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Abstract. Diagrams are common tools for representing complex con-
cepts, relationships and events, often when it would be difficult to por-
tray the same information with natural images. Understanding natural
images has been extensively studied in computer vision, while diagram
understanding has received little attention. In this paper, we study the
problem of diagram interpretation, the challenging task of identifying
the structure of a diagram and the semantics of its constituents and
their relationships. We introduce Diagram Parse Graphs (DPG) as our
representation to model the structure of diagrams. We define syntactic
parsing of diagrams as learning to infer DPGs for diagrams and study
semantic interpretation and reasoning of diagrams in the context of di-
agram question answering. We devise an LSTM-based method for syn-
tactic parsing of diagrams and introduce a DPG-based attention model
for diagram question answering. We compile a new dataset of diagrams
with exhaustive annotations of constituents and relationships for about
5,000 diagrams and 15,000 questions and answers. Our results show the
significance of our models for syntactic parsing and question answering
in diagrams using DPGs.

1 Introduction

For thousands of years visual illustrations have been used to depict the lives of
people, animals, their environment, and major events. Archaeological discoveries
have unearthed cave paintings showing lucid representations of hunting, religious
rites, communal dancing, burial, etc. From ancient rock carvings and maps, to
modern info-graphics and 3-D visualizations, to diagrams in science textbooks,
the set of visual illustrations is very large, diverse and ever growing, constituting
a considerable portion of visual data. These illustrations often represent complex
concepts, such as events or systems, that are otherwise difficult to portray in a
few sentences of text or a natural image (Figure 1).

While understanding natural images has been a major area of research in
computer vision, understanding rich visual illustrations has received scant at-
tention. From a computer vision perspective, these illustrations are inherently
different from natural images and offer a unique and interesting set of problems.
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Fig. 1. The space of visual illustrations is very rich and diverse. The top palette shows
the inter class variability for diagrams in our new diagram dataset, AI2D. The bottom
palette shows the intra-class variation for the Water Cycles category.

Since they are purposefully designed to express information, they typically sup-
press irrelevant signals such as background clutter, intricate textures and shading
nuances. This often makes the detection and recognition of individual elements
inherently different than their counterparts, objects, in natural images. On the
other hand, visual illustrations may depict complex phenomena and higher-order
relations between objects (such as temporal transitions, phase transformations
and inter object dependencies) that go well beyond what a single natural im-
age can convey. For instance, one might struggle to find natural images that
compactly represent the phenomena seen in some grade school science diagrams,
as shown in Figure 1. In this paper, we define the problem of understanding
visual illustrations as identifying visual entities and their relations as well as
establishing semantic correspondences to real-world concepts.

The characteristics of visual illustrations also afford opportunities for deeper
reasoning than provided by natural images. Consider the food web in Figure 1,
which represents several relations such as foxes eating rabbits and rabbits eating
plants. One can further reason about higher order relations between entities such
as the effect on the population of foxes caused by a reduction in the population of
plants. Similarly, consider the myriad of phenomena displayed in a single water
cycle diagram in Figure 1. Some of these phenomena are shown to occur on the
surface of the earth while others occur either above or below the surface. The
main components of the cycle (e.g. evaporation) are labeled and the flow of water
is displayed using arrows. Reasoning about these objects and their interactions
in such rich scenes provides many exciting research challenges.

In this paper, we address the problem of diagram interpretation and rea-
soning in the context of science diagrams, defined as the two tasks of Syntactic
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parsing and Semantic interpretation. Syntactic parsing involves detecting and
recognizing constituents and their syntactic relationships in a diagram. This is
most analogous to the problem of scene parsing in natural images. The wide
variety of diagrams as well as large intra-class variation (Figure 1 shows several
varied images depicting a water cycle) make this step very challenging. Semantic
interpretation is the task of mapping constituents and their relationships to se-
mantic entities and events (real-world concepts). For example, an arrow in a food
chain diagram typically corresponds to the concept of consumption, arrows in
water cycles typically refer to phase changes, and arrows in a planetary diagram
often refers to rotatory motion. This is a challenging task given the inherent am-
biguities in the mapping functions. Hence we study it in the context of diagram
question answering.

We introduce a representation to encode diagram constituents and their re-
lationships in a graph, called diagram parse graphs (DPG) (example DPGs are
shown in Figure 6). The problem of syntactic parsing of diagrams is formulated
as the task of learning to infer the DPG that best explains a diagram. We in-
troduce a Deep Sequential Diagram Parser Network (Dsdp-Net) that learns to
sequentially add relationships and their constituents to form DPGs, using Long
Short Term Memory (LSTM) networks. The problem of semantically interpret-
ing a diagram and reasoning about the constituents and their relationships is
studied in the context of diagram question answering. We present a neural net-
work architecture (called Dqa-Net) that learns to attend to useful relations in
a DPG given a question about the diagram.

We compile a dataset named AI2 Diagrams (AI2D) of about 5000 grade
school science diagrams with over 150000 rich annotations, their ground truth
syntactic parses, and more than 15000 corresponding multiple choice questions.
Our experimental results show that the proposed Dsdp-Net for syntactic pars-
ing outperforms several baseline methods. Moreover, we show that the proposed
approach of incorporating diagram relations into question answering outperforms
standard visual question answering methods.

Our contributions include: (a) We present two new tasks of diagram inter-
pretation and reasoning, (b) we introduce the DPG representation to encode
diagram parses and introduce a model that learns to map diagrams into DPGs,
(c) we introduce a model for diagram question answering that learns the atten-
tion of questions into DPGs and (d) we present a new dataset to evaluate the
above models with baselines1.

2 Background

Understanding diagrams. The problem of understanding diagrams received
a fair amount of interest [41,13,49,29] in the 80’s and 90’s. However, many
of these methods used hand written rules, assumed that the visual primitives
were manually identified or worked on a specific set of diagrams. More recently,

1 Dataset and baselines available at http://allenai.org/plato/diagram understanding



4 Kembhavi et al.

Futrelle et al. [14] proposed methods to analyze finite automata sketches but
only worked with vector representations of diagrams. Recently, Seo et al. [36]
proposed a method for understanding diagrams in geometry questions that iden-
tifies diagram elements by maximizing agreement between textual and visual
data. In contrast to these approaches, we propose a unified approach to diagram
understanding that builds upon the representational language of graphic repre-
sentations proposed by Engelhardt [12] and works on a diverse set of diagrams.

The domain of abstract images has also received a considerable amount of
interest over the past couple of years [58,54,48,5]. While abstract images signifi-
cantly reduce the noise introduced by computer vision modules, thus bringing the
semantics of the scene into focus, they still depict real world scenes, and hence
differ significantly from diagrams which may depict more complex phenomena.
Parsing natural images. Several approaches to building bottom-up and top-
down parsers have been proposed to syntactically parse natural images and
videos. These include Bayesian approaches [45], And-Or graph structures [55],
stochastic context free grammars [26], regular grammars [32], 3D Geometric
Phrases [10] and a max margin structured prediction framework based on recur-
sive neural networks [40]. Inspired by these methods, we adopt a graph based
representation for diagrams.
Answering questions. The task of question answering is an important area in
the NLP community in several sub-domains including machine comprehension
(MC) [50,35,16], science questions [20,7], geometry questions [37], algebra word
problems [22,19] and open domain QA [52]. Our QA system is inspired from
previous works, in particular from text based attention models [42,24] which we
extend to diagrams. While MC systems attend on words or sentences from a
reading passage, our system attends on the diagram via its parse graph. Anal-
ogously, the task of visual question answering (VQA) [4,15,25,34], which is to
answer questions about an image has recently received considerable attention
from the vision community. Attention models for VQA learn to attend on spe-
cific regions in the image, given the question [51,38,56,53,3]. Diagram images are
vastly different from real images, and so are the corresponding questions. Hence,
QA systems built for real images do not extend well, out of the box, for diagram
QA tasks as we show in Section 7.4.

3 The Language of Diagrams

Much of the existing literature on graphic representations [18,9,46] covers only
specific types of graphics or specific aspects of their syntactic structure. More re-
cently, Engelhardt [12] proposed a coherent framework integrating various struc-
tural, semiotic and classification aspects that can be applied to the complete
spectrum of graphic representations. We briefly describe some of his proposed
principles below, as they apply to our space of diagrams, but refer the reader to
[12] for a more thorough understanding.

A diagram is a composite graphic that consists of a graphic space, a set of
constituents, and a set of relationships involving these constituents. A graphic
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Intra-Object Label (R1): A text box naming the entire object.
Intra-Object Region Label (R2): A text box referring to a region within an object.
Intra-Object Linkage (R3): A text box referring to a region within an object via
an arrow.
Inter-Object Linkage (R4): Two objects related to one another via an arrow.
Arrow Head Assignment (R5): An arrow head associated to an arrow tail.
Arrow Descriptor (R6): A text box describing a process that an arrow refers to.
Image Title (R7): The title of the entire image.
Image Section Title (R8): Text box that serves as a title for a section of the image.
Image Caption (R9): A text box that adds information about the entire image, but
does not serve as the image title.
Image Misc (R10): Decorative elements in the diagram.

Table 1. Different types of relationships in our diagram parse graphs.

space may be a metric space, distorted metric space (e.g. solar system diagram)
or a non-meaningful space (e.g. food web). Constituents in a diagram include
illustrative elements (e.g. drawings of animals), textual elements, diagrammatic
elements (e.g. arrows), informative elements (e.g. legends) and decorative ele-
ments. Relationships include spatial relations between constituents and the dia-
gram space, and spatial and attribute-based relations between constituents (e.g.
linkage, lineup, color variation, shape). An individual constituent may itself be
a composite graphic, rendering this formulation recursive.
Our Representation: Diagram Parse Graph. We build upon Engelhardt’s
representation by introducing the concept of Diagrammatic Objects in our dia-
grams, defined as the primary entities being described in the diagram. Examples
of objects include animals in the food web, the human body in an anatomy
diagram, and the sun in water cycle (Figure 1). The relationships within and be-
tween objects include intra-object, inter-object, and constituent-space relation-
ships. We represent a diagram with a Diagram Parse Graph (DPG), in which
nodes correspond to constituents and edges correspond to relationships between
the constituents. We model four types of constituents: Blobs (Illustrations), Text
Boxes, Arrows, and Arrow Heads.2 We also model ten classes of relationships
summarized in Table 1. Figure 6 shows some DPGs in our dataset.

4 Syntactic Diagram Parsing

Syntactic diagram parsing is the problem of learning to map diagrams into DPGs.
Specifically, the goal is to detect and recognize constituents and their syntactic
relationships in a diagram and find the DPG that best explains the diagram. We
first generate proposals for nodes in the DPG using object detectors built for
each constituent category (Section 7.1). We also generate proposals for edges in
the DPG by combining proposal nodes using relationship classifiers (Section 7.2).

2 Separating arrow heads from arrow tails enables us to represent arrows with a single
head, multiple heads or without heads in a uniform way.
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Fig. 2. An overview of the Dsdp-Net solution to inferring DPGs from diagrams. The
LSTM based network exploits global constrains such as overlap, coverage, and layout
to select a subset of relations amongst thousands of candidates to construct a DPG.

Given sets of noisy node and edge proposals, our method then selects a subset
of these to form a DPG by exploiting several local and global cues.

The constituent and relationship proposal generators result in several hun-
dred constituent proposals and several thousand relationship proposals per dia-
gram. These large sets of proposals, the relatively smaller number of true nodes
and edges in the truth DPG and the rich nature of the structure of our DPGs,
makes the search space for possible parse graphs incredibly large. We observe
that forming a DPG amounts to choosing a subset of relationships among the
proposals. Therefore, we propose a sequential formulation to this task that adds
a relationship and its constituents at every step, exploiting local cues as well as
long range global contextual cues using a memory-based model.

Model. We introduce a Deep Sequential Diagram Parser (Dsdp-Net). Figure 2
depicts an unrolled illustration of Dsdp-Net. Central to this is a stacked Long
Short Term Memory (LSTM) recurrent neural network [17] with fully connected
layers used prior to, and after the LSTM. Proposal relationships are then se-
quentially fed into the network, one at every time step, and the network predicts
if this relationship (and its constituents) should be added to the DPG or not.
Each relationship in our large candidate set is represented by a feature vector,
capturing the spatial layout of its constituents in image space and their detection
scores (more details in Section 7.3).

Training. LSTM networks typically require large amounts of training data. We
provide training data to the Dsdp-Net in the form of relationship sequences
sampled from training diagrams. For each training diagram, we sample relation-
ship sequences using sampling without replacement from thousands of relation-
ship candidates, utilizing the relationship proposal scores as sampling weights.
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For each sampled sequence, we sequentially label the relationship at every time
step by comparing the generated DPG to the groundtruth DPG.3

The Dsdp-Net is able to model dependencies between nodes and edges se-
lected at different time steps in the sequence. It chooses relationships with large
proposal scores but also learns to reject relationships that may lead to a high
level of spatial redundancy or an incorrect structure in the layout. It also works
well with a variable number of candidate relationships per diagram. Finally, it
learns to stop adding relationships once the entire image space has been covered
by the nodes and edges already present in the graph.

Test. At test time, relationships in the candidate set are sorted by their proposal
scores and presented to the network. Selected relationships are then sequentially
added to form the final DPG.

5 Semantic Interpretation

DPGs represent the syntactic relationships between constituents of a diagram.
They, however, do not encode the semantics of constituents and relationships.
For example, the corresponding DPG in Figure 4 indicates that tree and mule

deer are related via in Inter-Object Linkage relationship, but it does not rep-
resent that the arrow corresponds to consuming. Constituents and relationships
with a similar visual representation may have different semantic meanings in
different diagrams. For example, the Inter-Object Linkage relationship can be
interpreted as consuming in food webs and as evaporation in water cycles. More-
over, diagrams typically depict complex phenomena and reasoning about these
phenomena goes beyond the tasks of matching and interpretation. For example,
answering the question in Figure 4 requires parsing the relationship between
trees and deer, grounding the linkage to the act of consuming and reasoning
about the effects of consumption on the populations of flora and fauna.

In order to evaluate the task of reasoning about the semantics of diagrams,
we study semantic interpretation of diagrams in the context of diagram question
answering. This is inspired by evaluation paradigms in school education sys-
tems and the recent progress in visual and textual question answering. Studying
semantic interpretation of diagrams in the context of question answering also
provides a well-defined problem definition, evaluation criteria, and metrics.

Diagram Question Answering. A diagram question consists of a diagram d
in raster graphics, a question sentence q, and multiple choices {c1 . . . c4}. The
goal of question answering is to select a single correct choice ck given d and q
(example questions in Figure 7.)

We design a neural network architecture (called Dqa-Net) to answer dia-
grammatic questions. The main intuition of the network is to encode the DPG
into a set of facts and learn an attention model to find the closest fact to the

3 A relationship labeled with a positive label in one sampled sequence may be la-
beled with a negative label in another sequence due to the presence of overlapping
constituents and relationships in our candidate sets.
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Fig. 3. An overview of the Dqa-Net solution to diagram question answering. The
network encodes the DPG into a set of facts, learns to attend on the most relevant
fact, given a question and then answers the question.

question. For example, Figure 7 shows facts that Dqa-Net has selected to an-
swer questions. More formally, Dqa-Net consists of the following components:
(a) a question embedding module that takes the question q and a choice ck, k ∈
{1 . . . 4} to build a statement sk and uses an LSTM to learn a d-dimensional
embedding of the statement sk ∈ Rd; (b) a diagram embedding module that
takes the DPG, extracts M relations mi, i ∈ {1 . . .M} from DPG, and uses an
LSTM to learn a d-dimensional embedding of diagram relations mi ∈ Rd; (c)
an attention module that learns to attend to the relevant diagram relations by
selecting the best statement choice that has a high similarity with the relevant
diagram relations. For every statement sk, our model computes a probability
distribution over statement choices by feeding the best similarity scores between
statements and diagram relations through a softmax layer.

γk = max
i
sTk ·mi, ŷ = softmaxk(γk) =

exp(γk)∑
k′ exp(γk′)

We use cross entropy loss to train our model: L(θ) = H(y, ŷ) = −
∑

k yk log ŷk.
More details about the parameters can be found in Section 7.4.

6 Dataset

We build a new dataset (named AI2 Diagrams (AI2D)), to evaluate the task of
diagram interpretation. AI2D is comprised of about 5000 diagrams representing
topics from grade school science, each annotated with constituent segmentations
and their relationships. In total, AI2D contains more than 118K constituents
and 53K relationships. The dataset is also comprised of more than 15000 multiple
choice questions associated to the diagrams. We divide the AI2D dataset into a
train set with about 4000 images and a blind test set with about 1000 images
and report our numbers on this blind test set.

The images are collected by scraping Google Image Search with seed terms
derived from the chapter titles in Grade 1-6 science textbooks. Each image is
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Fig. 4. An image from the AI2D dataset showing some of its rich annotations.

annotated using Amazon Mechanical Turk (AMT). Annotating each image with
rich annotations such as ours, is a rather complicated task and must be broken
down into several phases to maximize the level of agreement between turkers.
Also, these phases need to be carried out sequentially to avoid conflicts in the
annotations. The phases involve (1) annotating low-level constituents, (2) cate-
gorizing text boxes into one of four categories: relationship with the canvas, rela-
tionship with a diagrammatic element, intra-object and inter-object relationship,
(3) categorizing arrows into one of three categories: intra-object, inter-object re-
lationship or neither, (4) labelling intra-object linkage and inter-object linkage
relationships. For this step, we display arrows to turkers and have them choose
the origin and destination constituents in the diagram, (5) labelling intra-object
label, intra-object region label and arrow descriptor relationships. For this pur-
pose, we display text boxes to turkers and have them choose the constituents
related to it, and finally (6) multiple choice questions with answers, representing
grade school science questions are then obtained for each image. Figure 4 shows
some of the rich annotations obtained for an image in the dataset.

7 Experiments

We describe methods used to generate constituent and relationship proposals
with evaluations 4. We also evaluate our introduced model Dsdp-Net for syntac-

4 Constituent CNN models and Dsdp-Net built using Keras [11], Dqa-Net built
using TensorFlow [1] and Random Forest models built using Scikit-learn [30].
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tic parsing of diagrams that forms DPGs with comparisons to several baselines.
Finally, we evaluate the proposed diagram question answering model Dqa-Net
and compare with standard visual question answering approaches.

7.1 Generating Constituent Proposals

Diagram Canvas: A diagram consists of multiple constituents overlaid onto
a canvas, which may be uniformly colored, textured or have a blended image.
We classify every pixel in the diagram into canvas vs constituent. We build non-
parametric kernel density estimates (KDE) in RGB, texture and entropy spaces
to generate features for a Random Forest (RF) classifier with 100 trees to obtain
an Average Precision (AP) of 0.9142.
Detecting blobs: Blobs exhibit a large degree of variability in their size, shape
and appearance in diagrams, making them challenging to model. We combine
segments at multiple levels of a segmentation hierarchy, obtained using Mul-
tiscale Combinatorial Grouping (MCG) [6] with segments produced using the
canvas probability map to produce a set of candidates. Features capturing the
location, size, central and Hu moments, etc. are provided to an RF classifier
with 100 trees. Baselines. We evaluated several object proposal approaches in-
cluding Edge Boxes [57], Objectness [2] and Selective Search [47]. Since these
are designed to work on natural images, they do not provide good results on
diagrams. We compare the RF approach to Edge Boxes, the most suitable of
these methods, since it uses edge maps to propose objects and relies less on col-
ors and gradients observed in natural images. Results. Our approach produces
a significantly higher AP of 0.7829 compared to 0.02 (Figure 5(a)).
Detecting arrow tails: Arrow tails are challenging to model since they are
easily confused with other line segments present in the diagram and do not
always have a corresponding arrow head to provide context. We generate pro-
posal segments using a three pronged approach. We obtain candidates using the
boundary detection method in [21], Hough transforms and by detecting parallel
curved edge segments in a canny edge map; and recursively merge proximal seg-
ments that exhibit a low residual when fit to a 2nd degree polynomial. We then
train a 2 class Convolutional Neural Network (CNN) resembling VGG-16[39],
with a fourth channel appended to the standard 3 channel RGB input. This
fourth channel specifies the location of the arrow tail candidate smoothed with
a Gaussian kernel of width 5. All filters except the ones for the fourth input
channel at layer 1 are initialized from a publicly available VGG-16 model. The
remaining filters are initialized with random values drawn from a Gaussian dis-
tribution. We use a batch size of 32 and a starting learning rate (LR) of 0.001.
Results. Figure 5(b) shows the PR curve for our model with an AP of 0.6748.
We tend to miss arrows that overlap significantly with more than three other
arrows in the image as well as very thick arrows that are confused for blobs.
Detecting arrow heads: Arrow head proposals are obtained by a scanning
window approach over 6 scales and 16 orientations. RGB pixels in each window
undergo PCA followed by a 250 tree RF classifier. We then train a binary class
CNN resembling the standard architecture of AlexNet [23] and initialize using a
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Fig. 5. Precision Recall curves for constituent and relationship proposal generators.

publicly available model. We use a batch size of 128 and a starting LR of 0.001.
Results. Figure 5(c) shows the PR curves for our CNN model as well as the
first pass RF model. We miss arrow heads which are extremely small and some
which are present in poor quality images.
Detecting text: We use Microsoft Project Oxford’s Optical Character Recog-
nition (OCR) service [27] to localize and recognize text. To improve the perfor-
mance on single characters, we train a single character localizer using a CNN
having the same architecture as AlexNet[23]. We use three training resources:
(1) Chars74K (a character recognition dataset for natural images [8]), (2) a
character dataset obtained from vector PDFs of scientific publications and (3)
a set of synthetic renderings of single characters. The localized bounding boxes
are then recognized using Tesseract [43]. Results. Using Tesseract end-to-end
provides poor text localization results for diagrams with a 0.2 precision and a
0.46 recall. Our method improves the precision to 0.89 and recall to 0.75. Our
false negatives comprise of vertically oriented and curved text, cursive fonts and
unmerged multi-line blocks.

7.2 Generating Relationship Proposals

Relationship categories are presented in Table 1. Categories R1 through R6 relate
two or more constituents with one another. We compute features capturing the
spatial layout of the constituents with respect to one another as well as the
diagram space and combine them with constituent detection probabilities. A
100 trees RF classifier is trained for each category. At test time, we generate
proposal relationships from the large combinatorial set of candidate constituents
using a proximity based pruning scheme. Categories R7 through R10 relate a
single constituent with the entire image. We model each category using a non
parametric Kernel Density Estimate (KDE) in X,Y space. Results. Figure 5(d)
shows the PR curves for the relationships built using the RF classifier. The AP
for several of relationships is low, owing to the inherent ambiguity in classifying
relationships using local spatial decisions.

7.3 Syntactic Parsing: DPG Inference

Our model DSDP-Net: The introduced Dsdp-Net (depicted in Figure 2)
consists of a 2 layer stacked LSTM with each layer having a hidden state of
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Method Greedy Search A* Search Dsdp-Net

JIG Score 28.96 41.02 51.45

Method Q + I (VQA) Q Q + I (VQA) Q + OCR Q + I + OCR Dqa-Net

Train Set VQA AI2D AI2D AI2D AI2D AI2D

Accuracy 29.06 33.02 32.90 34.21 34.02 38.47

Table 2. Results: (top) Syntactic parsing (bottom) QA (Q:question, I:image)

dimensionality 512. The LSTM is preceded by two fully connected layers with
an output dimensionality of 64 and a Rectified Linear Unit (ReLu) [28] activation
function each. The LSTM is proceeded by a fully connected layer with a softmax
activation function. This network is trained using RMSProp [44] to optimize the
cross-entropy loss function. The initial learning rate is set to 0.0002.

Each candidate relationship is represented as a 92 dimensional feature vector
that includes features for each constituent in the relationship (normalized x,y
coordinates, detection score, overlap ratio with higher scoring candidates and the
presence of this constituent in relationships presented to the network at prior
time-steps) and features describing the relationship itself (relationship score and
the presence of tuples of candidates in relationships presented to the network at
previous time steps). We sample 100 relationship sequences per training image
to generate roughly 400000 training samples. At test time, relationships are
presented to the network in sorted order, based on their detection scores.

Baselines: Greedy Search: The first baseline is a greedy algorithm whereby
nodes and edges are greedily added to the DPG using their proposal scores. It
uses an exit model as a stopping condition. The exit model is trained to score
DPGs based on their distance to the desired completed DPG. To train the exit
model, we use features capturing the quality, coverage, redundancy and structure
of the nodes and edges in the DPGs and use 100 tree RF models.

A* Search: The second baseline is an A* search, which starts from an empty
DPG and sequentially adds nodes and edges according to a cost. We improve
upon the greedy algorithm by training a RF model that utilizes local and con-
textual cues to rank available constituents and relationships. The cost function
for each step is a linear combination of the RF score and the distance of the
resultant DPG to the desired complete DPG. We use the same exit model as
before to approximate the distance from the goal.

Direct Regression: We also trained a CNN to directly regress the DPG,
akin to YOLO [33]. This generated no meaningful results on our dataset.

Evaluation. To evaluate these methods, we compute the Jaccard Index between
the sets of nodes and edges in our proposed DPG and and the ground truth DPG.
We refer to this metric by the Jaccard Index for Graphs (JIG) score. The Jaccard
Index, which measures similarity between finite sample sets, is defined as the size
of the intersection divided by the size of the union of the sample sets.

Results. Table 2(top) shows the mean JIG scores, computed over the test set for
each method. The Dsdp-Net method outperforms both the Greedy Search



A Diagram Is Worth A Dozen Images 13

Di
ag
ra
m

Co
ns
tit
ue
nt
s

Di
ag
ra
m
	P
ar
se
	G
ra
ph

Bl
ob
s

Te
xt

Ar
ro
w
s

Fig. 6. Inferred DPGs using Dsdp-Net. The first row shows the diagram, the second
row shows the constituent segmentations and the third row shows the inferred DPGs.

and A* search by a considerable margin. This shows the importance of our
sequential formulation to use LSTMs for adding relationships to form DPGs.
Figure 6 shows qualitative examples of inferred DPGs using Dsdp-Net.

7.4 Diagram Question Answering

Our model DQA-Net: Dqa-Net uses GloVe [31] model pre-trained on 6B
tokens (Wikipedia 2014) to map each word to a 300D vector. The LSTM units
have 1 layer, 50 hidden units, and forget bias of 2.5. We place a 50-by-300 FC
layer between the word vectors and the LSTM units. The LSTM variables in all
sentence embeddings (relation and statement) are shared. The loss function is
optimized with stochastic gradient descent with batch size of 100. Learning rate
starts at 0.01 and decays by 0.5 every 25 epochs, for 100 epochs in total.
Baselines. We use the best model (LSTM Q+I) from [4] as the baseline. Similar
to the Dqa-Net setup, a question-answer pair is translated to a statement
and then passed through an LSTM into a 50D vector. The diagram is passed
through a pre-trained VGG-16 model [39] followed by an FC layer into a 50D
vector. We then compute the dot product between the statement and image
vectors, followed by a softmax layer. We use cross entropy loss and the same
optimization techniques as in Dqa-Net. We also perform an ablation study
using similar models but with just the question text (Q), question+image (Q+I)
(VQA) and question + image + outputs of an OCR system (Q+I+OCR).
Results. Table 2 (bottom) reports the accuracy of different methods on the test
set. Dqa-Net outperforms VQA, both when it is trained on the VQA dataset
as well as the AI2Ddataset. This shows that the DPG more effectively encodes
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The	diagram	depicts
The	life	cycle	of

a)	frog	 0.924
b)	bird 0.02
c)	insecticide 0.054
d)	insect 0.002

How	many	stages	of
Growth	does	 the	diagram
Feature?

a)	4	 0.924
b)	2 0.02
c)	3 0.054
d)	1 0.002

What	comes	before
Second	feed?

a)	digestion	 0.0
b)	First	feed 0.15
c)	indigestion 0.0
d)	oviposition 0.85

Fig. 7. Sample question answering results using Dqa-Net. The second column shows
the answer chosen and the third column shows the nodes and edges in the DPG that
Dqa-Net decided to attend to (indicated by red highlights).

high-level semantics of the diagrams, which are required to answer AI2D ques-
tions. Figure 7 shows examples of correctly answered questions by Dqa-Net.

8 Conclusion

We introduced the task of diagram interpretation and reasoning. We proposed
Dsdp-Net to parse diagrams and create DPGs that encode the syntactical in-
formation depicted in the diagram. We introduced Dqa-Net that learns to an-
swer diagram questions by attending to diagram relations encoded with DPGs.
Our experimental results show improvements of Dsdp-Net in parsing diagrams
compared to strong baselines. We also show that Dqa-Net outperforms stan-
dard VQA techniques in diagram question answering. Diagram interpretation
and reasoning raises new research questions that goes beyond natural image un-
derstanding. We release AI2D and our baselines to facilitate further research
in diagram understanding and reasoning. Future work involves incorporating
diagrammatic and commonsense knowledge in DQA.
Acknowledgements: This work is in part supported by ONR N00014-13-
1-0720, NSF IIS-1338054, NSF IIS-1616112, Allen Distinguished Investigator
Award and contracts from the Allen Institute for Artificial Intelligence.
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