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Abstract

We introduce G-CNN, an object detection technique
based on CNNs which works without proposal algorithms.
G-CNN starts with a multi-scale grid of fixed bounding
boxes. We train a regressor to move and scale elements
of the grid towards objects iteratively. G-CNN models the
problem of object detection as finding a path from a fixed
grid to boxes tightly surrounding the objects. G-CNN with
around 180 boxes in a multi-scale grid performs compara-
bly to Fast R-CNN which uses around 2K bounding boxes
generated with a proposal technique. This strategy makes
detection faster by removing the object proposal stage as
well as reducing the number of boxes to be processed.

1. Introduction
Object detection, i.e. the problem of finding the locations

of objects and determining their categories, is an intrinsi-
cally more challenging problem than classification since it
includes the problem of object localization. The recent and
popular trend in object detection uses a pre-processing step
to find a candidate set of bounding-boxes that are likely to
encompass the objects in the image. This step is referred
to as the bounding-box proposal stage. The proposal tech-
niques are a major computational bottleneck in state-of-the-
art object detectors [6]. There have been attempts [16, 14]
to take this pre-processing stage out of the loop but they
lead to performance degradations.

We show that without object proposals, we can achieve
detection rates similar to state-of-the-art performance in ob-
ject detection. Inspired by the iterative optimization in [2],
we introduce an iterative algorithm that starts with a reg-
ularly sampled multi-scale grid of boxes in an image and
updates the boxes to cover and classify objects. One step
regression can-not handle the non-linearity of the mapping
from a regular grid to boxes containing objects. Instead, we
introduce a piecewise regression model that can learn this
non-linear mapping through a few iterations. Each step in
our algorithm deals with an easier regression problem than
enforcing a direct mapping to actual target locations.

Figure 1: This figure shows a schematic illustration of our itera-
tive algorithm ”G-CNN”. It starts with a multi-scale regular grid
over the image and iteratively updates the boxes in the grid. Each
iteration pushes the boxes toward the objects of interest in the im-
age while classifying their category.

Figure 1 depicts an overview of our algorithm. Initially,
a multi-scale regular grid is superimposed on the image. For
visualization we show a grid of non-overlapping, but in ac-
tuality the boxes do overlap. During training, each box is
assigned to a ground-truth object by an assignment function
based on intersection over union with respect to the ground
truth boxes. Subsequently, at each training step, we regress
boxes in the grid to move themselves towards the objects in
the image to which they are assigned. At test time, for each
box at each iteration, we obtain confidence scores over all
categories and update its location with the regressor trained
for the currently most probable class.

Our experimental results show that G-CNN achieves the
state-of-the-art results obtained by Fast-RCNN on PASCAL
VOC datasets without computing bounding-box proposals.
Our method is about 5X faster than Fast R-CNN for detec-
tion.

2. Related Work

Prior to CNN: For many years the problem of object
detection was approached by techniques involving sliding
window and classification [22, 20]. Lampert et al. [12]
proposed an algorithm that goes beyond sliding windows
and was guaranteed to reach the global optimal bounding
box for an SVM-based classifier. Implicit Shape Models
[13, 15] eliminated sliding window search by relying on
key-parts of an image to vote for a consistent bounding box
that covers an object of interest. Deformable Part-based



Models [4] employed an idea similar to Implicit Shape
Models, but proposed a direct optimization via latent vari-
able models and used dynamic programming for fast infer-
ence. Several extension of DPMs emerged [5, 1] until the
remarkable improvements due to the convolutional neural
networks was shown by [7].

CNN age: Deep convolutional neural networks (CNNs)
are the state-of-the-art image classifiers and successful
methods have been proposed based on these networks [11].
Driven by their success in image classification, Girshick et
al. proposed a multi-stage object detection system, known
as R-CNN [7], which has attracted great attention due to its
success on standard object detection datasets.

To address the localization problem, R-CNN relies on
advances in object proposal techniques. Recently, proposal
algorithms have been developed which avoid exhaustive
search of image locations [21, 24]. R-CNN uses these tech-
niques to find bounding boxes which include an object with
high probability. Next, a standard CNN is applied as fea-
ture extractor to each proposed bounding box and finally a
classifier decides which object class is inside the box.

The main drawback of R-CNN is the redundancy in com-
puting the features. Generally, around 2K proposals are
generated; for each of them, the CNN is applied indepen-
dently to extract features. To alleviate this problem, in SPP-
Net [9] the convolutional layers of the network are applied
only once for each image. Then, the features of each region
of interest are constructed by pooling the global features
which lie in the spatial support of the region. However,
learning is limited to fine-tuning the weights of fully con-
nected layers. This drawback is addressed in Fast-RCNN
[6] in which all parameters are learned by back propagating
the errors through the augmented pooling layer and pack-
ing all stages of the system, except generation of the object
proposals, into one network.

The generation of object proposals, in CNN-based de-
tection systems has been regarded as crucial. However, after
proposing Fast-RCNN, this stage became the bottleneck. To
make the number of object proposals smaller, Multibox[3]
introduced a proposal algorithm that outputs 800 bounding
boxes using a CNN. This increases the size of the final layer
of the CNN to 4096x800x5 and introduces a large set of ad-
ditional parameters. Recently, Faster-RCNN [17] was pro-
posed, which decreased the number of parameters; however
it needs to start from thousands of anchor points to propose
300 boxes.

In addition to classification, using a regressor for object
detection has been also studied previously. Before propos-
ing R-CNN, Szegedy et al. [19], modeled object detection
as a regression problem and proposed a CNN-based regres-
sion system. More recently, AttentionNet [23] is a single
category detection that detects a single object inside an im-
age using iterative regression. For multiple objects, the

model is applied as a proposal algorithm to generate thou-
sands of proposals and then is re-applied iteratively on each
proposal for single category detection, which makes detec-
tion inefficient.

Although R-CNN and its variants attack the problem us-
ing a classification approach, they employ regression as a
post-processing stage to refine the localization of the pro-
posed bounding boxes.

The importance of the regression stage has not received
as much attention as improving the object proposal stage
for more accurate localization. The necessity of an object
proposal algorithm in CNN based object detection systems
has recently been challenged by Lenc et al. [14]. Here, the
proposals are replaced by a fixed set of bounding boxes.
A set with a distribution derived from an object proposal
method is selected using a clustering technique. However,
for achieving comparable results, even more boxes need to
be used compared to R-CNN. Another recent attempt for re-
moving the proposal stage is Redmon et al. [16] which con-
ducts object detection in a single shot. However, the consid-
erable gap between the best detection accuracy of these sys-
tems and systems with an explicit proposal stage suggests
that the identification of good object proposals is critical to
the success of these CNN based detection systems.

3. G-CNN Object Detector
3.1. Network structure

G-CNN trains a CNN to move and scale a fixed multi-
scale grid of bounding boxes towards objects. The network
architecture for this regressor is shown in Figure 2. The
backbone of this architecture can be any CNN network (e.g.
AlexNet [11], VGG [18], etc.). As in Fast R-CNN and
SPP-Net, a spatial region of interest (ROI) pooling layer
is included in the architecture after the convolutional lay-
ers. Given the location information of each box, this layer
computes the feature for the box by pooling the global fea-
tures that lie inside the ROI. After the fully connected lay-
ers, the network ends with a linear regressor which outputs
the change in the location and scale of each current bound-
ing box, conditioned on the assumption that the box is mov-
ing towards an object of a class.

3.2. Training the network

Despite the similarities between the Fast R-CNN and G-
CNN architectures, the training goals and approaches are
different. G-CNN defines the problem of object detection
as an iterative search in the space of all possible bound-
ing boxes. G-CNN starts from a fixed multi-scale spatial
pyramid of boxes. The goal of learning is to train the net-
work so that it can move this set of initial boxes towards
the objects inside the image in S steps iteratively. This it-
erative behaviour is essential for the success of the algo-
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Figure 2: Structure of G-CNN regression network as well as an illustration of the idea behind the iterative training approach. The bounding
box at each step is shown by the blue rectangle and its target is represented by a red rectangle. The network is trained to learn the path
from the initial bounding box to its assigned target iteratively.

rithm. The reason is the highly non-linear search space of
the problem. In other words, although learning how to lin-
early regress boxes to far away targets is unrealistic, learn-
ing small changes in the search space is tractable. Sec-
tion 4.3 shows the importance of this step-wise training ap-
proach.

3.2.1 Loss function

G-CNN is an iterative method that moves bounding boxes
towards object locations in Strain steps. For this reason, the
loss function is defined not only over the training samples
but also over the iterative steps.

More formally, let B represent the four-dimensional
space of all possible bounding boxes represented by the co-
ordinates of their center, their width, and height. Bi ∈ B
is the i’th training bounding box. We use the superscript
1 ≤ s ≤ Strain to denote the variables in step ’s’ of the
G-CNN training, i.e. Bs

i is the position of the i’th training
bounding box in step s.

During training, each bounding box with an IoU higher
than a small threshold (0.2) is assigned to one of the ground
truth bounding boxes inside its image. The following many-
to-one function, A, is used for this assignment.

A(Bs
i ) = arg max

G∈Gi
IoU(B1

i ,G) (1)

where Gi = {Gi1 ∈ B, . . . ,Gin ∈ B}, is the set of ground
truth bounding boxes which lie in the same image as Bi.
IoU is the intersection over union measure. Note that B1

i

represents the position of the i’th bounding box in the ini-
tial grid. In other words, for each training bounding box,
the assignment is done in the initial training step and is not
changed during the training.

Since regressing the initial training bounding boxes to
their assigned ground truth bounding box can be highly non-
linear, we tackle the problem with a piece-wise regression
approach. At step s, we solve the problem of regressing Bs

i

to a target bounding box on the path from Bs
i to its assigned

ground truth box. The target bounding box is moved step
by step towards the assigned bounding box until it coincides
with the assigned ground truth in step Strain. The following
function is used for defining the target bounding boxes at
each step:

Φ(Bs
i ,G

∗
i , s) = Bs

i +
G∗i −Bs

i

Strain − s+ 1
(2)

where G∗i = A(Bs
i ) represents the assigned ground

truth bounding box to Bs
i . That is, at each step, the path

from the current representation of the bounding box to the
assigned ground truth is divided by the number of remain-
ing steps and the target is defined to be one unit away from
the current location.

G-CNN regression network outputs four values for each
class, representing the parameterized change for regressing
the bounding boxes assigned to that class. Following [7],
a log-scale shift in width and height and a scale invari-
ant translation is used to parametrize the relative change
for mapping a bounding box to its assigned target. This
parametrization is denoted by ∆(Bs

i ,T
s
i ), where Ts

i is the
assigned target to Bs

i computed by 2.
So the loss function for G-CNN is defined as follows:

L({Bi}Ni=1) =

Strain∑
s=1

N∑
i=1

[
I(B1

i 6∈ BBG)× (3)

Lreg(δsi,li −∆(Bs
i ,Φ(Bs

i ,A(Bs
i ), s)))

]



where δsi,li is the four-dimensional parameterized output
for class li representing the relative change in the represen-
tation of bounding box Bs

i . li is the class label of the as-
signed ground truth bounding box to Bi. Lreg is the regres-
sion loss function. The smooth l1 loss is used as defined in
[6]. I(.) is the indicator function which outputs one when
its condition is satisfied and zero otherwise. BBG represents
the set of all background bounding boxes.

During training, the representation of bounding box Bi

at step s, Bs
i , can be determined based on the actual output

of the network by the following update formula:

Bs
i = Bs−1

i + ∆−1(δs−1i,li
) (4)

where ∆−1 projects back the relative change in the posi-
tion and scale from the defined parametrized space into B.
However for calculating 4, the forward path of the network
needs to be evaluated during training, making training inef-
ficient. Instead, we use an approximate update by assuming
that in step s, the network could learn the regressor for step
s − 1 perfectly. As a result the update formula becomes
Bs

i = Φ(Bs−1
i ,G∗i , s− 1). This update is depicted in Fig-

ure 2.

3.2.2 Optimization

G-CNN optimizes the objective function in 3 with stochas-
tic gradient descent. Since G-CNN tries to map the bound-
ing boxes to their assigned ground-truth boxes in Strain

steps, we use a step-wised learning algorithm that optimizes
Eq. 3 step by step.

To this end, we treat each of the bounding boxes in the
initial grid together with its target in each of the steps as an
independent training sample i.e. for each of the bounding
boxes we have Strain different training pairs. The algorithm
first tries to optimize the loss function for the first step using
Niter iterations. Then the training pairs of the second step
are added to the training set and training continues step by
step. By keeping the samples of the previous steps in the
training set, we make sure that the network does not forget
what was learned in the previous steps.

The samples for the earlier steps are part of the training
set for a longer period of time. This choice is made since the
earlier steps determine the global search direction and have
a greater impact on the chance that the network will find
the objects. On the other hand, the later steps only refine
the bounding boxes to decrease localization error. Given
that the search direction was correct and a good part of the
object is now visible in the bounding box, the later steps
solve a relatively easier problem.

Algorithm 1 is the method for generating training sam-
ples from each bounding box during each G-CNN step.

Algorithm 1 G-CNN Training Algorithm

1: procedure TRAINGCNN
2: for 1 ≤ c ≤ Strain do
3: TrainTuples← {}
4: for 1 ≤ s ≤ c do
5: if s = 1 then
6: B1 ← Spatial pyramid grid of boxes
7: G∗ ← A(B1)
8: else
9: Bs ← Ts−1

10: end if
11: Ts ← Φ(Bs,G∗, s)
12: ∆s ← ∆(Bs,Ts)
13: Add (Bs,∆s) to TrainTuples
14: end for
15: Train G-CNN Niter iterations with TrainTuples
16: end for
17: end procedure

3.3. Fine-tuning

All models are fine-tuned from pre-trained models on
ImageNet. Following [6], we fine-tune all layers except
early convolutional layers (i.e. conv2 and up for AlexNet
and conv3 1 and up for VGG16). During training, mini-
batches of two images are used. At each step of G-CNN,
64 training samples are selected randomly from all possible
samples of the image at the corresponding step.

3.4. G-CNN Test Network

The G-CNN regression network is trained to detect ob-
jects in an iterative fashion from a set of fixed bounding
boxes in a multi-scale spatial grid. Likewise at test time, the
set of bounding boxes is initialized to boxes inside a spatial
pyramid grid. The regressor moves boxes towards objects
using the classifier score to determine which class regres-
sor to apply to update the box. The detection algorithm is
presented in Algorithm 2.

During the detection phase, G-CNN is run Stest times.
However, like SPP-Net and Fast R-CNN there is no need to
compute activations for all layers at every iteration. During
test time, we decompose the network into global and regres-
sion parts as depicted in Figure. 3. The global net contains
all convolutional layers of the network. On the other hand,
the regression part consists of the fully connected layers and
the regression weights. The input to the global net is the
image and the forward path is computed only once for each
image, outside the detection loop of Algorithm 2. Inside
the detection loop, we only operate the regression network,
which takes the outputs of the last layer of the global net as
input and produces the bounding box modifications.

This makes the computational cost of the algorithm com-
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Figure 3: Decomposition of the G-CNN network into global (up-
per) and regression part (lower) for detection after the training
phase. Global part is run only once to extract global features but
regression part is run at every iteration. This leads to a consider-
able speed up at test time.

parable to Fast R-CNN (without considering the object pro-
posal stage of Fast R-CNN). The global net is called once
in both Fast R-CNN and G-CNN. Afterward, Fast R-CNN
does Nproposal forward calculations of the regression net-
work (where Nproposal is the number of generated object
proposals for each image). G-CNN, on the other hand, does
this forward calculation Stest × Ngrid times (where Ngrid

is the number of bounding boxes in the initial grid). In sec-
tion 4.2, we show that for Stest = 5 and Ngrid ∼ 180,
G-CNN achieves comparable results to Fast R-CNN which
uses Nproposal ∼ 2K object proposals.

4. Experiments
4.1. Experimental Setup

We report results on the Pascal VOC 2007 and Pascal
VOC 2012 datasets. The performance of G-CNN is evalu-
ated with AlexNet [11] as a small and VGG16 [18] as a very
deep CNN structure. Following [7], we scale the shortest
side of the image to 600 pixels not allowing the longer side
of the image to be more than 1000 pixels. However, we al-
ways maintain the aspect ratio of the image, so the shortest
side might include fewer than 600 pixels. Each model is

Algorithm 2 Detection algorithm

1: Let f(.) be the feed-forward G-CNN regression network
2: Let c(.) be the classifier function
3: procedure DETECT
4: B1 ← Spatial pyramid grid of boxes
5: for 1 ≤ s ≤ Stest do
6: l← c(Bs)
7: δsl ← f(Bs)
8: Bs+1 ← Bs + ∆−1(δsl )
9: end for

10: Output BStest+1

11: end procedure

pre-trained with weights learned from the imagenet dataset.
In all the experiments, the G-CNN regression network

is trained on an initial overlapping spatial pyramid with
[2,5,10] scales (i.e. the bounding boxes in the coarsest level
are (imwidth/2, imheight/2) pixels etc.). During training,
we used [0.9,0.8,0.7] overlap for each spatial scale respec-
tively. By overlap of α we mean that the horizontal and
vertical strides are widthcell ∗ (1 − α) and heightcell ∗
(1 − α) respectively. However, during test time, as will
be shown in the following sections, overlaps of [0.7,0.5,0]
(non-overlapping grid at the finest scale) is sufficient to ob-
tain results comparable to Fast R-CNN. This leads to a grid
of almost 180 initial boxes at test time. The G-CNN regres-
sion network is trained for S = 3 iterative steps. According
to our experiments, no substantial improvement is achieved
by training the network for a larger number of steps.

4.2. Results on VOC datasets

The goal of G-CNN is to replace object proposals with
a fixed multi-scale grid of boxes. To evaluate this, we fix
the classifier in Algorithm 2 to the Fast R-CNN classifier
and compare our results to the original Fast R-CNN with
selective search proposal algorithm.

4.2.1 VOC 2007 dataset

Table 1 compares the mAP between G-CNN and Fast R-
CNN on the VOC2007 test set. AlexNet is used as the basic
CNN for all methods and models are trained on VOC2007
trainval set. G-CNN(3) is our method with three iterative
steps during test time. In this version, we used the same
grid overlaps used during training. This leads to a set of
around 1500 initial boxes. G-CNN(5) is our method when
we increase the number of steps at test time to 5 but reduce
the overlaps to [0.7,0.5,0] (see 4.1). This leads to around
180 boxes per image. According to the result, 180 boxes
is enough for G-CNN to surpass the performance of Fast
R-CNN, which uses around 2K selective search proposed
boxes. In the remainder of this paper, we use G-CNN to
refer to the G-CNN(5) version of our method.

Table 2 shows mAP for various methods trained on
VOC2007 trainval set and tested on VOC2007 test set. All
methods used VGG16. The results validate our claim that
G-CNN effectively moves its relatively small set of boxes
toward objects. In other words, there seems to be no advan-
tage to employing the larger set of selective search proposed
boxes for detection in this dataset.

4.2.2 VOC 2012 dataset

The mAP for VOC2012 dataset is reported in Table 3.
All methods use VGG16 as their backbone. Methods are
trained on trainval set and tested on the VOC2012 test set.
The results of our method are obtained using the ”comp4”



Table 1: Average Precision on VOC 2007 test data. Both Fast R-CNN and our methods use AlexNet CNN structure. Models are trained
using VOC 2007 trainval set.

VOC 2007 aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

FR-CNN [6] 66.4 71.6 53.8 43.3 24.7 69.2 69.7 71.5 31.1 63.4 59.8 62.2 73.1 65.9 57 26 52 56.4 67.8 57.7 57.1
G-CNN(3) [ours] 63.2 68.9 51.7 41.8 27.2 69.1 67.7 69.2 31.8 60.6 60.8 63.9 75.5 67.3 54.9 26.1 51.2 57.2 69.6 56.8 56.7
G-CNN(5) [ours] 65 68.5 52 44.9 24.5 69.3 69.6 68.9 34.6 60.3 58.1 64.6 75.1 70.5 55.2 28.5 50.7 56.8 70.2 56.1 57.2

Table 2: Average Precision on VOC 2007 Test data. All reported methods used VGG16. Models are trained using VOC 2007 trainval set.

VOC 2007 aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

SPPnet BB[9] 73.9 72.3 62.5 51.5 44.4 74.4 73.0 74.4 42.3 73.6 57.7 70.3 74.6 74.3 54.2 34.0 56.4 56.4 67.9 73.5 63.1
R-CNN BB[8] 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0
FR-CNN[6] 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8 66.9
G-CNN[ours] 68.3 77.3 68.5 52.4 38.6 78.5 79.5 81 47.1 73.6 64.5 77.2 80.5 75.8 66.6 34.3 65.2 64.4 75.6 66.4 66.8

evaluation server with the parameters mentioned in 4.1 and
the results of other methods are obtained from their papers.

G-CNN obtains almost the same result as Fast R-CNN
when both methods are trained on VOC 2012 trainval. Al-
though in this table the best-reported mAP for Fast RCNN
is slightly higher than G-CNN, it should be noted that unlike
G-CNN, Fast R-CNN used the VOC 2007 test set as part of
its training. It is worth noting that all methods except YOLO
use proposal algorithms with high computational complex-
ity. Compared to YOLO, which does not use object pro-
posals, our method has a considerably higher mAP. To the
best of our knowledge, this is the best-reported result among
methods without an object proposal stage.

4.3. Stepwise training matters

G-CNN uses a stepwise training algorithm and defines
its loss function with this goal. In this section, we inves-
tigate the question of how important this stepwise training
is and whether it can be replaced by a simpler, single step
training approach.

To this end, we compare G-CNN with two simpler it-
erative approaches in table 4. First we consider the iter-
ative version of Fast R-CNN (IF-RCNN). In this method,
we use the regressor trained with Fast R-CNN in our itera-
tive framework. Clearly, this regressor was not designed for
grid-based object detection, but for small post-refinement of
proposed objects.

Also, we consider a simpler algorithm for training the
regressor for a grid-based detection system. Specifically,
we collect all training tuples created in different steps of G-
CNN and train our regressor in one step on this training set.
So the only difference between G-CNN and this method is
stepwise training. We call this method 1Step-Grid.

All methods are trained on VOC 2007 trainval set and
tested on VOC 2007 test set and AlexNet is used as the core
CNN structure. All methods are applied five iterations dur-
ing test time to the same initial grid. Table 4 shows the
comparison among the methods and Figure 4 compares IF-
RCNN and G-CNN for different numbers of iterations.
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Figure 4: Mean average precision on VOC2007 test set vs. num-
ber of regression steps for G-CNN and IF-RCNN. Both methods
use AlexNet and trained on VOC2007 trainval.

The results show that step-wise training is crucial to the
success of G-CNN. Even though the training samples are
the same for G-CNN and 1Step-Grid, G-CNN outperforms
it by a considerable margin.

4.4. Analysis of the detection results

G-CNN removes the proposal stage from CNN-based
object detection networks. Since the object proposal stage
is known to be important for achieving good localization
in CNN-based techniques, we compare the localization of
G-CNN with Fast R-CNN.

To this end, we use the powerful tool of Hoeim et al.
[10]. Figure 5 shows the distribution of top-ranked false
positive rates for G-CNN, Fast R-CNN and the 1Step-Grid
approach defined in the previous subsection. Comparing
the distributions for G-CNN and Fast R-CNN, it is clear
that removing the proposal stage from the system using our
method did not hurt the localization and for the furniture
class, it slightly improved the FPs due to localization error.
Note that 1Step-Grid is trained on the same set of training
tuples as G-CNN. However, the higher rate of false positives
due to localization in 1Step-Grid is another indication of the
importance of G-CNN’s multi-step training strategy.



Table 3: Average Precision on VOC2012 test data. All reported methods used VGG16. The training set for each image is mentioned in
the second column (12 stands for VOC2012 trainval, 07+12 represents the union of the trainval of VOC2007 and VOC2012, and 07++12
is the union of VOC 2007 trainval, VOC 2007 test and VOC 2012 trainval. The * emphasises that our method is trained on fewer data
compared to FR-CNN trained on 07++12 training data)

VOC 2012 train aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

R-CNN BB[8] 12 79.6 72.7 61.9 41.2 41.9 65.9 66.4 84.6 38.5 67.2 46.7 82.0 74.8 76.0 65.2 35.6 65.4 54.2 67.4 60.3 62.4
YOLO[16] 12 71.5 64.2 54.1 35.3 23.3 61.0 54.4 78.1 35.3 56.9 40.9 72.4 68.6 68.0 62.5 26.0 51.9 48.8 68.7 47.2 54.5
FR-CNN[6] 12 80.3 74.7 66.9 46.9 37.7 73.9 68.6 87.7 41.7 71.1 51.1 86.0 77.8 79.8 69.8 32.1 65.5 63.8 76.4 61.7 65.7
FR-CNN[6] 07++12 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2 68.4
G-CNN [ours] 12 82 74 68.2 49.5 38.9 74.4 68.9 85.4 40.6 70.9 50 85.5 77 77.4 67.9 33.7 67.6 60 77.6 60.8 65.5
G-CNN [ours] 07+12 82 76.1 69.3 49.9 40.1 75.2 69.5 86.3 42.3 72.3 50.8 84.7 77.8 77.2 68 38.1 68.4 59.8 79.1 61.9 66.4*

Table 4: Comparison among different strategies for grid-based object detection trained on VOC2007 trainval. All methods used AlexNet.

VOC 2007 aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

IF-RCNN 51.3 67.1 51.6 33.7 26.2 67.8 66.3 70.3 31.5 56.3 55.9 62.6 74.7 64.6 55.6 22.2 46.5 54.3 67.4 55 54.1
1Step-Grid 59.6 63.3 52.4 40.2 20.9 68.1 67.1 68.6 29.7 59.6 62.1 63 70.7 64 53.2 23.4 50.1 56 63.5 53.9 54.5
G-CNN [ours] 65 68.5 52 44.9 24.5 69.3 69.6 68.9 34.6 60.3 58.1 64.6 75.1 70.5 55.2 28.5 50.7 56.8 70.2 56.1 57.2
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(a) G-CNN
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(b) Fast R-CNN

furniture

total false positives
25 50 100 400 3200pe

rc
en

ta
ge

 o
f e

ac
h 

ty
pe

0

20

40

60

80

100
Loc
Sim
Oth
BG

(c) 1Step-Grid

Figure 5: The distribution of top-ranked types of false positives
(FPs). FPs are categorized into four different subcategories. The
diagram shows the change in the distribution of these types when
more FPs with decreasing scores are considered. Loc represents
those FPs caused by poor localization (a duplicate detection or
detection with IoU between 0.1 and 0.5). Sim shows those coming
from confusion with one of the similar classes. BG stands for FPs
on background and Oth represents other sources.

4.5. Qualitative results

Figure 6 shows some of the paths found by G-CNN in the
space of bounding boxes starting from an initial grid with
three scales. This example shows how G-CNN is capable
of changing the position and scale of the boxes to fit them
to different objects. The first four rows show successful
examples while the last ones show failure examples.

4.6. Detection run time

Here we compare the detection time of our algorithm
with Fast R-CNN. For both methods, we used the truncated
SVD technique proposed in [6] and compressed fc6 and fc7
layers by keeping their top 1024 singular values and 256

singular values respectively. Timings are performed on a
system with two K40 GPUs. The VGG16 network struc-
ture is used for both detection techniques and G-CNN uses
the same classifier as Fast R-CNN.

We used Selective Search proposal to generate around
2K bounding boxes as suggested by [6]. This stage takes
1830 ms to complete on average (selective search algorithm
is not implemented in GPU mode). Fast R-CNN itself takes
220 ms on average for detecting objects. This leads to a
total detection time of 2050 ms/im.

On the other hand, G-CNN does not need any object pro-
posal stage. However, it iterates S=5 times with a grid of
around 180 boxes. The global part of the network (See 3.4)
takes 188 ms for each image. Each iteration of the segmen-
tation network takes 35 ms. The classification network can
be run in parallel. This would lead to a detection time of
363 ms/im (around 3 fps) in total.

5. Conclusion
We proposed G-CNN, a CNN-based object detection

technique which models the problem of object detection
as an iterative search in the space of all possible bounding
boxes. Our model starts from a grid of fixed boxes regard-
less of the image content and migrates them to objects in
the image. Since this search problem is nonlinear, we pro-
posed a piece-wise regression model that iteratively moves
boxes towards objects step by step. We showed how to learn
the CNN architecture in a stepwise manner. The main con-
tribution of the proposed technique is removing the object
proposal stage from the detection system, which is the cur-
rent bottleneck for CNN-based detection systems. G-CNN
is 5X faster than ”Fast R-CNN” and achieves comparable
results to state-of-the-art detectors.
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Figure 6: A sample of paths G-CNN found towards objects in the VOC2007 test set using AlexNet CNN structure. The first four rows
show some success examples while the last rows show some failure cases. The most common failures of G-CNN can be categorized into
the following sub-categories: false firing of the classifier on similar objects (first three failure cases in the fifth row where G-CNN fits into
picture frames instead of monitors); bad localization due to similar objects with high overlaps (next three examples); false firing of the
classifier on small boxes (last two cases in the sixth row); localization error due to hard pose of the object or small initial box compared to
the actual size of the object (examples in the last row)
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