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Fig. 1: We propose Deep3D, a fully automatic 2D-to-3D conversion algorithm that
takes 2D images or video frames as input and outputs stereo 3D image pairs. The
stereo images can be viewed with 3D glasses or head-mounted VR displays. Deep3D is
trained directly on stereo pairs from a dataset of 3D movies to minimize the pixel-wise
reconstruction error of the right view when given the left view. Internally, the Deep3D
network estimates a probabilistic disparity map that is used by a differentiable depth
image-based rendering layer to produce the right view. Thus Deep3D does not require
collecting depth sensor data for supervision.

Abstract. As 3D movie viewing becomes mainstream and the Virtual
Reality (VR) market emerges, the demand for 3D contents is growing
rapidly. Producing 3D videos, however, remains challenging. In this pa-
per we propose to use deep neural networks to automatically convert
2D videos and images to a stereoscopic 3D format. In contrast to pre-
vious automatic 2D-to-3D conversion algorithms, which have separate
stages and need ground truth depth map as supervision, our approach
is trained end-to-end directly on stereo pairs extracted from existing 3D
movies. This novel training scheme makes it possible to exploit orders
of magnitude more data and significantly increases performance. Indeed,
Deep3D outperforms baselines in both quantitative and human subject
evaluations.

Keywords: Monocular Stereo Reconstruction, Deep Convolutional Neu-
ral Networks
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1 Introduction

3D movies are popular and comprise a large segment of the movie theater market,
ranging between 14% and 21% of all box office sales between 2010 and 2014 in
the U.S. and Canada [1]. Moreover, the emerging market of Virtual Reality (VR)
head-mounted displays will likely drive an increased demand for 3D content.

3D videos and images are usually stored in stereoscopic format. For each
frame, the format includes two projections of the same scene, one of which is
exposed to the viewer’s left eye and the other to the viewer’s right eye, thus
giving the viewer the experience of seeing the scene in three dimensions.

There are two approaches to making 3D movies: shooting natively in 3D or
converting to 3D after shooting in 2D. Shooting in 3D requires costly special-
purpose stereo camera rigs. Aside from equipment costs, there are cinemagraphic
issues that may preclude the use of stereo camera rigs. For example, some in-
expensive optical special effects, such as forced perspective1, are not compatible
with multi-view capturing devices. 2D-to-3D conversion offers an alternative to
filming in 3D. Professional conversion processes typically rely on “depth artists”
who manually create a depth map for each frame. Standard Depth Image-Based
Rendering (DIBR) algorithms can then be used to combine the original frame
with the depth map in order to arrive at a stereo image pair [2]. However, this
process is still expensive as it requires intensive human effort.

Each year about 20 new 3D movies are produced. High production cost is
the main hurdle in the way of scaling up the 3D movie industry. Automated
2D-to-3D conversion would eliminate this obstacle.

In this paper, we propose a fully automated, data-driven approach to the
problem of 2D-to-3D video conversion. Solving this problem entails reasoning
about depth from a single image and synthesizing a novel view for the other
eye. Inferring depth (or disparity) from a single image, however, is a highly
under-constrained problem. In addition to depth ambiguities, some pixels in the
novel view correspond to geometry that’s not visible in the available view, which
causes missing data that must be hallucinated with an in-painting algorithm.

In spite of these difficulties, our intuition is that given the vast number of
stereo-frame pairs that exist in already-produced 3D movies it should be possible
to train a machine learning model to predict the novel view from the given view.
To that end, we design a deep neural network that takes as input the left eye’s
view, internally estimates a soft (probabilistic) disparity map, and then renders
a novel image for the right eye. We train our model end-to-end on ground-truth
stereo-frame pairs with the objective of directly predicting one view from the
other. The internal disparity-like map produced by the network is computed only
in service of creating a good right eye view and is not intended to be an accurate
map of depth or disparity. We show that this approach is easier to train for than
the alternative of using a stereo algorithm to derive a disparity map, training

1 Forced perspective is an optical illusion technique that makes objects appear larger
or smaller than they really are. It breaks down when viewed from another angle,
which prevents stereo filming.
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the model to predict disparity explicitly, and then using the predicted disparity
to render the new image. Our model also performs in-painting implicitly without
the need for post-processing.

Evaluating the quality of the 3D scene generated from the left view is non-
trivial. For quantitative evaluations, we use a dataset of 3D movies and report
pixel-wise metrics comparing the reconstructed right view and the ground-truth
right view. We also conduct human subject experiments to show the effectiveness
of our solution. We compare our method with the ground-truth and baselines
that use state-of-the-art single view depth estimation techniques. Our quantita-
tive and qualitative analyses demonstrate the benefits of our solution.

2 Related Work

Most existing automatic 2D-to-3D conversion pipelines can be roughly divided
into two stages. First, a depth map is estimated from an image of the input view,
then a DIBR algorithm combines the depth map with the input view to generate
the missing view of a stereo pair. Early attempts to estimate depth from a
single image utilize various hand engineered features and cues including defocus,
scattering, and texture gradients [3, 4]. These methods only rely on one cue. As
a result, they perform best in restricted situations where the particular cue is
present. In contrast, humans perceive depth by seamlessly combining information
from multiple sources.

More recent research has moved to learning-based methods [5–9]. These ap-
proaches take single-view 2D images and their depth maps as supervision and
try to learn a mapping from 2D image to depth map. Learning-based methods
combine multiple cues and have better generalization, such as recent works that
use deep convolutional neural networks (DCNNs) to advance the state-of-the-art
for this problem [10, 11]. However, collecting high quality image-depth pairs is
difficult, expensive, and subject to sensor-dependent constraints. As a result, ex-
isting depth data set mainly consists of a small number of static indoor and, less
commonly, outdoor scenes [12, 13]. The lack of volume and variations in these
datasets limits the generality of learning-based methods. Moreover, the depth
maps produced by these methods are only an intermediate representation and a
separate DIBR step is still needed to generate the final result.

Monocular depth prediction is challenging and we conjecture that performing
that task accurately is unnecessary. Motivated by the recent trend towards train-
ing end-to-end differentiable systems [14, 15], we propose a method that requires
stereo pairs for training and learns to directly predict the right view from the
left view. In our approach, DIBR is implemented using an internal probabilistic
disparity representation, and while it learns something akin to a disparity map
the system is allowed to use that internal representation as it likes in service
of predicting the novel view. This flexibility allows the algorithm to naturally
handle in-painting. Unlike 2D image / depth map pairs, there is a vast amount
of training data available to our approach since roughly 10 to 20 3D movies have
been produced each year since 2008 and each has hundreds of thousands frames.
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Our model is inspired by Flynn et al.’s DeepStereo approach [16], in which
they propose to use a probabilistic selection layer to model the rendering pro-
cess in a differentiable way so that it can be trained together with a DCNN.
Specifically we use the same probabilistic selection layer, but improve upon their
approach in two significant ways. First, their formulation requires two or more
calibrated views in order to synthesize a novel view—a restriction that makes it
impossible to train from existing 3D movies. We remove this limitation by re-
structuring the network input and layout. Second, their method works on small
patches (28× 28 pixels) which limits the network’s receptive field to local struc-
tures. Our approach processes the entire image, allowing large receptive fields
that are necessary to take advantage of high-level abstractions and regularities,
such as the fact that large people tend to appear close to the camera while small
people tend to be far away.

3 Method

Previous work on 2D-to-3D conversion usually consists of two steps: estimating
an accurate depth map from the left view and rendering the right view with
a Depth Image-Based Rendering (DIBR) algorithm. Instead, we propose to di-
rectly regress on the right view with a pixel-wise loss. Naively following this
approach, however, leads to poor results because it does not capture the struc-
ture of the task (see Section 5.4). Inspired by previous work, we utilize a DIBR
process to capture the fact that most output pixels are shifted copies of input
pixels. However, unlike previous work we don’t constrain the system to produce
an accurate depth map, nor do we require depth maps as supervision for training.
Instead, we propose a model that predicts a probabilistic disparity-like map as
an intermediate output and combines it with the input view using a differentiable
selection layer that models the DIBR process. During training, the disparity-like
map produced by the model is never directly compared to a true disparity map
and it ends up serving the dual purposes of representing horizontal disparity
and performing in-painting. Our model can be trained end-to-end thanks to the
differentiable selection layer [16].

3.1 Model Architecture

Recent research has shown that incorporating lower level features benefits pixel
wise prediction tasks including semantic segmentation, depth estimation, and
optical flow estimation [10, 17]. Given the similarity between our task and depth
estimation, it is natrual to incorporate this idea. Our network, as shown in Fig. 2,
has a branch after each pooling layer that upsamples the incoming feature maps
using so-called “deconvolution” layers (i.e., a learned upsampling filter). The
upsampled feature maps from each level are summed together to give a feature
representation that has the same size as the input image. We perform one more
convolution on the summed feature representation and apply a softmax trans-
form across channels at each spatial location. The output of this softmax layer is
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Fig. 2: Deep3D model architecture. Our model combines information from multiple
levels and is trained end-to-end to directly generate the right view from the left view.
The base network predicts a probabilistic disparity-like map which is then used by the
selection layer to model Depth Image-Based Rendering (DIBR) in a differentiable way.
This also allows implicit in-painting.

interpreted as a probabilistic disparity-like map. We then feed this disparity-like
map and the left view to the selection layer, which outputs the right view.

Bilinear Interpolation by Deconvolution Similar to [17] we use “deconvo-
lutional” layers to upsample lower layer features maps before feeding them to
the final representation. Deconvolutional layers are implemented by reversing
the forward and backward computations of a convolution layer.

We found that initializing the deconvolutional layers to be equivalent to bi-
linear interpolation can facilitate training. Specifically, for upsampling by factor
S, we use a deconvolutional layer with 2S by 2S kernel, S by S stride, and S/2
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Fig. 3: Depth to disparity conversion. Given the distance between the eyes B and the
distance between the eyes and the plane of focus f , we can compute disparity from
depth with Eqn. 3. Disparity is negative if object is closer than the plane of focus and
positive if it is further away.

by S/2 padding. The kernel weight w is then initialized with:

C =
2S − 1− (S mod 2)

2S
(1)

wij = (1− | i

S − C
|)(1− | j

S − C
|) (2)

3.2 Reconstruction with Selection Layer

The selection layer models the DIBR step in traditional 2D-to-3D conversion.
In traditional 2D-to-3D conversion, given the left view I and a depth map Z, a
disparity map D is first computed with

D =
B(Z − f)

Z
(3)

where the baseline B is the distance between the two cameras, Z is the input
depth and f is the distance from cameras to the plane of focus. See Fig. 3 for
illustration. The right view O is then generated with:

Oi,j+Dij
= Ii,j . (4)

However this is not differentiable with respect to D so we cannot train it to-
gether with a deep neural network. Instead, our network predicts a probability
distribution across possible disparity values d at each pixel location Dd

i,j , where∑
dD

d
i,j = 1 for all i, j. We define a shifted stack of the left view as Idi,j = Ii,j−d,

then the selection layer reconstructs the right view with:

Oi,j =
∑
d

Idi,jD
d
i,j (5)

This is now differentiable with respect to Dd
i,j so we can compute an L1 loss

between the output and ground-truth right view Y as the training objective:

L = |O − Y | (6)
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We use L1 loss because recent research has shown that it outperforms L2 loss
for pixel-wise prediction tasks [18].

We note that D is only an intermediate result optimized for producing low
error reconstructions while not intended to be an accurate disparity prediction.
In fact, we observe that in practice D serves the dual purpose of depth estimation
and in-painting. Low texture regions also tend to be ignored as they do not
significantly contribute to reconstruction error.

3.3 Scaling Up to Full Resolution

Modern movies are usually distributed in at least 1080p resolution, which has
1920 pixel by 800 pixel frames. In our experiments, We reduce input frames to
432 by 180 to preserve aspect ratio and save computation time. As a result, the
generated right view frames will only have a resolution of 432 by 180, which is
unacceptably low for movie viewing.

To address this issue, we first observe that the disparity map usually has much
less high-frequency content than the original color image. Therefore we can scale
up the predicted disparity map and couple it with the original high resolution
left view to render a full resolution right view. The right view rendered this way
has better image quality compared to the naively 4x-upsampled prediction.

4 Dataset

Since Deep3D can be trained directly on stereo pairs without ground-truth depth
maps as supervision, we can take advantage of the large volume of existing stereo
videos instead of using traditional scene depth datasets like KITTI [13] and NYU
Depth [12]. We collected 27 non-animation 3D movies produced in recent years
and randomly partitioned them to 18 for training and 9 for testing. Our dataset
contains around 5 million frames while KITTI and NYU Depth only provide
several hundred frames. During training, each input left frame is resized to 432
by 180 pixels and a crop of size 384 by 160 pixels is randomly selected from the
frame. The target right frame undergoes the same transformations. We do not
use horizontal flipping.

5 Experiments

In our main experiments we use a single frame at a time as input without ex-
ploiting temporal information. This choice ensures a more fair comparison to
single-frame baseline algorithms and also allows applying trained models to static
photos in addition to videos. However, it is natural to hypothesize that motion
provides important cues for depth, thus we also conducted additional experi-
ments that use consecutive RGB frames and computed optical flow as input,
following [19]. These results are discussed in Section 5.4.
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5.1 Implementation Details

For quantitative evaluation we use the non-upsampled output size of 384 by 160
pixels. For qualitative and human subject evaluation we upsample the output
by a factor of 4 using the method described in Section 3.3. Our network is based
on VGG16, which is a large convolutional network trained on ImageNet [20].
We initialize the main branch convolutional layers (colored green in Fig.2) with
VGG16 weight and initialize all other weights with normal distribution with a
standard deviation of 0.01.

To integrate information from lower level features, we create a side branch
after each pooling layer by applying batch normalization [21] followed by a 3×3
convolution layer. This is then followed by a deconvolution layer initialized to be
equivalent to bilinear upsampling. The output dimensions of the deconvolution
layers match the final prediction dimensions. We use batch normalization to
connect pretrained VGG16 layers to randomly initialized layers because it solves
the numerical instability problem caused by VGG16’s large and non-uniform
activation magnitude.

We also connect the top VGG16 convolution layer feature to two randomly
initialized fully connected layers (colored blue in Fig.2) with 4096 hidden units
followed by a linear layer. We then reshape the output of the linear layer to 33
channels of 12 by 5 feature maps which is then fed to a deconvolution layer. We
then sum across all up sampled feature maps and do a convolution to get the
final feature representation. The representation is then fed to the selection layer.
The selection layer interprets this representation as the probability over empty
or disparity -15 to 16 (a total of 33 channels).

In all experiments Deep3D is trained with a mini-batch size of 64 for 100, 000
iterations in total. The initial learning rate is set to 0.002 and reduce it by a fac-
tor of 10 after every 20, 000 iterations. No weight decay is used and dropout with
rate 0.5 is only applied after the fully connected layers. Training takes two days
on one NVidia GTX Titan X GPU. Once trained, Deep3D can reconstruct novel
right views at more than 100 frames per second. Our implementation is based on
MXNet [22] and available for download at https://github.com/piiswrong/deep3d.

5.2 Comparison Algorithms

We used three baseline algorithms for comparison:

1. Global Disparity: the right view is computed by shifting the left view with a
global disparity δ that is determined by minimizing Mean Absolution Error
(MAE) on the validation set.

2. The DNN-based monocular depth estimation algorithm of Eigen et al. [10]
plus a standard DIBR method as described in Section 3.2.

3. DNN-based Monocular depth estimation trained to predict disparity estima-
tion from stereo block mathcing algorithms, plus standard DIBR method.

4. Ground-truth stereo pairs. We only show the ground-truth in human subject
studies since in quantitative evaluations it always gives zero error.
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To the best of our knowledge, Deep3D is the first 2D-to-3D conversion algo-
rithm that can be trained directly on stereo pairs, while all previous methods
requires ground-truth depth map for training. As one baseline, we take the model
released by Eigen et al. [10], which is trained on NYU Depth [12], and evaluate
it on our test set. However, it is a stretch to hope that a model trained on NYU
Depth will generalize well to 3D movies. Therefore, for a more fair comparison,
we also a retrain monocular depth estimation network with estimated depth
from stereo block matching algorithms on the same 3D movie dataset. Since
Eigen et al. did not release training code, we instead use the same VGG-based
network architecture proposed in this paper. This also has the added benefit of
being directly comparable to Deep3D.

Because [10] predicts depth rather then disparity, we need to convert depth
to disparity with Eqn. 3 for rendering with DIBR. However, [10] does not predict
the distance to the plane of focus f , a quantity that is unknown and varies across
shots due to zooming. The interpupillary distance B is also unknown, but it is
fixed across shots. The value of B and f can be determined in two ways:

1. Optimize for MAE on the validation set and use fixed values for B and f
across the whole test set. This approach corresponds to the lower bound of
[10]’s performance.

2. Fix B across the test set, but pick the f that gives the lowest MAE for
each test frame. This corresponds to having access to oracle plane of focus
distance and thus the upper bound on [10]’s performance.

We do both and report them as two separate baselines, [10] and [10] + Oracle.
For fair comparisons, we also do this optimization for Deep3D’s predictions and
report the performance of Deep3D and Deep3D + Oracle.

5.3 Results

Table 1: Deep3D evaluation. We compare pixel-wise reconstruction error for each
method using Mean Absolute Error (MAE) as metric.

Method MAE

Global Disparity 7.75
[10] 7.75
DNN trained on estimated depth 7.29
Deep3D (ours) 6.87

[10] + Oracle 6.31
Deep3D + Oracle 5.47
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Table 2: Human Subject Evaluation. In each entry, the first number represents the
frequency of the row method being preferred to the column method by human subjects,
while the second number represents their certainty (i.e. the percentage of people who
gave an answer instead of “not sure”). Note that 66% of times subjects prefer Deep3D
to [10] and 24% of the times Deep3D is preferred over the ground truth.

Global Disparity [10] + Oracle Deep3D (ours) Ground Truth

Trivial N/A 27.21%/56% 25.28%/74% 7.80%/77%
Eigen et. al. 72.79%/56% N/A 33.53%/71% 10.19%/77%
Ours 74.72%/74% 66.47%/71% N/A 24.43%/81%
Ground Truth 92.20%/77% 89.81%/77% 75.57%/81% N/A

Fig. 4: Human subject study setup. Each subject is shown 50 pairs of 3D anaglyph
images. Each pair consists of the same scene generated by 2 randomly selected methods.
The subjects are instructed to wear red-blue 3D glasses and pick the one with better
3D effects or “not sure” if they cannot tell. The study result is shown in Table 2.

Quantitative Evaluation For quantitative evaluation, we compute Mean Ab-
solute Error (MAE) as:

MAE =
1

HW
|y − g(x)|, (7)

(8)

where x is the left view, y is the right view, g(·) is the model, and H and W are
height and width of the image respectively. The results are shown in Table 1. We
observe that Deep3D outperforms baselines with and without oracle distance of
focus plane.

Qualitative Evaluation To better understand the proposed method, we show
qualitative results in Fig. 5. Each entry starts with a stereo pair predicted by
Deep3D shown in anaglyph, followed by 12 channels of internal soft disparity
assignment, ordered from near (-3) to far (+8). We observe that Deep3D is
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Fig. 5: Qualitative results. Column one shows an anaglyph of the predicted 3D image (best viewed in color with
red-blue 3D glasses). Each anaglyph is followed by 12 heat maps of disparity channels -3 to 8 (closer to far). In the
first example, the man is closer and appears in the first 3 channels while the woman is further away and appears
in 4th-5th channels; the background appears in the last 4 channels. In the second example, the person seen from
behind is closer than the other 4 people fighting him. In the third example, the window frame appears in the first 3
channels while the distant outside scene gradually appears in the following channels.
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Fig. 6: Comparison between [10] and Deep3D. The first column shows the input image.
The second column shows the prediction of [10] and the third column shows Deep3D’s
prediction. This figure shows that Deep3D is better at delineating people and figuring
out their distance from the camera.

able to infer depth from multiple cues including size, occlusion, and geometric
structure.

We also compare Deep3D’s internal disparity maps (column 3) to [10]’s depth
predictions (column 2) in 6. This figure demonstrates that Deep3D is better at
delineating people and figuring out their distance from the camera.

Note that the disparity maps generated by Deep3D tend to be noisy at image
regions with low horizontal gradient, however this does not affect the quality of
the final reconstruction because if a row of pixels have the same value, any
disparity assignment would give the same reconstruction. Disparity prediction
only needs to be accurate around vertical edges and we indeed observe that
Deep3D tends to focus on such regions.

Human Subject Evaluation We also conducted a human subject study to
evaluate the visual quality of the predictions of different algorithms. We used
four algorithms for this experiment: Global Disparity, [10] + Oracle, Deep3D
without Oracle, and the ground-truth.2

For the human subject study, we randomly selected 500 frames from the test
set. Each annotator is shown a sequence of trials. In each trial, the annotator
sees two anaglyph 3D images, which are reconstructed from the same 2D frame
by two algorithms, and is instructed to wear red-blue 3D glasses and pick the
one with better 3D effects or select “not sure” if they are similar. The interface
for this study is shown in Fig. 4. Each annotator is given 50 such pairs and we
collected decisions on all C2

4500 pairs from 60 annotators.

2 [10] without Oracle and Deep3D + Oracle are left out due to annotator budget Note
that a change in average scene depth only pushes a scene further away or pull it
closer and usually doesn’t affect the perception of depth variation in the scene.
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Table 2 shows that Deep3D outperforms the naive Global Disparity baseline
by a 49% margin and outperforms [10] + Oracle by a 32% margin. When facing
against the ground truth, Deep3D’s prediction is preferred 24.48% of the time
while [10] + Oracle is only preferred 10.27% of the time and Global Disparity
baseline is preferred 7.88% of the time.

5.4 Algorithm Analysis

Table 3: Ablation studies. We evaluate different components of Deep3D by removing
them from the model to further understand the contribution of each component. Note
that removing lower level features and selection layer both result in performance drop.

Method MAE

Deep3D w/o lower level feature 8.24
Deep3D w/o direct training on stereo pairs 7.29
Deep3D w/o selection layer 7.01
Deep3D 6.87

Ablation Study To understand the contribution of each component of the
proposed algorithm, we show the performance of Deep3D with parts removed in
Tab. 3. In Deep3D w/o lower level feature we show the performance of Deep3D
without branching off from lower convolution layers. The resulting network only
has one feed-forward path that consists of 5 convolution and pooling module and
2 fully connected layers. We observe that the performance significantly decreases
compared to the full method.

In Deep3D w/o direct training on stereo pairs we show the performance
of training on disparity maps generated from stereo pairs by block matching
algorithm [23] instead of directly training on stereo pairs. The predicted disparity
maps are then fed to DIBR method to render the right view. This approach
results in decreased performance and demonstrates the effectiveness of Deep3D’s
end-to-end training scheme.

We also show the result from directly regressing on the novel view without
internal disparity representation and selection layer. Empirically this also leads
to decreased performance, demonstrating the effectiveness of modeling the DIBR
process.

Temporal Information In our main experiment and evaluation we only used
one still frame of RGB image as input. We made this choice for fair comparisons
and more general application domains. Incorporating temporal information into
Deep3D can be handled in two ways: use multiple consecutive RGB frames as in-
put to the network, or provide temporal information through optical flow frames
similar to [19].
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Table 4: Temporal information. We incorporate temporal information by extending the
input to include multiple consecutive RGB frames or optical flow frames. We observe
that additional temporal information leads to performance gains.

Method MAE

Deep3D with 5 RGB frames 6.81
Deep3D with 1 RGB frames and 5 optical flow frames 6.86
Deep3D 6.87

We briefly explored both directions and found moderate performance im-
provements in terms of pixel-wise metrics. We believe more effort along this
direction, such as model structure adjustment, hyper-parameter tuning, and
explicit modeling of time will lead to larger performance gains at the cost of
restricting application domain to videos only.

6 Conclusions

In this paper we proposed a fully automatic 2D-to-3D conversion algorithm based
on deep convolutional neural networks. Our method is trained end-to-end on
stereo image pairs directly, thus able to exploit orders of magnitude more data
than traditional learning based 2D-to-3D conversion methods. Quantitatively,
our method outperforms baseline algorithms. In human subject study stereo
images generated by our method are consistently preferred by subjects over
results from baseline algorithms. When facing against the ground truth, our
results have a higher chance of confusing subjects than baseline results.

In our experiment and evaluations we only used still images as input while
ignoring temporal information from video. The benefit of this design is that the
trained model can be applied to not only videos but also photos. However, in
the context of video conversion, it is likely that taking advantage of temporal
information can improve performance. We briefly experimented with this idea
but found little quantitative performance gain. We conjecture this may be due
to the complexity of effectively incorporating temporal information. We believe
this is an interesting direction for future research.
Acknowledgements: This work is in part supported by ONR N00014-13-1-
0720, NSF IIS-1338054, Allen Distinguished Investigator Award and contracts
from the Allen Institute for Artificial Intelligence.
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