AIAA Paper 83-
1931.

[8] E. Isaacson and H. Keller, Analysis of

Numerical Methods, John Wiley & Sons,
1966.

[9] M. Berger, “Data Structures for Adaptive

Grid Generation”, submitted to SIAM J.
Sci. and Stat. Comp.

[10] A. Jameson, “Iterative Solution of

Transonic Flows over Airfoils and Wings,
Including Flows at Mach 1”, Comm Pure
Appl. Math. XXVII (1974), 283-309.

[11] S. Davis, “A Rotationally Biased Upwind
Difference Scheme for the Euler
Equations”. ICASE Technical Memo
112179, July, 1983.

[12] A. Jameson, “Steady-State Solution of the

Euler Equations for Transonic Flow”,
Transonic, Shock and Multidimensional
Flows Advances in Scientific Computing,
Academic Press, 1982.

[13] M. Berger, On Conservation at Grid

Interfaces. In preparation.

