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Abstract 

We present a method of adaptive grid 
refinement for the solution of the steady Euler 
equations for transonic flow. Our algorithm 
automatically decides where the coarse grid 
accuracy Is insufficient, and creates locally uniform 
refined grids in these regions. This typically occurs 
at the leading and trailing edges. The solution is 
then integrated to steady state using the same 
integrator (FLO52) in the interior of each grid. We 
examine the boundary conditions needed on the 
fine grids, and discuss the importance of treating 
the fine/coarse grid interface conservatively. 
Numerical results are presented. 
 
1. Introduction 

In computing transonic flow fields about 
complex geometries, it is difficult to resolve all 
features of the solution to the same accuracy with a 
uniform grid. As much as possible, the regions 
where the solution needs finer grid resolution are 
finely zoned in the initial (pre-solution) grid 
generation phase. However, it is not always known 
in advance where those regions arc, or how finely 
zoned to make them. The location of the inaccurate 
regions changes with different flow parameters, 
mach number, angle of attack, etc. 

 
Algorithms are commonly found in the 

literature where the user computes a solution, re-
grids, and re-solves [1]. In this paper, we present an 
algorithm for automatic local grid refinement. We 
describe a simple procedure to discover the regions 
of high error (typically the leading and trailing 
edges and in the neighborhood of shock waves), 
and to re-grid by Introducing any number of local 
rectangular fine grids. This both removes the 
guesswork and obtains comparable solutions at less 
cost than those obtained by uniformly refining the 
grid over the entire flow field. 
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A wide variety of approaches to adapting 

the grid for better solution resolution have been 
tried. Rai and Anderson [2] have a method of 
clustering the grid lines in the neighborhood of a  

shock by “attracting” the lines into the 
region. Harten and Hyman [3] have an algorithm 
where each grid point can move within a base grid 
cell which stays fixed. In one dimension this 
method can have the same sharp resolution as a 
shock fitting scheme. Recent work by Usab and 
Mur man [4] proposed grid refinement procedures 
similar to ours, but does not incorporate the 
automatic error estimation in our approach. 
 

In section 2 of this paper, we describe the 
algorithm for local grid refinement, that is, the 
error estimation and grid generation. We also 
describe how to integrate the solution on these 
multiple grids to steady state, which we do using 
FLOS2 [5]. Since the refined grids are locally 
uniform patches in the same coordinate system as 
the coarse grid, we are able to use an existing 
integration routine with very little modification. 
Section 3 deals with the boundary conditions 
needed on the fine grid. Our strategy is to solve an 
Initial boundary value problem on each grid. If a 
fine grid touches the airfoil, or has a farfield 
boundary, the same boundary conditions are 
applied as would be used for a single grid 
computation. The only new type boundary that 
arises is the fine/coarse grid interface. We discuss 
the importance of treating this interface 
conservatively, even if the Interface is in a smooth 
flow region, and describe in some detail the 
procedure which we implement. Finally, section 4 
compares the multiple grid results to a single grid 
finely zoned run. 
 

The same issues that arise in the interfaces 
between fine and coarse grids (conservation, the 
data structures and bookeeping needed for this 
information), arise in the solution of a problem 
with complex geometry by component grids. By 
the latter we mean multiple grids in different 
coordinate systems. In the future we intend to apply 
our results that direction. Also, since our algorithm 
keeps grids locally uniform, a simple user interface 



is possible. This allows for example, the use of a 
vectorized integrator. The method does not have 
the major drawbacks of moving grid point 
methods, namely, grid skewness and the “all points 
to the worst zone” problem, and thus seems very 
suitable for 3D calculations well. In this paper, we 
present a systematic study to verify that this 
method works. We demonstrate that with no loss in 
the convergence rate, we can capture the accuracy 
of the solution on a grid twice as fine by using a 
coarse, global grid, and adaptively refining only 
those regions where the error is high. 
 
2. Multiple Grid Method of Achieve Refinement   
 

This section presents the algorithm we use 
to solve the 2D Euler equations for steady flow 
about an airfoil. We describe the overall algorithm 
before going into detail about the main steps. A 
more detailed discussion of the structure of this 
algorithm is found in [6].  

 
The solution procedure (described in 

section 2.3) starts by time-stepping on a single 
global grid. Since the initial conditions are uniform 
flow, we wait until the solution has settled down to, 
say, a residual ≈ 10-2 before applying the error 
estimator and subsequent adaptive strategy. The 
error estimator (described in section 2.1) is then 
applied at every point on the coarse grid. Those 
grid points where the estimate is high are flagged 
as needing finer grid resolution. The grid 
generation algorithm creates fine grids in the same 
coordinate system as the coarse grid, so that every 
flagged point is contained in a fine grid. An 
important point is that the fine grids are rectangles 
in the computational plane. For example, the 
refinement at the leading edge In figure 2.la is the 
center rectangle In the computational domain 
shown In figure 2.lb. Since the grid is periodic in 
the ξ direction, with the break at the trailing edge, 
the trailing edge refined grids are the left most and 
rightmost rectangles in figure 2.lb. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 Fine grids at the leading and trailing 
edges. 
 

The use of rectangles as the basis for 
refinement is a crucial decision. First, It allows for 
a very simple user interface. The integrator which 
is used on the global coarse grid can also be used 
without change on each fine grid. Secondly, the use 
of rectangles makes the data structure problem 
tractable, since only four corner points are needed 
to fix the sub-grid location. The storage overhead is 
thus on a per grid basis, rather than on a per grid 
point basis, an4 is negligible. Other methods 
typically use pointers for each refined cell of the 
coarse grid, or possibly each row. Finally, this 
approach to adaptive grid refinement does not 
suffer from the two main problems in moving grid 
point methods. These problems are the difficulty in 
controlling grid skewness, and the problem of 
adequately resolving several features of the 
solution when all points rush to the strongest 
feature [7]. It is clear that some mechanism to add 
points in a simple way as well as moving them is 
called for. In our method, if a refined grid, is found 
to need further refinement (the error estimate at 
fine grid points is still too high), another, finer 
rectangle is added which will be nested in the 
existing sub-grid in the same way the sub-grid is 
nested in the coarse grid. 
 

We emphasize that these grids are not 
patched into one global grid, but are kept 
independently, each with its own solution vector. 
This means that some coarse grid solution storage 
is wasted (unless it participates in the solution 
process itself, such as in a multi-grid method), 
since we will always use the fine grid solution 
when it exists. The benefits seem to greatly 
outweigh this waste, since by preventing 
fragmentation the solution process on each grid can 
still be vectorized, and the loss in computing some 
extra coarse grid points is offset by the gain in 
efficiency due to regularity, and the simplicity of 
the data structures. 
 

Given this grid structure, the solution on 
each grid is initialized by interpolation from the 
coarse grid, and the time stepping continues. 
Section 2.3 describes the integration strategy for 
multiple grids, and reviews both the finite volume 
discretization scheme and the generalized Runge 
Kutta time stepping method which is used to 
advance the solution on each grid. 
 
2.1. Error Estimation 

 
In regions of smooth flow, the cirteria we 

use for refining the grid is an estimate of the error 
in the solution on the finest existing grid in that 
region. Although there is no theory for equations of 
mixed type, in the purely elliptic or purely 
hyperbolic case there are estimates for the global 
error in the solution in terms of the local truncation 



error [8]. Accordingly, we will estimate the local 
truncation error in the solution using ideas similar 
to Richardson extrapolation or deferred correction 
[6]. To solve 
 
 ( ) ( ) 0=+ yx uguf  

 
we compute 

Q(h)U = 0, 
 
where U is the numerical approximation to u, and 
the difference operators approximating fx and gy 
based on a stcpsize h am in Q. The local truncation 
error is 

 
Q(h)u = τ hP, 

 
where p = 2 for a second order method. The term τ 
contains derivatives of the solution u. The goal of 
refining is to determine when τ is big, and reduce h, 
so that the same accuracy is attained over the entire 
flow field. The idea is to estimate the error using 
Richardson extrapolaton-type estimates by 
differencing on a grid with mesh spacing 2h using 
every other point of the computed solution U. We 
compute 
 

Q(2h)U ≈ (2p-1) τ hp. 
 
In the steady state calculation, the residual Q(h)U is 
driven to zero, but the coarsened grid residual will 
not be zero. Thus we can use 
 

 
( ) ph
p

UhQ τ≈
−12

2
 

 
as an estimate of the error at each point. 
 

Notice that it is unnecessary to know the 
exact form of the truncation error τ for this method. 
Secondly, this residual calculation is identical to 
the first stage of the regular Runge Kutta 
integration step but on a 2h grid. For the error 
estimation step, the computer code is merely 
changed to read i+ 2 Instead of i+1 (and so on) 
when updating the ith point. (In fact, this can 
sometimes be done automatically in Fortran by 
changing the dimension statements when declaring 
the arrays in an integration subroutine). The 
computational overhead of this estimator is thus 
less than one extra integration step for the whole 
computation. 
 

In regions where the flow is 
discontinuous, this procedure no longer gives a 
valid error estimate. However, it acts as a trigger 
for mesh refinement in the presence of a strong 
shock. We have found in our results however, that 

the largest error is at the leading edge and then 
trailing edge of the airfoil. Of course, this depends 
on the underlying global grid resolution. For strong 
shocks, a fine grid is also created in the region of 
the shock. This general procedure has the 
advantage that it is not necessary to know the 
location of the shock before the start of the 
computation. 
 
2.2. Gild Generation 
 

The output from the error estimation 
routine is a list of (coarse) grid points with high 
error estimates, indicating that a refined zone is 
needed in that region. The grid generation routine 
separates the points into appropriate groups so that 
a (logically) rectangular grid can be placed around 
each group. This proceeds in two phases. First, the 
points that are in different parts of the domain 
(such as leading edge and trailing edge) are 
separated into different groups. Around each group, 
a rectangle is formed which is large enough to 
include all points in that group. This new grid is 
then slightly enlarged (by one or two coarse grid 
points), to ensure that the fine grid boundary, 
where special interpolation formulas will be used 
for the boundary differencing, is in a region with a 
estimate. Figure 2.2 illustrates procedure 
schematically. 
 

The only possible exception to this above 
procedure is shown in Figure 2.3. It may happen 
that two different grids are created around one 
cluster of points, in order to minimize the size of 
the (unnecessarily) refined region. Details of this 
exceptional case can be found in [9]. 
 
 
 
 
 
 
 
 
 
Figure 2.2 Fine grid generation around flagged 
points. 

We make one last remark about the 
rectangular grids. It may happen that the zone 
needing refinement is oblique to the underlying 
grid, for example, for an oblique shock. It could be 
advantageous to be able to align the fine grid so 
that the coordinates were approximately nor mal 
and tangent to the discontinuity. A rotated 
difference scheme has been used by Jarneson [10] 
for the potential equation. Recent results by Davis 
[11] for the Euler equations show much better 
performance for first order upwind schemes if they 
are rotated to align with the shock. The grid 
generation procedure has the capability to produce 



gilds with this alignment property. However, 
interpolation procedures have not yet been 
developed which treat the fine/coarse grid Interface 
conservatively. Work is still in progress on this 
point. 
 
2.3. Integration Procedure 
 

It is very easy to solve the equations on 
the grid structure described above. We take one 
step on all grids using the Runge Kutta finite 
integrator described below. Since we are interested 
in the steady state solution, we use pseudo-time 
steps with a fixed Courant number. For time 
dependent calculations, for reasons of both stability 
and efficiency, it is best to take several smaller 
time steps on the fine grids for every one coarse 
grid step. We have experimented with taking 
several steps on a large fine grid for every coarse 
grid 
 
 
 
 
 
 
 
 
 
Figure 2.3 Two fine grids generated around one group of 
flagged points. 
 
step. The optimal strategy for the number of 
iterations to be done on each grid at a time is still 
an open question. This will be an especially 
important consideration in large computations 
where secondary storage is used. 
 

We briefly review the finite volume 
Runge Kurta time stepping procedure which is the 
integrator for this adaptive algorithm. For details, 
see [12] and the discussion of the FLO52 program. 
The full Euler equations in 2D are written in 
integral form, 
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The equations are approximated in a computational 
domain where the variables are cell-centered. The 

flux is evaluated at the boundary of a given cell 
using the aver age of the values in the adjacent 
cells. This spatial discretization procedure leads to 
a system of ordinary differential equations. These 
have the form 
 

( ) ,0=−+ DwQwhw
dt
d

 

 
where Qw is the approximation to the term, and 
where h is the cell area. The dissipation is 
introduced by a combination of second and fourth 
order differences, which arc switched on by 
pressure gradients. The same dissipation formulas 
arc used in the integration step on each grid, except 
at the boundaries of the fine grids, where the fourth 
order stencil is too large. In this ease we use only 
the second order dissipation. 
 

The ODE are integrated using a modified 
four stage Runge Kutta scheme in which the 
dissipative terms are only evaluated once. At each 
time step the solution is updated by the following 
sequence: 
 

( ) ( ) ( ) ( )( )0001

4
DwQw

h
t

ww −∆−=  

( ) ( ) ( ) ( )( )0102

3
DwQw
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h
t
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4
DwQw

h
t

ww −∆−=  

 
where w(0) is the value a; the beginning of the time 
step, and w(4) is the final updated value. The time 
step limit for this scheme is almost the same as that 
of a standard fourth order Runge Kutta scheme. 
 

The farfield boundary values are partially 
specified from freestream values, and partially 
extrapolated from the Riemann invariants, 
depending on whether the flow is supersonic or sub 
sonic, and whether the boundary is an inflow or 
outflow boundary. At the body, only the pressure is 
needed to advance the variables in the cells nearest 
the wall. The pressure is computed by an 
extrapolation formula based on the nor mal 
momentum equations. The slight modification of 
this required at the coarse/fine interface is 
described in section 3. 

 
3. Fine Grid Boundary Conditions 
 

In this section we discuss the difference 
equations used at the interface between a coarse 
and fine grid. The procedure which we have 



developed is designed for use with the finite 
volume difference scheme. More general 
procedures arc described in [13]. 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 Fine/coarse grid inter face. 
 

We illustrate the procedure using a 
refinement ratio of 2 between grids. In figure 3.1, 
the coarse grid variables arc marked with o, the fine 
grid variables with an x. Notice that there are 
coarse points “underneath” the fine grid. The 
solution is computed over the entire coarse grid 
including these points when a coarse grid 
integration step is taken. However, the coarse grid 
points underneath the fine grid are updated after 
each coarse step by replacing the solution there 
with the volume weighted average of the solution 
at the four nearest fine points. The final output uses 
the values from the finest grid covering each 
region. 
 

To take a step on the fine grid, the flux 
across the line ξ = 0 into the fine grid must be 
calculated. It is advantageous to introduce an 
outside column of solution values (denoted by the 
plus signs in figure 3.1). The flux can then be 
calculated in the same way for the first cell and the 
interior cells of the fine grid. This also mimics the 
coarse grid setup, where an extra column is kept on 
each side of the periodic boundary. The easiest way 
to determine this column of fine grid values is by 
interpolation from the coarse grid. Point p would be 
set by linear interpolation from coarse grid points 
vj,j vi, j+1, vi+1, j. vi+1, j+1. To maintain accuracy, the 
values at vj+1j and vi+1, j+1 on the coarse grid would 
be replaced by the volume weighted average of the 
four neighboring fine grid points after every coarse 
grid integration step. In this way, each grid can still 
be integrated independently, in a manner that still 
vectorizes, and only a small amount of “fixup” 
work along the boundaries of the fine grids need be 
done. 
 

Unfortunately, there is no reason for this 
procedure to be conservative, which in this case 
means that the sum of the fluxes into the coarse 
cells at the interface (computed for example using 

the value 
2

,1, jiji vv ++
 is equal to that computed 

on the fine grid into the fine cells on the right of the 

interface. It is important to maintain conservation 
in order to guarantee the correct shock location in 
transonic flow fields. This is especially relevant 
since there will often be a fine grid in the region of 
a shock, and so the interface between the fine and 
coarse grids will be near the shock. 

 
An alternative interface procedure which 

is conservative is to calculate the flux on the coarse 
grid, and divide it in half for the adjacent two fine 
cells. This would bypass setting the outside 
variables, and calculate a boundary flux for the fine 
grid directly. Unfortunately, this is unstable, as can 
be seen from a linear analysis of the interface. The 
treatment in this case yields the linear relationship 
 
v0,1 + v1,1 + vo,2 + v1,2 = 2(ui,j + ui+1 j),  
 
where u approximates the solution on the coarse 
grid, and v approximates the solution on the fine 
grid. It turns out that boundary scheme which 
couples the fine points across the interface can give 
rise to an oscillatory wave emanating from the 
interface into the fine grid, and supported by the 
central differenced (linearized finite volume) 
scheme. Another alternative, that of calculating the 
flux directly from the one coarse point and adjacent 
two fine points, is stable, but of lower order 
accuracy. In effect, It treats the solution In the 
column of plus signs as piecewise constant in each 
a cell, instead of linear. 

 
The procedure we have chosen is a 

variation of interpolation. The cells with plus signs 
are obtained from interpolation from the coarse 
grid, and the fine grids are then advanced. The 
coarse grid fluxes arc determined as usual during 
the regular Integration step, but then the value at 
each coarse grid point nearest the interface is 
“fixed” so that the flux at the interface equals the 
sum of the two fine cell fluxes. In this way, 
conservation is enforced, second order accuracy is 
maintained, and the only extra computational work 
is done along the boundary. (This method thus 
avoids having to check every coarse point to 
determine whether it is located at an interface, 
which would he unacceptable overhead). In 
experiments with these interface equations, when 
the interface is forced to be right at the location of a 
shock, no loss of accuracy is observed in the 
solution. 

 
A special treatment is required when the 

interface coincides with the body. In order to 
interpolate for a fine point value at the body, a 
coarse grid value is needed at the body as well. 
Since only the pressure is computed at the body, 
values are needed for the density, x and y 
momentum, and energy. These are computed by 
setting the momentum normal to the body to 0, 



setting the tangential momentum to be identical to 
that one cell over, and setting the energy to its 
steady state constant value. In practice, there is 
little difference between this procedure and simple 
linear extrapolation of the missing coarse grid 
values from the interior. 
 
4. Numerical Results 
 

We present results comparing the solution 
computed on a coarse grid, on a coarse grid with 
patched fine grids, and on a uniformly refined grid. 
In all cases, by refining a fraction of the grid, the 
accuracy of the solution on a uniformly fine grid is 
recovered at less than half the 

 
The first test case is for non-lifting 

subsonic flow over a NACA 0012. The Mach 
number is .500 with zero degrees angle of attack. 
Figure 4.1 shows the pressure coefficient for a run 
with a grid size 32 by 8, shown In Figure 4.2. The 
drag coefficient is .0049. Figure 4.3 is from a grid 
of size 64 by 16 with drag coefficient .0011. The 
grid is shown in Figure 4.4. Figure 4.5 is the 
solution on a grid of size 128 by 32 grid, shown In 
Figure 4.6. The drag coefficient here is .0002. The 
drag coefficient is converging like h2 to its 
expected value of zero. Figure 4.7 shows a refined 
grid solution based on a 32 by 8 underlying coarse 
grid, with refined grid patches as shown in Figure 
4.8. The drag coefficient in this case is .0009. 
Figure 4.9 shows a refined grid solution based on a 
64 by 16 under lying coarse grid. The refined grid 
for this ease is shown in Figure 4.10. The drag 
coefficient is reduced to .0001. In both cases, the 
accuracy of the solution on the uniformly next finer 
level grid is recovered by using small grid patches 
at the leading and trailing edges of the airfoil. 
 

The second test case is transonic flow 
containing a shock wave. Figure 4.11 shows the 
pressure coefficient for a NACA 0012 airfoil at 
Mach .8 with zero degrees angle of attack. The 
mesh used for this computation is 64 by 16 cells. 
When the grid is refined (using an error tolerance 
of .005), as shown in Figure 4.12, the solution 
obtained is almost identical to the solution 
computed on a 128 by 32 mesh (compare Figures 
4.13 and 4.14). In the coarse grid run, the entropy 
behind the shock was computed to be .0072, In the 
multiple grid run it was .0052, and in the fine grid 
run the entropy was .0054. In this mesh refined 
solution, 21% of the coarse grid was refined by a 
factor of 2 in both coordinate directions. The cost 
of integrating the mesh refined run was thus 
roughly half the cost of the 128 by 32 grid run. If 
the error tolerance for mesh refinement is less 
stringent (.025), so that only the leading and 
trailing edges are refined (Figure 4.15), the solution 
is only slightly worse across the shock is .0046 in 

this case. In this run only 10% of the coarse grid is 
refined, and so the overall cost of the solution is 
roughly 35% of the fine grid cost.  
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