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1. Introduction 

While the applications of computational fluid dynamics are pervasive throughout applied 
science and engineering, ranging from astrophysics to the design of cooling systems for 
semi-conductors, its role in aircraft design is crucial to an unusual extent, because of the 
narrow margins within which aircraft can operate efficiently. If computational aerodynamics is 
to be truly effective in the design process, it must be able to provide reliable answers rapidly 
and with low computational costs. With this in mind, the requirements can be identified as 
follows in a hierarchy of ascending difficulty: 

(1) to calculate the flow with sufficient accuracy to permit design decisions to be made with 
confidence; 

(2) to calculate the flow fast enough to allow interactive design and analysis; 
(3) to embed the flow calculations in numerical optimization procedures which will automat- 

ically lead to improved designs. 

This paper addresses some of the mathematical questions which underlie the realization of 
these goals, with a particular focus on two issues. The calculation of compressible flows at 
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transonic, supersonic and hypersonic Mach numbers requires the implementation of non-oscil- 
latory discrete schemes which combine high accuracy with high resolution of shock waves and 
contact discontinuities. These schemes must also be formulated in such a way that they allow 
the treatment of complex geometric shapes. This is needed for the realization of the first goal. 
Beyond this, the realization of the second goal requires schemes which converge rapidly to 
steady state solutions, and can also efficiently treat unsteady flows. 

The first part of this paper presents a study of upwind biasing, artificial diffusion, and 
multigrid acceleration. The analysis leads to a construction of flux-limited dissipation for 
multi-dimensional structured and unstructured meshes which guarantees the positivity of a 
solution of a scalar conservation law, because a maximum cannot increase and a minimum 
cannot decrease. Numerical results are presented for several schemes which are both accurate 
and rapidly convergent. The aim of this work is to develop schemes which treat convection with 
a minimum amount of artificial diffusion. This is also a crucial building block for the treatment 
of viscous flows, because the attainment of acceptable accuracy is then contingent on the use of 
schemes with levels of artificial diffusion which are negligible in comparison with the true 
viscous terms. 

The second part of the paper examines the question of automatic design. Here it is suggested 
that there are benefits to be gained by regarding the problem as the optimal control of a system 
governed by the partial differential equations of the flow, with boundary control implemented 
by movement of the boundary. This brings the problem within the framework of the theory of 
control of systems governed by partial differential equations, as it has been developed by J.L. 
Lions [22]. Some results of a feasibility study for transonic airfoil design are presented. Since 
the flow must be repeatedly recalculated, it is essential to minimize the computational cost, and 
a potential flow model was used for this study. 

2. Algorithms for compressible flow with shock waves 

2.1. Local extremum diminishing (LED) schemes with positive coefficients 

Consider the discretization of a time-dependent conservation law such as 

; + $f(u) + $(u) = 0 

for a scalar dependent variable u on an arbitrary (possibly unstructured) mesh. Assuming that 
the mesh points are numbered in some way, let vi be the value at mesh point j. Suppose that 
the approximation to (1) can be expressed in semi-discrete form in terms of differences 
between uj and other mesh values vk as 

2 = &kj(vk - Vi). 
k 
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If the scheme is supported by a compact stencil of points, ckj will be zero for most values of k. 
Let the coefficients satisfy the positivity condition 

Ckj > 0. (2) 

Then, if vj is a local maximum (over the stencil of the difference scheme), vk - vi G 0, with the 
consequence that dvj/dt < 0. Thus a local maximum cannot increase, and similarly a local 
minimum cannot decrease. Such a scheme will be called local extremum diminishing (LED). 

This criterion was proposed by the author [13,14,18] as a convenient basis for the construc- 
tion of non-oscillatory schemes on unstructured meshes. It assures positivity, because if v is 
everywhere positive, then its global minimum is positive, and this cannot decrease. When 
specialized to one dimension it also leads to the class of total variation diminishing (TVD) 
schemes proposed by Harten [8]. The total variation of v is 

that is, the sum of the absolute values of the variation over each upward and downward 
segment. It was observed by Laney and Caughey [20] that each extremum appears in the 
variation of the segment on each side of that extremum, with the consequence that 

w4=2(c maxima - C minima), 

if the end values are fixed. Thus, if a one-dimensional scheme is LED, it is also TVD. However, 
the TVD criterion does not readily generalize to multi-dimensional problems, whereas the 
LED criterion can be directly applied to multi-dimensional problems on both structured and 
unstructured meshes. 

If the one-dimensional scalar conservation law 

is represented by a three-point scheme 

dvj 
~=C~++l/*(“j+~-vj)+ci_~/~(vj-~-vj)~ 
dt 

the scheme is TVD if 

ci++r,z 2 0, c,: r/2 > 0. (4) 

Suppose that (3) is approximated in conservation form by the semi-discrete scheme 

dvj 
AXdt + (hj+l/7_-hj-1/2) Co, (5) 

where hj+ 1,2 is the numerical flux between cells j and j + 1, and Ax is the mesh interval. In a 
diffusive scheme hj+1,2 may be calculated as 

hj+1/2 = +(fj+l +fj) -aj+1/2(vj+l -vj)7 
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where the second 
approximated as 
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term is a diffusive flux of first order. If the wave speed a(u) = af/au is 

r fj+ 1 -fj 

'j+l - vi ’ vj+] + vj> 

'j+l/2 = 
af 

- 

au “,’ 
vj+l = vj> 

then 

hj+l/*~hj-1/2~(~aj+~/2~cuj+l/2)Avj+1/2+(3uj-1/2+(Yj-l/2)Avj-l/2~ 

where 

Avj+,,, = vj+i - vi. 

Thus the TVD condition (4) is satisfied if 

aj+l/2a 31aj+1/2 I. 

If one takes 

"j+1/2=31aj+1/21~ 

the diffusive flux becomes 

dj+l/2 = ~laj+1/21Avj+l/2 

and one obtains the first-order upwind scheme 

hj+l/2= 

( 

.fj, if aj+l/2 > 0, 

fj+l, if aj+l/2<00 

This is the least-diffusive first-order scheme which satisfies the TVD condition. In this sense 
upwinding is a natural approach to the construction of non-oscillatory schemes. 

2.2. Flux splitting 

Steger and Warming [27] 
system of conservation laws, 

aw a 

first showed how to generalize the concept of upwinding to the 

(6) 

by the concept of flux splitting. Suppose that the flux is split as f = f’+ f- where af’/aw and 
af-/aw have positive and negative eigenvalues. Then the first-order upwind scheme is pro- 
duced by taking the numerical flux to be 

hj+1/2 = fi’ + fl:+ 1. 
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This can be expressed in viscosity form as 

hj+ l/2 = i(fj’+l +fT) - +(f&l -fT) + 3(f;+1 +fi_) + i(f;+1 +f-> I 

= +(fj+l +fj) -dj+1/2 > 

where the diffusive flux is 

dj+l/2 = +A(f+-f-)j+l/2* (7) 

Roe derived the alternative formulation of flux difference splitting [26] by distributing the 
corrections due to the flux difference in each interval upwind and downwind to obtain 

dWj 
Ax= + (&+I -f,)-+(fj_fi_1)+=‘, 

where now the flux difference fj+l -fi is split. The corresponding diffusive flux is 

dj+l/2 = i(Af:+l/* - ‘fjQ*/*)* 

Following Roe’s derivation, let Aj+ 1,2 be a mean value Jacobian matrix exactly satisfying the 
condition 

fj+l -fj=Aj+l/*(Wj+l - wj)m 

Then a splitting according to characteristic fields is obtained by decomposing Aj+l,z as 

Aj+ l/2 = TAT-‘, 

where the columns of T are the eigenvectors of Aj+1,2, and A is a diagonal matrix of the 
eigenvalues. Then 

‘fj:l/Z = TA’T-‘Aw~+,,~. 

Now the corresponding diffusive flux is 

+I Aj+1/21(Wj+l - wj>y 

where 

IAj+~/*I=TlnlT-’ 

and 1 A 1 is the diagonal matrix containing the absolute values of the eigenvalues. 
Simple stable schemes can be produced by the splitting 

(fj+l -fj)‘= +(fi+l -fj) +“j+*/Z(wj+l - w’> J ’ 

which satisfies the positivity condition on the eigenvalues if ‘Ye+ 1,2 > tmaxl A( Aj+ 1,2) ( and 
corresponds to the scalar diffusive flux 

dj+1/2 =ffj+1/2Awj+l/2* 

Characteristic splitting has the advantage that it allows a discrete shock structure with a single 
interior point. 
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2.3. High resolution switched scheme 

Higher-order non-oscillatory schemes are generally derived by introducing anti-diffusive 
terms in a controlled manner. Anti-diffusive terms can be introduced by subtracting neighbor- 
ing differences to produce a third-order diffusive flux 

dj+l/*="j+l/Z(Awj+L/2-~(Awj+3/2+Awj-1/2))' (8) 

The positivity condition (2) is violated by this scheme. It generates substantial oscillations in the 
vicinity of shock waves which can be eliminated by switching locally to the first-order scheme. 
The switch introduced by Jameson, Schmidt and Turkel[19], which has proved effective for this 
purpose, has recently been improved by Swanson and Turkel[28]. Typically it is computed from 
the pressure, and the improved switch is taken as the maximum in some neighborhood of 

ej = Apj+l/2 - 'Pj-l/2 
PO + (1 -&)P, +&P, ’ 

where 

The value of E is typically i, and PO is a threshold to make sure that the denominator cannot 
be zero. Other quantities such as the entropy may be used to calculate the switch. The diffusive 
flux is now calculated as 

dj+~/2~~(2!1/2Awj+~~~~~(4!1/2(AWj+3/2~2AWj+1/2+AWj-1/2)~ 

where, if S is the maximum of & in a neighborhood and Rj+1,2 is the spectral radius of 
Aj+ l/z, then 

ej2!t12 = min(a,, azS)Rj+t/z, 

(4) 
‘j+ l/2 = max ( 0, PI - P2&j2!1/2)Rj+l/2* 

Usually crl = i and p1 = d to scale the diffusion to the level corresponding to upwinding, while 
a2 and p2 must be chosen to switch from third-order to first-order diffusion fast enough near a 
shock wave. 

With this construction the role of the high-order diffusion is to provide global damping of 
oscillatory modes which would otherwise inhibit convergence to a steady state, while the role of 
the first-order diffusion is to control oscillations near discontinuities. Numerical experiments 
with multigrid acceleration confirm that the rate of convergence to a steady state is essentially 
the same when the first-order diffusion is eliminated, but large pre- and post-shock oscillations 
appear in the solution. On the other hand the multigrid scheme will not converge if the global 
diffusion is eliminated. Fast convergence and highly resolved shock waves can be obtained by 
using characteristic splitting in a first-order scheme, but the accuracy is unacceptably low, even 
on meshes as fine as 320 x 64 cells. The switched scheme has proved successful in the 
calculation of steady compressible flows over a wide range of Mach numbers, provided that it is 
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combined with an appropriate construction of the basic first-order diffusive terms. A formula- 
tion which proves to be particularly effective at high Mach numbers is presented in Section 2.6. 

2.4. Symmetric Zimited positive (SLIP) scheme 

An alternative route to high resolution without oscillation is to introduce flux limiters to 
guarantee the satisfaction of the positivity condition (2). The use of limiters dates back to the 
work of Boris and Book [2]. A particularly simple way to introduce limiters, proposed by the 
author in 1984 [12], is to use flux-limited dissipation. In this scheme the third-order diffusion 
defined by equation (8) is modified by the insertion of limiters which produce an equivalent 
three-point scheme with positive coefficients. The original scheme can be improved in the 
following manner so that less restrictive flux limiters are required. Let L(u, U> be a limited 
average of u and u with the following properties: 

(Pl) UU, U> = L(u, u); 
(P21 L(au, au) = aL(u, u); 
(P3) L(U, U> = u; 
(P4) L(u, u) = 0, if u and u have opposite signs. 

Properties (Pl)-(P3) are natural properties of an average. Property (P4) is needed for the 
construction of an LED or TVD scheme. 

It is convenient to introduce the notation 

(b(r) = L(1, Y) =L(r, 1). 

Then it follows from (P2) that 

Also it follows on setting u = 1 and u = r that 

Thus, if there exists r < 0 for which 4(r) > 0, then 4(1/r> < 0. The only way to ensure that 
4(r) 2 0 is to require 4(r) = 0 for all r < 0, corresponding to property (P4). 

Now one defines the diffusive flux for a scalar conservation law as 

Also define 

AUj+3/2 

‘+= Au~_,,~’ 

_ "j-3/2 

’ = Av~+~/~ . 
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Then, the scalar scheme (5) reduces to 

dvj 

+ "j+ l/2( "j+l/* -4(r+)AVj-1/2) -“j-1/2(AVj-l/2-~(~-)AVj+l,2) 

= ffj+l/2 ( -- 
iaj+l/2 + ffj-l/2 +(r-))Avj+l/2 

- aj-1/2 + !iaj-l/2 + "j+l/2~(r+))Avj-1/2* ( 
Thus the scheme satisfies the TVD condition if (Y. ,+1,2a $aj+l,21 for all j, and 4(y) >O, 
which is assured by property (P4) on L. At the same time it follows from property (P3) that the 
first-order diffusive flux is cancelled when Au is smoothly varying and of constant sign. 

The new scheme will be referred to as the symmetric limited positive (SLIP) scheme. The 
construction benefits from the fact that the terms involving $(Y-) and $~(r+> reinforce the 
positivity of the coefficients whenever 4 is positive. Thus the only major restriction on L(u, v) 

is that it must be zero when u and v have opposite signs, or that 4(r) = 0 when r < 0. If 

"j+3/2 and AUj- l/2 have opposite signs, then there is an extremum at either j or j + 1. In the 
case of an odd-even mode, however, they have the same sign, which is opposite to that of 

"j+1/2, so that they reinforce the damping in the same way that a simple central fourth-dif- 
ference formula would. At the crest of a shock, if the upstream flow is constant then 
Av~_~,~ = 0, and thus Av~+~,~ is prevented from cancelling any ,part of Avj+ 1,2 because it is 
limited by Avj_,,,. 

A variety of limiters may be defined which meet the requirements of properties (Pl)-(P4). 
Define 

S(u, v) = +-{sign(u) + sign(v)}, 

so that 

i 

1, if u > 0 and v > 0, 
S(u, v) = 0, if u and v have opposite sign, 

-1, if u<Oandv<O. 

Three limiters which are appropriate are the following well-known schemes: 

(1) minmod: 

L(u, u) =S(u, v> min(lu(,lul); 

(2) Van Leer: 

L(u, v) = S(u, v) 
2bllvl . 
bl+bI’ 

(3) superbee: 

L(u, v) =S(u, v) max{min(2lul,lvl), min(lul, 2/1/l)}. 
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These are special cases of the following more general formulas: 

(4) a-mod: 

L(u, u) = S(U, u) 
(1 ++W 

max(lul,lul) +a min(lul,lul) ’ 

(5) cy-@nod: 

L(u, U) = S(u, U) 
(1 +u)luI(B+1)/21u1(8+1)/2 

-+4%lP) +a min((ulP,lvlP) ’ 

(6) a-bee: 

L(u, U) =S(u, U) max{min(cYlul,lul), min(lul, ~ylul)]. 

cr-mod reduces to minmod when a = 0, and to Van Leer when cy = 1. @?-mod reduces to the 
geometric mean when p = 0 and u and u have the same sign, and to a-mod when p = 1. cu-bee 
reduces to minmod when (Y = 1 and to superbee when (Y = 2. Another formulation is simply to 
limit the arithmetic mean by some multiple of the smaller of 1 u ( and I u I: 

(71 tr-mean: 

L(u, U) =S(u, u) min(+lu+ul, (~1~1, ~IuI). 

2.5. SLIP schemes on multi-dimensional unstructured meshes 

Consider the discretization of the scalar conservation law (11 by a scheme in which u is 
represented at the vertices of a triangular mesh, as sketched in Fig. 1. In a finite volume 
approximation (1) is written in integral form as 

i/u ds +@(I!) dx -g(u) dy, 

and this is approximated by trapezoidal integration around a polygon consisting of the triangles 
with a common vertex, o, say. 

2 

3 
0 

6la 
4 5 

1 

Fig. 1. Cell surrounding vertex O. 
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Thus (1) is discretized as 

s% f $ c ((fk +.Ll)(Yk -Yk-I) - (gk +&-I)(% -L,)I = 0 
k 

where fk =f(v,>, g, = g(uk), S is the area of the polygon, and k ranges over its vertices. This 
may be rearranged as 

3% + c (f/$Yk -&A-Q) = 0, 
k 

where 

Ax, = ;($+, -x,-r), AY, = +(Yk+r -Y,-1). 

Following, for example, [13,18], this may now be reduced to a sum of differences over the edges 
ko by noting that CkAXk = Ck AYk = 0. COnSf?qUently f, and go may be added to give 

s% + c {(fk -f,>& - (gk -go)&) = 0. (10) 

Define the coefficient ako as 

( (fk -fo)Ayk - (gk - go)Axk 

Auko 
7 ukzv,, 

ako = ’ 

,( af 
GAYk - $, ii , uk = u,g, 

L’ = I, 
0 

and 

Auk0 = uk - u,. 

Then equation (10) reduces to 

To produce a scheme satisfying the sign condition (2), add a dissipative term on the right-hand 
side of the form 

hkoAvkw 
k 

(11) 

where the coefficients akO satisfy the condition 

(yko 2 bkal. (12) 

The extension to a system of conservation laws, as defined by equation (61, can be carried out 
with the aid of Roe’s construction [26]. Now ako is replaced by the corresponding matrix A,, 

such that 

&&“~ -w,) = (fk -fo)AYk - (8, -&dAxk. 
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r 

Fig. 2. Edge ko and adjacent triangles. 

Suppose that A,, is decomposed as TAT-’ where the columns ti of T are the eigenvectors of 
Akc,. Then the difference Aw = W, - w,, is expressed as a sum C;(Y,~, of the eigenvectors, where 
the coefficients ‘Ye = (T- ‘Aw)~ represent the characteristic variables, 
along the edge ko is constructed as 

IA,,lAw = TlAlT-‘Aw. 

and the diffusive term 

These simple schemes are far too dissipative. Anti-diffusive terms may be added without 
violating the positivity condition (2) by the following generalization of the one-dimensional 
scheme. Considering again the scalar case, let I,, be the vector connecting the edge ko and 
define the neighboring differences 

Atvko = I,, - Vu, A-ukO = I,, ‘V-u, 

where V +u are the gradients of v evaluated in the triangles out of which and into which I,, 
points, as sketched in Fig. 2. Arminjon and Dervieux have used a similar definition [l]. 

It may now be verified that 

A+likO = LQ( U, - u,J + Q( u, - u,J 

and 

A-%0 = %(% - %) + EO,(% -0 

where the coefficients Epk, &#, Ebb, and F,, are all non-negative. Now define the diffusive term 
for the edge ko as 

d,, = @kO{A& -L(A+&, A-uko)}, (13) 

where L(u, v) is a limited average with the properties (Pl)-(P4) that were defined in Section 
2.4. In considering the sum of the terms at the vertex o write 

L(A+u,,, A-u,,) + @(&)A-&, 

where 

+_ ‘+‘ko 

‘ko 
_- 

A-v ’ ko 
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Then, since the coefficients &0r and E,, are non-negative, and 4(r,+,> is non-negative, the 
limited anti-diffusive term in (13) produces a contribution from every edge which reinforces the 
positivity condition (2). Similarly, in considering the sum of the terms at k one writes 

A-v _ ko 
‘ko 

=--- 
A+V ) 

ko 

and again the discrete equation receives a contribution with the right sign. One may therefore 
deduce the following result: 

Theorem 1 (Positivity Theorem). Suppose that the discrete conservation law (10) is augmented by 
flux-limited dissipation following equations (11) and (13). Then the positivity condition (12), 
together with the properties (Pl)-(P4) for limited averages, are sufficient to ensure that a 
maximum cannot increase and a minimum cannot decrease at any interior mesh point. 

Note also that, if this construction is applied to any linear function v, then 

AVkO = A+Vko = A-Vko, 

with the consequence that the contribution of the diffusive terms is exactly zero. In the case of 
a smoothly Varying function v, suppose that I,, - Vv f 0 and the limiter is smooth in the 
neighborhood of rk$ = 1. Then substitution of a Taylor series expansion indicates that the 
magnitude of the diffusive flux will be of second order. At an extremum the anti-diffusive term 
is cut off and the diffusive flux is of first order. 

The three-dimensional conservation law 

; + &f(v) + $(a) + ;h(v) = 0 (14) 

can be treated in a similar manner by first expressing the convective flux balance as a sum of 
differences along edges. Consider the set of tetrahedrons containing a common edge. Then one 
may associate with that edge a vector area S which is one-third the sum of the areas of the set 
of faces which form one of two opposing umbrellas around the edge. With a notation similar to 
that of Fig. 1 the convective flux balance corresponding to equation (14) at an interior mesh 
point may be written as 

d% 
V- dt + ~(Fk-Fo)osko=o, 

k 
(15) 

where the columns of F are the flux vectors f, g and h, and V is the volume of the polyhedron 
formed by the union of all the tetrahedrons with the common vertex o. Here F, may be added 
or subtracted since CkSko = 0. Diffusion may now be added along the edges in exactly the same 
way as before. When the convective flux balance is evaluated, it is more convenient to use the 



A. Jameson /Applied Numerical Mathematics 13 (1993) 383-422 395 

sum C,W, + F,) * Sko, so that the convective flux along each edge needs to be calculated only 
once in a loop over the edges and appropriately accumulated at nodes k and o. 

At boundary points equations (10) or (15) need to be augmented by additional fluxes through 
the boundary edges or faces. The first-order diffusive flux akO Auk0 may be offset by subtracting 
an anti-diffusive flux evaluated from the interior, taking a limited average with AvkO. 

2.6. Construction of convective upwind and split pressure (CUSP) schemes 

Discrete schemes should be designed to provide high accuracy in smooth regions in 
combination with oscillation-free shocks at the lowest possible computational cost. This in turn 
requires both economy in the formulation, and in the case of steady state calculations, a rapidly 
convergent iterative scheme. The convective upwind and split pressure (CUSP) scheme de- 
scribed below meets these requirements, while providing excellent shock resolution at high 
Mach numbers. When very sharp resolution of weak shocks is required, the results can be 
improved by characteristic splitting with matrix diffusion using Roe averaging. 

Consider the one-dimensional equations for gas dynamics. In this case the solution and flux 
vectors appearing in equation (6) are 

w=[;;)> f=[pzp)j 

where p is the density, u is the velocity, E is the total energy, p is the pressure, and H is the 
stagnation enthalpy. If y is the ratio of specific heats and c is the speed of sound 

YP 
c2= _ 

c2 2 

P ’ 

f+E+!=_ +L 
P y-l 2 

In a steady flow H is constant. This remains true for the discrete scheme only if the diffusion is 
constructed so that it is compatible with this condition. 

The eigenvalues of the Jacobian matrix A = af/aw are u, u + c, and u - c. If u > 0 and the 
flow is locally supersonic (M = u/c > 11, then all the eigenvalues are positive, and simple 
upwinding is thus a natural choice for diffusion in supersonic flow. It is convenient to consider 
the convective and pressure fluxes 

f, =u p”u 
I I 

= uwc, 
PH 

f,= z 
ii 0 

separately. Upwinding of the convective flux is achieved by 

d P,+1/2 = IUj+l/21Aw~,+,,~~lMICj+l/2Aw~,+1,2~ 

where M is the local Mach number attributed to the interval. Upwinding of the pressure is 
achieved by 

d ,+,,* = sign(M) 
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Full upwinding of both f, and fP is incompatible with stability in subsonic flow, since 
pressure waves with the speed u - c would be traveling backwards, and the discrete scheme 
would not have a proper zone of dependence. Since the eigenvalues of af,/aw are U, u and yu, 
while those of af,/aw are 0, 0 and -(y - l)u, a split with 

.f+=“f0 f-=fp 
leads to a stable scheme, used by Denton [6], in which downwind differencing is used for the 
pressure. 

This scheme does not reflect the true zone of dependence in supersonic flow. Thus one may 
seek a scheme with 

d C,+1/2 =fl(“)cj+l/2Awc,+,,2’ dp,+,,2=f2(M) Apioil/2 7 

I I 0 

where f,(M) and f2(M) are blending functions with the asymptotic behavior f,(M) + 1 A4 1 and 
f2( M) + sign(M) for 1 A4 I> 1. Also the convective diffusion should remain positive when 
M = 0, while the pressure diffusion must be antisymmetric with respect to M. A simple choice 
is to take fJM) = 1 M 1 and f&M) = sign(M) for 1 A4 I > 1, and to introduce blending polynomi- 
als in M for 1 MI < 1 which merge smoothly into the supersonic segments. A quartic formula 

f,(M)=a,+a,M2+a,M4, IMI<l, 

preserves continuity of f 1 and d f i/dM at I A4 I = 1 if 

a2= $ -_a,, a4=a,- i. 

Then a, controls the diffusion at M = 0. For transonic flow calculations a good choice is 
a, = +, while for very high speed flows it may be increased to i. A suitable blending formula 
for the pressure diffusion is 

f,(M) = iM(3 -M2), [MI < 1. 

The diffusion corresponding to the convective terms is identical to the scalar diffusion of 
Jameson, Schmidt and Turkel [19], with a modification of the scaling, while the pressure term is 
the minimum modification needed to produce perfect upwinding in the supersonic zone. The 
scheme retains the property of the original scheme that it is compatible with constant 
stagnation enthalpy in steady flow. If one derives the viscosity corresponding to the flux 
splitting recently proposed by Liou and Steffen [231, following equation (71, one finds that their 
scheme produces first-order diffusion with a similar general form, and the present scheme may 
thus be regarded as a construction of artificial viscosity approximately equivalent to Liou-Stef- 
fen splitting. 

2.7, Time-stepping schemes and multigrid 

The discretization of the spatial derivatives reduces the partial differential equation to a 
semi-discrete equation which may be written in the form 

g +R(w)=O, (16) 



where w is the vector 
residuals, consisting of 
steady state calculation 
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of flow variables at the mesh points, and R(w) is the vector of the 
the flux balances augmented by the diffusive terms. In the case of a 
the details of the transient solution are immaterial, and the time-step- 

ping scheme may be designed solely to maximize the rate of convergence. 
If an explicit scheme is used, the permissible time step for stability may be so small that a 

very large number of time steps are needed to reach a steady state. This can be alleviated by 
using time steps of varying size in different locations, which are adjusted so that they are always 
close to the local stability limit. If the mesh interval increases with the distance from the body, 
the time step will also increase, producing an effect comparable to that of an increasing wave 
speed. Convergence to a steady state can be further accelerated by the use of a multigrid 
procedure of the type described below, With the aid of these measures explicit multistage 
schemes have proved extremely effective. Implicit schemes allow much larger time steps, but 
the work required in each time step may become excessively large, especially in three-dimen- 
sional calculations. In fact, it is suggested in the next section that a good way to construct 
efficient implicit schemes for calculating unsteady flows is to use an explicit multigrid scheme to 
solve the equations in each time step. 

If one reduces the linear model problem corresponding to (16) to an ordinary differential 
equation by substituting a Fourier mode G = eipXj, the resulting Fourier symbol has an 
imaginary part proportional to the wave speed, and a negative real part proportional to the 
diffusion. Thus the time-stepping scheme should have a stability region which contains a 
substantial interval of the negative real axis, as well as an interval along the imaginary axis. To 
achieve this it pays to treat the convective and dissipative terms in a distinct fashion. Thus the 
residual is split as 

R(w) = Q(w) +@w>, 

where Q<w> is the convective part and D(w) the dissipative part. Denote the time level nAt by 
a superscript IZ. Then the multistage time-stepping scheme is formulated as 

W(“+l,k) = Wn 
- q&(Q (k- 1) + D(W), 

W n+l = W(“+l,m) 
7 

where the superscript k denotes the kth stage, (Y, = 1, and 

Q(O)= Q(w”), D(O) = D(w”), 

D(k) = &qw(n+l,~)) + (1 - &p-l). 
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The coefficients cyk are chosen to maximize the stability interval along the imaginary axis, and 
the coefficients pk are chosen to increase the stability interval along the negative real axis. 

Two schemes which have been found to be particularly effective are tabulated below. The 
first is a four-stage scheme with two evaluations of dissipation. Its coefficients are 

1 
q = 3, P1= 1, 

ffz=&, P*=& 

5 
a3= 9, P3 = 0, 

cx4= 1, pq = 0. 

The second is a five-stage scheme with three evaluations of dissipation. Its coefficients are 
1 

a1 = 47 P1= 1, 

1 
az= 6, P2 = 0, 

ff3= & ,B3 = 0.56, 
1 

a4= 2, P4 = 0, 

ag= 1, ps = 0.44. 

The multigrid scheme is a full approximation scheme defined as follows [11,13]. Denote the 
grids by a subscript k. Start with a time step on the finest grid k = 1. Transfer the solution from 
a given grid to a coarser grid by a transfer operator Pk k_l, so that the initial state on grid k is 

wiO)= Pk k-lWk_1. 

Then on grid k the multistage time-stepping scheme is reformulated as 

wk 
(4+ 1) = w(o) - a,At(@) + Gk), 

where the residLa1 RCq) k is evaluated from current and previous values as above, and the forcing 
function G, is defined as the difference between the aggregated residuals transferred from grid 
k - 1 and the residual recalculated on grid k. Thus 

G, = Qk,k-lR(Wk-l) -R(wio’), 

where Qk,k_l is another transfer operator. On the first stage the forcing term G, simply 
replaces the coarse grid residual by the aggregated fine grid residuals. The accumulated 
correction on a coarser grid is transferred to the next higher grid by an interpolation operator 
I k_l,k so that the solution on grid k - 1 is updated by the formula 

i’$:y = wk-1 +&-l,k(wk - wi”). 

The whole set of grids is traversed in a W-cycle in which time steps are only performed when 
moving down the cycle. 

2.8. Multigrid implicit scheme for unsteady flow 

Time-dependent calculations are needed for a number of important applications, such as 
flutter analysis, or the analysis of the flow past a helicopter rotor, in which the stability limit of 
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an explicit scheme forces the use of smaller time steps than would be needed for an accurate 
simulation. In this situation a multigrid explicit scheme can be used in an inner iteration to 
solve the equations of a fully implicit time-stepping scheme. 

Suppose that (15) is approximated as 

D,w”+r + R(wn+l) = 0. 

Here D, is a kth-order accurate backward difference operator of the form 

where 

A-w n+l_ _ wn+l - wna 

Applied to the linear differential equation 

the schemes with k = 1,2 are stable for all aAt in the left half-plane (A-stable). Dahlquist has 
shown that A-stable linear multi-step schemes are at best second-order accurate [5]. Gear, 
however, has shown that the schemes with k G 6 are stiffly stable [7], and one of the 
higher-order schemes may offer a better compromise between accuracy and stability, depending 
on the application. 

Equation (16) is now treated as a modified steady state problem to be solved by a multigrid 
scheme using variable local time steps in a fictitious time t *. For example, in the case k = 2 
one solves 

aW 
~ =R”(w), 
at* 

where 

R*(w) = & 
2 1 

w +R(w) + tw” - -w n-1 

2At ’ 

and the last two terms are treated as fixed source terms. The first term shifts the Fourier 
symbol of the equivalent model problem to the left in the complex plane. While this promotes 
stability, it may also require a limit to be imposed on the magnitude of the local time step At * 
relative to that of the implicit time step At. In the case of problems with moving boundaries the 
equations must be modified to allow for movement and deformation of the mesh. 

This method has proved effective for the calculation of unsteady flows that might be 
associated with wing flutter [17]. It has the advantage that it can be added as an option to a 
computer program which uses an explicit multigrid scheme, allowing it to be used for the 
efficient calculation of both steady and unsteady flows. 
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2.9. Numerical results of multigrid calculations with upwind biasing 

Figs. 3-7 display the results of multigrid calculations using the CUSP scheme with switched 
diffusion. Figs. 3-5 show transonic solutions for three different airfoils, calculated on a 
160 x 32 mesh, and each of which is essentially converged in 12 multigrid cycles. The work in 
each cycle is about equal to two explicit time steps on the fine grid. It may be noted also that 
the computed drag coefficient of the Korn airfoil at the shock-free design point is zero to four 
digits. The drag coefficient is also computed to be zero to four digits for subsonic flows over a 
variety of airfoils with lift coefficients in the range up to 1.0. Very little change is observed 
between solutions calculated on 80 x 16 and 160 x 32 meshes, providing a further confirmation 
of accuracy. 

The CUSP scheme produces very sharp shock waves in hypersonic flow, provided that care is 
taken to define the cell interface Mach number as the Mach number on the downwind side, so 
that downwind terms are perfectly cancelled in supersonic flow. This is illustrated in Figs. 6 and 
7, which show the flow past a semicircular blunt body at Mach 8 and 20. It can be seen that 
quite rapid convergence, at a rate of the order of 0.9, continues to be obtained with the 
multigrid scheme in hypersonic flow. 

Shock waves in transonic flow are less sharply resolved, but discrete shock waves with 2 or 3 
interior points are obtained if the diffusion is scaled to a value somewhat less than that 
corresponding to full upwinding. Another way to achieve this is to use blending functions with 
the same asymptotic values for large Mach numbers, but smaller values when M = 1. One 
choice is 

When very sharp resolution of weak shocks is required, the results can be improved by 
characteristic splitting with matrix diffusion using Roe averaging. Discrete shock waves with 
just one interior point are then obtained when flux-limited dissipation is used, following 
equation (9). The choice of limiter can significantly affect the accuracy. If the limiter is too 
stringent the lift is noticeably underpredicted even on a 320 x 64 mesh. For example, if one 
uses a-mean with (Y = 1 the lift coefficient for the RAE 2822 airfoil at Mach 0.75 and 3” angle 
of attack is calculated on a 320 x 64 mesh to be 1.092, whereas with (Y = 2 it is calculated to be 
1.121. When the limiter is relaxed, on the other hand, it becomes progressively more difficult to 
achieve convergence to a steady state, and there is a tendency for convergence to stop at an 
error threshold in the region of 104. The switched scheme can produce equally perfect shocks 
in steady flow when it is combined with matrix diffusion, provided that the shocks are not too 
weak. When multigrid acceleration is introduced it also generally converges more rapidly to a 
steady state. Thus it may be preferred for steady state calculations, while flux-limited dissipa- 
tion may be needed for perfect oscillation control in the calculation of unsteady flows. 

Figs. 8-11 show the results of multigrid calculations on a 320 x 64 mesh for the NACA 0012 
airfoil at Mach 0.85 and 1” angle of attack and the RAE 2822 airfoil at Mach 0.75 and 3” angle 
of attack. Characteristic splitting was used in all these calculations. The first pair of figures 
show results for the RAE 2822 airfoil calculated with the switched scheme, and with flux-limited 
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Fig. 3. RAE 2822. Mach 0.750, angle of attack 3”, 160~32 mesh. (a) C, after 12 cycles. C, = 1.1262 and C, = 0.0467. 
(b) C,, after 50 cycles. C, = 1.1284 and C, = 0.0470. (c) Convergence. (d) Grid. 
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8 
I 2 

Fig. 5. KORN airfoil. Mach 0.750, angle of attack O”, 160 x32 mesh. (a) C, after 12 cycles. C, = 0.6309 and 
C, = 0.0001. (b) C, after 50 cycles. C, = 0.6311 and C, = 0.000. (c) Convergence. (d) Grid. 
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Fig. 6. Bluff body. Mach 8, 160 x 64 mesh. (a) C,, on the centerline in front of the body. (b) Convergence. 

Fig. 7. Bluff body. Mach 20, 160 x 64 mesh. (a) C,, on the centerline in front of the body. (b) Convergence. 
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Fig. 8. RAE 2822 with switched matrix dissipation. Mach 0.750, angle of attack 3”, 320 x 64 mesh. (a) C,,. C, = 1.1167 
and C, = 0.0455. (b) Convergence. 

+ 
+ 
+ 

Work 

Fig. 9. RAE 2822 with flux-limited dissipation. Mach 0.750, angle of attack 3”, 320 x 64 mesh. (a) = 1.1194 and 
C, = 0.0456. (b) Convergence. 

C,. C, 
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Fig. 10. NACA 0012 with switched matrix dissipation. Mach 0.850, angle of attack l”, 320X64 mesh. (a) C,. 
C, = 0.3729 and C, = 0.0575. (b) Convergence. 

dissipation using a-mean with (Y = 1.5. The second pair of figures show the same comparison 
for the NACA 0012 airfoil. The two schemes give more or less identical results, but the 
switched scheme converges faster. When the switched scheme is applied to the NACA 0012 
airfoil at Mach 0.8 and 1.25” angle of attack, however, it does not resolve the very weak shock 
that appears on the lower surface as cleanly as the flux-limited dissipation. Characteristic 
splitting also produces perfectly resolved discrete shock waves in hypersonic flow, but the error 
in the stagnation enthalpy is substantial when the Mach number exceeds 8, finally becoming so 
large that the results may be unacceptable. 

3. The design problem 

3.1. Formulation as a control problem 

Ultimately the designer seeks to optimize the geometric shape taking into account the 
trade-offs between aerodynamic performance, structure weight and the requirement for inter- 
nal volume to contain fuel and payload. The subtlety and complexity of fluid flow is such that it 
is unlikely that repeated trials in an interactive analysis and design procedure can lead to a 
truly optimum design, unless the process is made automatic. Progress toward automatic design 
has been restricted by the extreme computing costs that might be incurred, but useful design 
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Fig. 11. NACA 0012 with flux-limited dissipation. Mach 0.850, angle of attack l”, 320 x 64 mesh. (a) C,. C, = 0.3768 
and C, = 0.0576. (b) Convergence. 

methods have been devised for various simplified cases, such as two-dimensional airfoils and 
cascades, and wings in potential flow. In particular, it has been recognized that the designer 
generally has an idea of the kind of pressure distribution that will lead to the desired 
performance. Thus it is useful to consider the inverse problem of calculating the shape that will 
lead to a given pressure distribution. Such a shape does not necessarily exist, unless the 
pressure distribution satisfies certain constraints, and the problem must therefore be very 
carefully formulated. 

The problem of designing a two-dimensional profile to attain a desired pressure distribution 
was first studied by Lighthill, who solved it for the case of incompressible flow with a conformal 
mapping of the profile to a unit circle [21]. The speed over the profile is 

where 4 is the potential, which is known for incompressible flow, and h is the modulus of the 
mapping function. The surface value of h can be obtained by setting q = qd, where qd is the 
desired speed, and since the mapping function is analytic, it is uniquely determined by the 
value of h on the boundary. A solution exists for a given speed q, at infinity only if 

and there are additional constraints on q if the profile is required to be closed. 
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The difficulty that the objective may be unattainable can be circumvented by regarding the 
design problem as a control problem in which the control is the shape of the boundary. A 
variety of alternative formulations of the design problem can then be treated systematically 
within the framework of the mathematical theory for control of systems governed by partial 
differential equations [22]. Suppose that the boundary is defined by a function f(x), where x is 
the position vector, and the desired objective is measured by a cost function I. This may, for 
example, measure the deviation from a desired surface pressure distribution, but it can also 
represent other measures of performance such as lift and drag. In any case, if the objective is 
unattainable, it is still possible to find a minimum of the cost function. Suppose that a variation 
Sf in the control produces a variation 61 in the cost. Following control theory, 61 can be 
expressed to first order as an inner product 

where the gradient g is independent of the particular variation Sf, and can be determined by 
solving an adjoint equation. Now if one makes a shape change 

Sf= -Ag, 
then 

61= -A(& g) < 0, 

assuring a reduction in I. After making such a modification, the gradient can be recalculated 
and the process repeated to follow a path of steepest descent until a minimum is reached. In 
order to avoid violating constraints, such as a minimum acceptable wing thickness, the gradient 
may be projected into the allowable subspace within which changes are permitted in the control 
function. In this way one can devise procedures which must necessarily converge at least to a 
local minimum, and which can be accelerated by the use of more sophisticated descent methods 
such as the conjugate gradient algorithm. There is the possibility of more than one local 
minimum, but in any case the method will lead to an improvement over the original design. 

The application of control theory to optimal aerodynamic shape design has been explored by 
the author [15,16]. The next section presents the formulation for the case of airfoils in transonic 
flow. The governing equation is taken to be the transonic potential flow equation, and the 
profile is generated by conformal mapping from a unit circle. Thus the control is taken to be 
the modulus of the mapping function on the boundary. This leads to a generalization of 
Lighthill’s method both to compressible flow and to design for more general criteria. Numerical 
results are presented in Section 3.3. The mathematical development resembles, in certain 
respects, the method of calculating transonic potential flow developed by Bristeau, Pironneau, 
Glowinski, Periaux, Perrier and Poirier, who reformulated the solution of the flow equations as 
a least squares problem in control theory [3]. Pironneau has also studied the use of control 
theory for optimum shape design of systems governed by elliptic equations [251. 

3.2. Design for potential flow using conformal mapping 

Consider the case of two-dimensional compressible inviscid flow. In the absence of shock 
waves, an initially irrotational flow will remain irrotational, and we can assume that the velocity 
vector 4 is the gradient of a potential 4. In the presence of weak shock waves this remains a 
fairly good approximation. 
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Let p, p, c, and M be the pressure, density, speed of sound, and Mach number q/c. Then 
the potential flow equation is 

v. (PW) = 0, (17) 

where the density is given by 

p = (1 + +(r - l)M,2(1 - qz)}l’(Y-l), 

while 

(18) 

(19) 

Here 44, is the Mach number in the free stream, and the units have been chosen so that p and 
4 have the value unity in the far field. 

Suppose that the domain D exterior to the profile C in the z-plane is conformally mapped 
onto the domain exterior to a unit circle in the a-plane as sketched in Fig. 12. Let R and 8 be 
polar coordinates in the a-plane, and let r be the inverted radial coordinate l/R. Also let h be 
the modulus of the derivative of the mapping function 

h=$ I I (20) 

Now the potential flow equation becomes 

$(P&) a +r--(rp4,) =0 in D, (21) 

where the density is given by equation (181, and the circumferential and radial velocity 
components are 

r4% r20r 
u=- 

h ’ 
u=- 

h ’ (22) 

Fig. 12. Conformal mapping. (a> z-plane. (b) a-plane. 



410 A. Jameson /Applied Numerical Mathematics 13 (1993) 383-422 

while 

q2 = u2 + u2. (23) 

The condition of flow tangency leads to the Neumann boundary condition 

I W 
v=--=0 0nC. 

h ar (24) 

In the far field, the potential is given by an asymptotic estimate, leading to a Dirichlet boundary 
condition at r = 0 [9]. 

Suppose that it is desired to achieve a specified velocity distribution qd on C. Introduce the 
cost function 

The design problem is now treated as a control problem where the control function is the 
mapping modulus h, which is to be chosen to minimize I subject to the constraints defined by 
the flow equations (17)--(24). 

A modification 6h to the mapping modulus will result in variations 64, au, 6u, and 6p to 
the potential, velocity components, and density. The resulting variation in the cost will be 

aI= / (4 - q,)Q de, 
C 

where, on C, q = u. Also, 

W, ah 
6u=rp 

64, ah 

h 
-U-, 

h 
6u = r2p 

h 
-u--, 

h 

while according to equation (18) 

aP PU aP PV _=_- -=-- 
au c2 ' au c2 * 

It follows that S@J satisfies 

where 

a 

+x 
v2 a 

ii 1 pan a 

pl--riF--- c2 c2 ae 

Then, if + is any periodic differentiable function which vanishes in the far field, 

/ 
I, 64 dS = / pM2V4. V,;d,, 

gr2 D 

(25) 

(27) 

where dS is the area elment r dr de, and the right-hand side has been integrated by parts. 
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Now we can augment equation (25) by subtracting the constraint (27). The auxiliary function 
+ then plays the role of a Lagrange multiplier. Thus 

ij~=j(~-~~)q;d+i$;(~) dt’ 
c C 

- 

/ 
&j+ dS + / pM2V4 -V,gdS. 

Dr2 D 

Now suppose that $ satisfies 

L+=O inD 

with the boundary condition 

the adjoint equation 

w -=-- 
ar 

on C. 

Then, integrating by parts, 

and 

sI= -/(q-qd)q;d6+/pM2V&V+;dS. 
C D 

(28) 

(29) 

Here the first term represents the direct effect of the change in the metric, while the area 
integral represents a correction for the effect of compressibility. 

Equation (30) can be further simplified to represent 61 purely as a boundary integral 
because the mapping function is fully determined by the value of its modulus on the boundary. 
Set 

log; =f+ ip, 

where 

dz 
f=log - =log h I I da 

and 

Sf= f. 

Then f satisfies Laplace’s equation 

Af=O inD 
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and, if there is no stretching in the far field, f + 0. Also Sf satisfies the same condition. 
Introduce another auxiliary function P which satisfies 

AP=pM2VJI-V$ in D (31) 

and 

P=O 0nC. 

Then, the area integral in equation (30) is 

j- AP Sf dS = j+;d0 - j- PA6f dS, 
D C D 

and finally 

SI= 1g Sf de, 
c 

where 

g = ; - (4 -a&. (32) 

This suggest setting 

Sf= -Ag, 
so that, if h is a sufficiently small positive quantity, 

SI= +g2 dB<O. 
C 

Arbitrary variations in Sf cannot, however, be admitted. The condition that f+ 0 in the far 
field, and also the requirement that the profile should be closed, imply constraints which must 
be satisfied by f on the boundary C. Suppose that log(dz/da) is expanded as a power series 

(33) 

where only negative powers are retained, because otherwise (dz/da) would become un- 
bounded for large u. The condition that f + 0 as u + 0~) implies 

co = 0. 

Also, the change in z on integration around a circuit is 

AZ= lgdcr=2=ici, 

so the profile will be closed only if 

cr = 0. 
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In order to satisfy these constraints, we can project g onto the admissible subspace for f by 
setting 

co = cr = 0. (34) 

Then the projected gradient g’ is orthogonal to g -g’ and, if we take 

Sf = -Ai, 

it follows that to first order 

61= -h/gg do= -h/(g.+g-g)g de= -A/g’de<O. 
c c c 

If the flow is subsonic, this procedure should converge toward the desired speed distribution 
since the solution will remain smooth, and no unbounded derivatives will appear. If, however, 
the flow is transonic, one must allow for the appearance of shock waves in the trial solutions, 
even if qd is smooth. Then q - qd is not differentiable. This difficulty can be circumvented by a 
more sophisticated choice of the cost function. Consider the choice 

where A, and A, are parameters, and the periodic function S(e) satisfies the equation 

d2S 
A,S -A,- = 

de2 
4 -qd* 

Then, 

(35) 

dS d 
A,S 6S + A2x $?S de 

= S6q de. 
/ C 

Thus, S replaces q - qd in the previous formulas, and if one modifies the boundary condition 
(29) to 

on C 

the formula for the gradient becomes 

,=f-sq 

(36) 
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instead of equation (32). Smoothing can also be introduced directly in the descent procedure by 
choosing Sf to satisfy 

Sf - $&f-h&T, (37) 

where p is a smoothing parameter. Then to first order 

/g Sf= -;/(sf2-sf$8$sf) de 

= -;/jSf2+/j(;6f)2) deco. 

The final design procedure is thus as follows. Choose an initial profile and corresponding 
mapping function f. Then: 

Step 1. Solve the flow equations (17)-(24) for 4, U, U, 4, and p. 
Step 2. Solve the ordinary differential equation (35) for S. 
Step 3. Solve the adjoint equation ((26) and (28)) or (J subject to the boundary condition (36). 
Step 4. Solve the auxiliary Poisson equation (31) for P. 
Step 5. Evaluate 

g=;-S, 

on C, and find its projection S: onto the admissible subspace of variations according to equation 
(34). 

Step 6. Correct the boundary mapping function f, by Sf calculated from equation ((33) and 
(37)) 

Sf = -Ai. 

Step 7. Return to Step 1. 

3.3. Numerical tests of optimal design 

The practical realization of the design procedure depends on the availability of sufficiently 
fast and accurate numerical procedures for the implementation of the essential steps, in 
particular the solution of both the flow and the adjoint equations. If the numerical procedures 
are not accurate enough, the resulting errors in the gradient may impair or prevent the 
convergence of the descent procedure. If the procedures are too slow, the cumulative comput- 
ing time may become excessive. In this case, it was possible to build the design procedure 
around the author’s computer program FL036, which solves the transonic potential flow 
equation in conservation form in a domain mapped to the unit disk. The solution is obtained by 
a very rapid multigrid alternating direction method. The original scheme is described in [lo]. 



A. Jameson /Applied Numerical Mathematics 13 (1993) 383-422 415 

The program has been much improved since it was originally developed, and well-cunverged 
solutions of transonic flows on a mesh with 128 cells in the circumferential direction and 32 
cells in the radial direction are typically obtained in 5-20 multigrid cycles. The scheme uses 
artificial dissipative terms to introduce upwind biasing which simulates the rotated difference 
scheme [9], while preserving the conservation form. The alternating direction method is a 
generalization of conventional alternating direction methods, in which the scalar parameters 
are replaced by upwind difference operators to produce a scheme which remains stable when 
the type changes from elliptic to hyperbolic as the flow becomes locally supersonic [lo]. The 
conformal mapping is generated by a power series of the form of equation (33) with an 
additional term 

to allow for a wedge angle E at the trailing edge. The coefficients are determined by an 
iterative process with the aid of fast Fourier transforms [9]. 

The adjoint equation has a form very similar to the flow equation. While it is linear in its 
dependent variable, it also changes type from elliptic in subsonic zones of the flow to 
hyperbolic in supersonic zones of the flow. Thus, it was possible to adapt exactly the same 
algorithm to solve both the adjoint and the flow equations, but with reverse biasing of the 
difference operators in the downwind direction in the adjoint equation, corresponding to the 
reversed direction of the zone of dependence. The Poisson equation (31) is solved by the 
Buneman algorithm. 

An alternative procedure would be to derive the exact adjoint equation corresponding to the 
discrete equations which approximate the potential flow equation. This would produce the 
exact derivative of the discrete cost function with respect to the discrete control, at the expense 
of very complicated formulas and a costly inversion procedure. Numerical experiments confirm 
that in practice the scheme converges quite well when the flow and adjoint equations are 
discretized separately. 

As an example of the application of the method, Fig. 13 presents a calculation in which an 
airfoil was redesigned to improve its transonic performance by reducing the pressure drag 
induced by the appearance of a shock wave. The drag coefficient was therefore included in the 
cost function so that equation (26) is replaced by 

de + A&, 

where h, is a parameter which may be varied to alter the trade-off between drag reduction and 
deviation from the desired pressure distribution. Representing the drag as 

the procedure of Section 3.2 may be used to determine the gradient by solving the adjoint 
equation with a modified boundary condition. A penalty on the desired pressure distribution is 
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Fig. 13. Optimization of an airfoil at two design points. (a> C, after zero design cycles. Design Mach 0.72, 
C, = 0.5982, and C, = 0.0191. (b) C, after zero design cycles. Design Mach 0.2, C, = 0.5998, and C, = - 0.0001. cc> 
C, after two design cycles. Design Mach 0.72, C, = 0.5999, and C, = 0.0057. (d) C, after two design cycles. Design 
Mach 0.2, C, = 0.5998, and C, = - 0.0001. 
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Fig. 13 (Continued). (e) C, after four design cycles. Design Mach 0.72, C, = 0.6001, and C, = 0.0015. (f) C, after four 
design cycles. Design Mach 0.2, C, = 0.5998, and C, = -0.0001. (g) C, after six design cycles. Design Mach 0.72, 
C, = 0.6000, and C, = 0.0003. (h) C, after six design cycles. Design Mach 0.2, C, = 0.5998, and C, = -0.0001. 
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Fig. 13 (Continued). (i) C,, after eight design cycles. Design Mach 0.72, C, = 0.5999, and C, = 0.0001. (j) C, after 
eight design cycles. Design Mach 0.2, C, = 0.5998, and C, = -0.0001. 

still needed to avoid a situation in which the optimum shape is a flat plate with no lift and no 
drag. 

It was also desired to preserve the subsonic characteristics of the airfoil. Therefore two 
design points were specified, Mach 0.20 and Mach 0.720, and in each case the lift coefficient 
was forced to be 0.6. The composite cost function was taken to be the sum of the values of the 
cost function at the two design points. The transonic drag coefficient was reduced from 0.0191 
to 0.0001 in eight design cycles. In order to achieve this reduction the airfoil had to be modified 
so that its subsonic pressure distribution became more peaky at the leading edge. This is 
consistent with the results of experimental research on transonic airfoils, in which it has 
generally been found necessary to have a pesky subsonic pressure distribution in order to delay 
the onset of the transonic drag rise. It is also important to control the adverse pressure gradient 
on the rear upper surface, which can lead to premature separation of the viscous boundary 
layer. It can be seen that there is no steepening of this gradient due to the redesign. 

4. Conclusion 

The research presented here is directed toward some of the elements needed to produce 
computational tools for aerodynamic analysis that can meet the needs of aircraft design. 
Computational aerodynamics has now reached a plateau in which the basic framework for the 



A. Jameson /Applied Numerical Mathematics 13 (1993) 383-422 419 

treatment of inviscid compressible flow is quite well established. It is known how to construct 
non-oscillatory schemes which capture shock waves and contact discontinuities with high 
resolution. Multigrid acceleration procedures can be used to produce rapidly convergent 
schemes for steady state calculations. Complex geometries can be treated with unstructured 
tetrahedral meshes, or alternatively with structured multi-block meshes in which separately 
generated component meshes are either patched or overlapped. Accuracy can be improved by 
automatic procedures for adaptive mesh refinement. 

While it remains a formidable task to develop robust and reliable computer programs which 
incorporate all of these desirable features, well tested software incorporating some of them is 
now widely available. Rapid advances in computer technology have drastically reduced compu- 
tational costs. Fig. 14 presents a solution of the Euler equations for the inviscid compressible 
flow past a complete aircraft, with flow through the engine ducts, which was computed on an 
IBM RISC 530 workstation. The figure displays color contours representing the surface 
pressure and Mach number distribution. The discrete solution was calculated on a mesh with 
644,941 nodes and 3,961,024 tetrahedrons in 52 hours. Workstations which are at least five 
times faster that the RISC 530 will be available in the very near future. Thus, it will be possible 
to perform calculations of this magnitude in an environment of distributed computing, in which 
small design groups control their own computing resources, and access to larger scale remote 
facilities will only be needed for occasional calculations. 

In situations where the aerodynamic design requires the analysis of flows in which the 
viscous effects are secondary, currently available computer methods are quite adequate, and 
the computational costs are low enough to permit them to be used routinely. This is the case, 
for example, for the analysis of long range aircraft in their cruising condition. The analysis of 
flows dominated by viscous effects, such as would be needed, for example, to predict the 
maximum lift of a wing before it stalls, presents a far more severe problem. This is due both to 
the disparity of scales between the viscous dominated regions and the global flow, and the 
complexity which results from the onset of turbulence at the very high Reynolds numbers 
associated with full scale flight, of the order of 30 million. Given that the complexity of a 
computation which resolves the smallest scale eddies in both space and time is proportional to 
the cube of the Reynolds number, it is not feasible to perform direct simulations of complex 
flow. 

Even if the small scale motions are eliminated from the analysis by Reynolds averaging, with 
the consequent need for a turbulence model to estimate the Reynolds stresses, the computa- 
tional requirements are massive. Studies of two-dimensional transonic flows by, for example, 
Martinelli [24] have shown that for adequate resolution of a turbulent boundary layer about 32 
mesh intervals are needed within the thickness of the boundary layer. A similar number of 
mesh intervals are needed outside the boundary layer, and in order to prevent the mesh aspect 
ratio from becoming excessively large in the boundary layer and wake, about 512 intervals are 
needed in the chordwise direction wrapping around the airfoil. Translated to three-dimensional 
simulations, which would also require several hundred mesh intervals in the spanwise direction 
over a wing, this implies the need for meshes with around 10 million points. A further extension 
to large eddy simulation, in which the larger eddies are calculated, while eddies smaller than 
the grid scale are modeled by a subgrid scale model, would require even finer meshes. 

It appears that the only way in which the cost of calculations of this magnitude can be 
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reduced to a level acceptable for industrial use will be through the introduction of massively 
parallel computer architectures. This in turn requires a re-examination of the algorithms that 
will be needed. In this respect, the explicit methods that have been used in the present work 
have the advantage that they are amenable to concurrent computation at every mesh point. 
Very careful partitioning is needed, however, to limit the communication costs of exchanging 
data between different locations in the mesh. Parallel computing also offers the prospect of 
reducing the costs of aerodynamic analysis to the point where optimization methods of the type 
presented in the second part of this paper will be feasible both for more complex flow models 
and for three-dimensional applications. The vision of a digital wind tunnel [4] may, then, finally 
be brought to reality. 
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