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Abstract

Large-scale annotated datasets allow AI systems to learn from
and build upon the knowledge of the crowd. Many crowd-
sourcing techniques have been developed for collecting im-
age annotations. These techniques often implicitly rely on
the fact that a new input image takes a negligible amount of
time to perceive. In contrast, we investigate and determine
the most cost-effective way of obtaining high-quality multi-
label annotations for temporal data such as videos. Watch-
ing even a short 30-second video clip requires a significant
time investment from a crowd worker; thus, requesting mul-
tiple annotations following a single viewing is an important
cost-saving strategy. But how many questions should we ask
per video? We conclude that the optimal strategy is to ask
as many questions as possible in a HIT (up to 52 binary
questions after watching a 30-second video clip in our ex-
periments). We demonstrate that while workers may not cor-
rectly answer all questions, the cost-benefit analysis neverthe-
less favors consensus from multiple such cheap-yet-imperfect
iterations over more complex alternatives. When compared
with a one-question-per-video baseline, our method is able
to achieve a 10% improvement in recall (76.7% ours versus
66.7% baseline) at comparable precision (83.8% ours versus
83.0% baseline) in about half the annotation time (3.8 min-
utes ours compared to 7.1 minutes baseline). We demonstrate
the effectiveness of our method by collecting multi-label an-
notations of 157 human activities on 1,815 videos.

Introduction
Large-scale manually annotated datasets such as Ima-
geNet (Deng et al. 2009) led to revolutionary development
in computer vision technology (Krizhevsky, Sutskever, and
Hinton 2012). In addition to playing a critical role in ad-
vancing computer vision, crowdsourced visual data annota-
tion has inspired many interesting research questions: How
many exemplars are necessary for the crowd to learn a
new visual concept (Patterson et al. 2015)? How can im-
age annotation be gamified (Von Ahn and Dabbish 2004;
von Ahn, Liu, and Blum 2006)? How can we provide
richer annotators in the form of visual attributes (Patter-
son et al. 2014) or object-object interactions (Krishna et al.
2016b)? How can we exhaustively annotate all visual con-
cepts present in an image (Deng et al. 2014)?
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Figure 1: Exhaustively annotating time data has some fun-
damental differences from image data, and requires different
strategies to annotate at scale. In this work we explore the
cost-optimal strategies for annotating videos.

Much of the work on visual data annotation has focused
on images, but many real-world applications require anno-
tating and understanding video rather than image data. A
worker can understand an image in only few hundred mil-
liseconds. (Thorpe et al. 1996). Naı̈vely applying image an-
notation techniques to data that takes a worker longer to un-
derstand, such as data involving time, is prohibitively ex-
pensive. Developing effective strategies for temporal anno-
tation is important for multiple domains that require watch-
ing, listening, or reading: musical attributes or emotion on
songs (Li and Ogihara 2003), news article topics (Schapire
and Singer 2000), sentiment analysis (Turney 2002), web
page categorization (Ueda and Saito 2002), and video activ-
ity recognition (Karpathy et al. 2014).

In this work, we are interested in the following annota-
tion task illustrated in Figure 1: given a video and a set of
visual concepts (such as a set of objects or human actions or
interesting events), label whether these concepts are present
or absent in the video. Efforts such as Glance (Lasecki et al.
2014) focus on quickly answering a question about a video
by parallelizing the work across the crowd workforce in 30-
second video clips. They are able to get results in near real-
time, allowing for interactive video annotation. In contrast,
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we are interested in annotating a large-scale video dataset
where multiple questions (known apriori) need to be an-
swered about each video. Even for a short 30-second video
clip, it takes at least 15 seconds at double speed for an anno-
tator to watch the video; thus, asking only a single question
at a time is highly inefficient. Efforts such as (Deng et al.
2009; Bragg, Weld, and others 2013) explore multi-label an-
notation of images but cannot be directly applied to temporal
video data because of this inefficiency.

We thus ask: how many questions should we ask work-
ers when annotating a video? We know from psychology re-
search that only on the order of 7 concepts can be kept in
short-term memory at a time (Miller 1956). However, our
results demonstrate asking many more questions at a time
in a single Human Intelligence Task (HIT) can be signifi-
cantly more efficient. In particular, we demonstrate that ask-
ing as many questions as possible, up to 52 questions at a
time about a 30-second video in our experiments, provides
an optimal tradeoff between accuracy and cost. When com-
pared with a one-question-at-a-time baseline, our method
achieves a 10% improvement in recall (76.7% ours versus
66.7% baseline) at comparable precision (83.8% ours ver-
sus 83.0% baseline) in about half the annotation time (3.8
minutes ours compared to 7.1 minutes baseline). We empir-
ically verify that our conclusions hold for videos of multiple
lengths, explore several strategies for reducing the cognitive
load on the workers in the context of video annotation and
demonstrate the effectiveness of our method by annotating
a new video dataset which can be used for computer vision
research on human action detection.

Related Work

Video annotation applications. Video understanding is im-
portant for many applications ranging from behavior stud-
ies (Coan and Allen 2007) to surveillance (Salisbury, Stein,
and Ramchurn 2015) to autonomous driving (Geiger, Lenz,
and Urtasun 2012). Large-scale annotated computer vision
video datasets (Gorban et al. 2015; Soomro, Roshan Za-
mir, and Shah 2012; Kuehne et al. 2011; Caba Heilbron et
al. 2015; Yeung et al. 2015) enable the development of al-
gorithms that are able to automatically process video col-
lections. However, the lack of large-scale multi-label video
datasets makes it difficult to study the intricate interactions
between objects and actions in the videos rather than focus-
ing on recognition of one or a handful of concepts.

Efficient video annotation. The key challenge in efficiently
annotating video is that it takes a significant time invest-
ment. Determining the absence of a concept in an im-
age takes on the order of seconds; in contrast, determin-
ing the absence of a concept in a video takes time pro-
portional to the length of the video. On the plus side,
there is a lot of temporal redundancy between subsequent
video frames, allowing for obtaining annotations only on
key frames and interpolating in between. Efforts such as
(Yuen et al. 2009; Vondrick, Patterson, and Ramanan 2013;
Vijayanarasimhan and Grauman 2012) exploit temporal re-
dundancy and present cost-effective video annotation frame-

works. The approaches of (Vondrick and Ramanan 2011;
Vijayanarasimhan and Grauman 2012; Fathi et al. 2011) and
others additionally incorporate active learning, where the an-
notation interfaces learns to query frames that, if annotated,
would produce the largest expected change in the estimated
object track. However, these methods combine human an-
notation with automatic computer vision techniques, which
causes several problems: (1) these techniques are difficult to
apply to challenging tasks such as activity recognition where
computer vision models lag far behind human ability; (2)
these methods are difficult to apply to scenarios where very
short or rare events, such as shoplifting, may be the most
crucial, and (3) the resulting hybrid annotations provide a
biased testbed for new algorithms.

Glance (Lasecki et al. 2014) focuses on parallelizing
video annotation effort and getting an answer to a single
question in real-time, but does not explore exhaustive video
annotation where multiple questions need to be answered.
Our work can be effectively combined with theirs: they par-
allelize annotation in 30-second video chunks, while we ex-
plore the most effective ways to obtain multiple labels si-
multaneously for every 30-second video.

Action recognition datasets. Some existing large-scale ac-
tion datasets such as EventNet (Ye et al. 2015) or Sports-
1M (Karpathy et al. 2014) rely on web tags to provide
noisy video-level labels; others like THUMOS (Gorban et
al. 2015) or MultiTHUMOS (Yeung et al. 2015) employ pro-
fessional annotators rather than crowdsourcing to label the
temporal extent of actions.

There are two recent large-scale video annotation ef-
forts that successfully utilize crowdsourcing. The first ef-
fort is ActivityNet (Heilbron and Niebles 2014) which uses
a proposal/verification framework similar to that of Ima-
geNet (Deng et al. 2009). They define a target set of actions,
query video search engines for proposal videos of those ac-
tions and then ask crowd workers to clean up the results.
The second effort (Sigurdsson et al. 2016) entirely crowd-
sources the creation of a video dataset: one worker writes
a video script containing a few target objects/actions, an-
other one acts out the script and films the video, and oth-
ers verify the work. In both these efforts, each video comes
pre-associated with one or a handful of action labels, and
workers are tasked with verifying these labels. In contrast,
we’re interested in the much more challenging problem of
multi-label video annotation beyond the provided labels.

Multi-label image annotation. Increasingly more complex
image annotations are provided in recent dataset (Bigham
et al. 2010; Lin et al. 2014; Krishna et al. 2016b). Multi-
label image annotation has been studied by e.g., (Von Ahn
and Dabbish 2004; Deng et al. 2014; Bragg, Weld, and oth-
ers 2013; Zhong et al. 2015; Noronha et al. 2011). We in-
corporate insights from these works into our video annota-
tion framework. We use a hierarchy of concepts to accel-
erate multi-label annotation following (Deng et al. 2014;
Bragg, Weld, and others 2013). Inspired by (Krishna et al.
2016a), we explore using cheap but error-prone annotation
interfaces over thorough but more expensive formulations.



Method for multi-label video annotation
We are given a collection of M videos and a set of N target
labels: for example, a list of target object classes, e.g., “cat,”
“table,” or “tree,” or a list of human actions, e.g., “reading
a book” or “running.” The goal is to obtain M × N binary
labels, corresponding to the presence or absence of each of
the N target concepts in each of the M videos. These labels
can then be used for a variety of applications from training
computer vision models (Karpathy et al. 2014) to studying
human behavior (Coan and Allen 2007).

We are particularly interested in situations where the label
space N is large: N = 157 in our experiments. As a result,
the key challenge is that workers are not able to remember all
N questions at the same time; however every time a worker
is required to watch a video of length L during annotation,
they have to invest an additional L seconds of annotation
time. We focus on video annotation in this work but our
findings may be applicable to any media (e.g., audio, text)
where a non-trivial amount of time L is required to process
each input.

Multiple question strategy
Our strategy is to ask all N target questions at the same time
about each video, even if N is much higher than the 7 con-
cepts that people can commit to short-term memory (Miller
1956). We randomize the order of questions and ask work-
ers to select only the concepts that occur within the video.
This naturally leads to lower recall r than if we ask only a
handful of questions that the workers would be more likely
to read carefully. However, there are two advantages.

Advantage #1: Low annotation times. Since only one
worker has to watch the video instead of asking N different
workers to watch the video and annotate one label each, this
recall r is obtained with relatively little time investment t.
This makes it a highly effective strategy combined with con-
sensus among multiple workers (Sheshadri and Lease 2013).
Given a fixed time budget T , we can repeat the annotation
process T

t times with different workers. Assume the workers
are independent and we count the concept as present in the
image if at least one worker annotates it. Then our expected
recall in T time is

ExpectedRecall = 1− (1− r)
T
t (1)

since each worker will miss a concept with 1 − r probabil-
ity, and a concept won’t be annotated only if all T

t workers
independently miss it.

Advantage #2: High precision. The M × N label matrix
is naturally sparse since most concepts do not occur in most
videos. When workers are faced with only a small handful
of concepts and none of them occur in the video, they get
nervous that they are not doing the task correctly. Then, they
are more likely to provide some erroneous positive labels.
However, when the workers are faced with many concepts
at the same time and asked to select the ones that occur in
the video, they find the task much more enjoyable. They get
satisfaction out of being able to spot several target concepts
that occur in the video and are less likely to erroneously se-
lect additional concepts.
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Check here if someone is interacting with broom in the video  
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and questions is balanced such that the task should take 3 minutes.

Make sure you fully and carefully watch each video so you do not miss anything.

This is important. 

It is possible that many of the actions in this HIT do not match. It is important to verify an

action is indeed not present in the video.

Check all that apply! If there is any doubt, check it anyway for good measure.

Read each and every question carefully. Do not take shortcuts, it will cause you to

miss something.
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Figure 2: Our multi-question video annotation interface.

Practical considerations
In designing an effective multi-question video annotation in-
terface shown in Figure 2, we incorporate insights from im-
age annotation (Deng et al. 2014) to reduce the space of N
labels and from video annotation (Lasecki et al. 2014) to
compress the video length L.

Semantic hierarchy. Following (Deng et al. 2014) we cre-
ate a semantic hierarchical grouping of concepts to simplify
the multi-label annotation. However, (Deng et al. 2014) use
the hierarchy differently. They ask one question at a time
about a matrix of images, e.g., “click on all images which
contain an animal.” They then ask a low-level question, e.g.,
“click on all images which contain a dog,” on a smaller ma-
trix of images which were positive for the prior question. In
contrast, we use the concept hierarchy similar to (Xiao et al.
2014) to simplify our annotation interface on a single video.

Playback speed. Videos of average length of 30 seconds are
played at 2x speed following (Lasecki et al. 2014). In this
way, worker time is not unnecessarily wasted but they are
able to perceive and accurately annotate the target concepts.

Instructions. Workers are instructed to carefully watch each
video to not miss anything, and check all concepts that apply.
Since most concepts do not occur in the video, workers are
asked to only check the boxes for the concepts that do occur
and to ignore the others. We verify this design choice in the
experiments below.



Experiments
We begin by describing the setup used to evaluate our
method, including steps taken to control for factors of vari-
ation across different crowdsourcing experiments. We then
present a series of smaller-scale experiments on 100-150
videos at a time investigating (1) the effects of varying the
number of questions in the annotation interface, and (2) the
effectiveness of strategies for reducing cognitive load on
workers during annotation. We conclude by bringing our
findings together and evaluating our large-scale multi-label
video annotation pipeline and the resulting dataset.

Data and evaluation setup
We use a recent large-scale video dataset (Sigurdsson et al.
2016) with a focus on common household activities. We use
a subset of 1,815 videos, on average 30.1 seconds long. The
target labels are 157 activity classes such as Someone is run-
ning and Putting a cup somewhere provided with the dataset.
The videos are associated with some labels apriori, similar
to ImageNet (Deng et al. 2009) and ActivityNet (Caba Heil-
bron et al. 2015). Figure 3 shows some examples. This
misses additional activities also present in the video, mak-
ing it difficult to evaluate computer vision algorithms and
to study interactions between different actions. We demon-
strate how to cost-effectively collect exhaustive annotations
for this dataset. The annotations have been released along
with the dataset.

Evaluating recall. We use the originally provided action la-
bels to evaluate the recall of our multi-label annotation al-
gorithms. There were on average 3.7 activities labeled per
video in this dataset. The activities follow a long-tailed dis-
tribution: some occur in as many as 1391 videos, others in
only 33. Each activity occurs in 42 videos on average.

Evaluating precision. Precision is more difficult to evalu-
ate since to the best of our knowledge no large-scale video
dataset is annotated with hundreds of visual concepts. An-
notating the videos in this dataset exhaustively in a straight-
forward way is prohibitively expensive, which is exactly
what we are trying to address in this work. We adopt a mid-
dle ground. After obtaining a set of candidate labels from
the annotators, we perform a secondary verification step. In
the verification task, workers have to annotate the temporal
extent of the action in the video or specify it is not present
in the video. This serves as an evaluation of the precision of
multi-label annotation. In addition, this provides temporal
action annotations which we will also publicly release.

Semantic hierarchy. The 157 target human activities are
grouped based on the object being interacted with to sim-
plify the annotation interface. The annotator first sees several
questions such as “Check here if someone is interacting with
a book in the video” or “Check here if someone is interacting
with shoes in the video.” If the annotator says yes someone
is interacting with a book, s/he will be asked to select one or
more of the types of interaction: closing a book? opening a
book? holding a book? putting a book somewhere?

We create 33 object groups, each group with 4.2 activities
on average. Additionally, 19 activities (such as Someone is

Watching/Looking outside a windowSitting at a table

Lying on a sofa/couch Sitting on a sofa/couchWatching television
Figure 3: Examples from the video dataset of (Sigurdsson et
al. 2016). The videos contain complex human activities that
require the annotator to carefully watch each video.

laughing, Someone is running somewhere) do not belong to
any group and are asked individually. Thus, we obtain 52
high-level questions which cover all of the label space; the
exact hierarchy is provided in the Appendix.

Crowdsourcing setup
During the study, 674 workers were recruited to finish 6,337
tasks on Amazon Mechanical Turk. We summarize some
key crowdsourcing design decisions here.

Quality control. Workers were restricted to United States,
with at least 98% approval rate from at least 1000 tasks. We
used recall, annotation time, and positive rate to flag outliers,
which were manually examined and put on a blacklist. To
maintain a good standing with the community all work com-
pleted without clear malice was approved, but bad workers
were prohibited from accepting further work of this type.

In Figure 4 the relationship between how much time an
individual worker spends on a task and quality of the anno-
tation is presented. We can see that apart from clear outliers,
there is no significant difference, and in this work we treat
the worker population as following the same distribution,
and focus on the time difference between different methods.

Uncontrolled factors. There are many sources of variation
in human studies, such as worker experience (we observed
worker quality increasing as they became more familiar with
our tasks) or time of day (full-time workers might primarily
be available during normal business hours). We attempted to
minimize such variance by deploying all candidate methods
at the same time within each experiment.

Payment. In order to verify our hypothesis that it is best
to ask multiple questions about a video simultaneously, we
need to evaluate interfaces with a varying number of ques-
tions per video. However, we want to maintain as much con-
sistency as possible outside of the factor we’re studying. We
use a single type of Human Intelligence Task (HIT) where
workers are provided with V videos and Q questions for
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Figure 4: Workers that spend more time answering questions
have marginally higher accuracy (Pearson’s correlation of
time with recall is 0.227 and with precision is 0.036). How-
ever this trend is so slight that we ignore it and instead focus
on improving the annotation workflow as a whole.

each video using the interface of Figure 2. When we increase
the number of questions Q per video, we decrease the num-
ber of videos V , and vice versa, to keep the expected anno-
tation effort consistent within the HIT.

To do this, we ran some preliminary experiments and an-
alyzed the average amount of time it takes to label a video
in our dataset with Q questions. Figure 5 shows the relation-
ship between number of questions Q and time. The least-
squares line of best fit to this data is

T = 14.1 + 1.15Q (2)

Thus it takes an average of 14.1 seconds to watch a video
and an additional 1.15 seconds to answer each question. This
is consistent with our expectations: an average video in our
dataset is 30.1 seconds long, which we play at double speed,
and binary questions take on the order of 1-2 seconds to an-
swer (Krishna et al. 2016b).

We varied the number of videos in each HIT using Equa-
tion 2 to target about 150 seconds of expected annotation
effort. We paid $0.40 per HIT, amounting to about $9.60 per
hour.

Multiple question interface. We report results on annotat-
ing the 157 activities using the 52-question semantic hierar-
chy.1 Our method solicits labels for all 52 questions and cor-
responding sub-questions in the same interface as shown in
Figure 2. When evaluating interfaces with a smaller number
of questions k, we partition the 52 questions into 52

k subsets
randomly. Multiple workers then annotate the video across
52
k tasks, and we accumulate the results.2 An iteration of an-

notation refers to a complete pass over the 52 questions for
each video. We can then directly compare the annotations
resulting from interfaces with different values of k.

Effect of varying the number of questions
So far we described the data, the evaluation metrics and the
crowdsourcing setup. We are now ready to begin experi-

1We additionally verified that all conclusions hold if we are in-
terested in only the 52 high-level activities as well.

2Some of the questions take longer than others, and thus some
subsets may take longer to annotate than others. However, we re-
port cumulative results after all subsets have been annotated and
thus the variations in time between the subsets is irrelevant.
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Figure 5: The relationship between number of questions in
the interface and the amount of time it takes. We use it
to maintain a consistent amount of annotation effort across
HITs while varying the number of questions in the interface.

menting with different annotation strategies.
We begin by varying the number of questions the workers

are asked after watching each video: from only 1 question
per video (very time-inefficient since 52 workers have to in-
dependently watch the video) up to all 52 questions at the
same time (potentially daunting for the workers). We run the
annotation experiment on 140 videos, and report the time,
recall and precision after one iteration of annotation, i.e., af-
ter workers have had a chance to answer all 52 questions
about each video using the different interfaces.

Advantages of asking multiple questions. There are two
advantages to asking multiple questions together rather than
one-at-a-time, as shown in Figure 6. The first advantage is
low annotation time: the time for one iteration of annotation
drastically decreases as a function of the number of ques-
tions. Concretely, it takes 8.61 minutes per video with the 1-
question interface versus only 1.10 minutes per video with
the 52-question interface. This is expected, as the time to
watch the video gets amortized.

The second advantage to asking multiple questions to-
gether is increased precision of annotation. Concretely,
while annotation precision is only 81.0% with the 1-question
interface, it rises up to 86.4% with the multiple 52-question
interface. When only one question per video is asked, almost
certainly all answers in a HIT will be negative, since only a
small subset of the target activities occur in each 30-second
video. Workers have reported being concerned when all an-
swers appear negative. We hypothesize that as a result, they
may erroneously answer positively if they have any suspi-
cions about the activity being present, which decreases the
precision of annotation in the 1-question interface.

Drawback of asking multiple questions. The one draw-
back of asking multiple questions is decreased recall. When
asked only one question per video, workers are able to
achieve 56.3% recall, whereas when asked all 52 questions
at once they only correctly identify labels with 45.0% re-
call. This is because it is challenging to keep 52 questions
in memory while watching the video or the entire video in
memory while answering the questions. Interestingly, Fig-
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Figure 6: Accuracy (left axis) and time (right axis) of annota-
tion as a function of the number of questions in the interface
(x-axis). While recall is higher with fewer questions, this is
at the cost of significantly higher annotation time.

1 3 5 7 11 18 26 52
Number of Questions

0.5
0.6
0.7
0.8
0.9
1.0

E
x
p

e
ct

e
d

 R
e
ca

ll

Figure 7: Expected recall given a fixed time budget (simu-
lated using Equation 2) for interfaces with a varying number
of questions. The budget is 8.61 minutes per video, enough
to run 1 iteration of annotation with the 1-question interface.

ure 6 shows a sharp drop in recall beyond 5-7 questions in
the interface, which is the number of concepts people can
keep in short-term memory (Miller 1956).

Fixing the drawback. Even though recall is lower when
asking multiple questions about a video, it is obtained in
significantly less annotation time. Given a fixed time bud-
get, we can compute the expected recall if we were to ask
multiple workers to do the annotation by referring back to
Equation 1. In particular, assume we are given 8.61 minutes
that it takes to fully annotate a video using the 1-question in-
terface. In this amount of time, we can ask at least 7 workers
to annotate it with the 52-question interface (since it only
takes 1.10 minutes per iteration). Figure 7 reports the ex-
pected recall achievable in 8.61 minutes using the different
interfaces. We conclude that the many-question interfaces
are better than the few-question interfaces not only in terms
of time and precision, but also in terms of recall for a fixed
time budget. We will revisit this in later experiments.

Worker behavior. Besides quantitatively evaluating the dif-
ferent interfaces according to the standard metrics, it is also
informative to briefly look into annotator behavior.

Figure 8 reports the number of interactions of workers
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Figure 8: The number of times workers paused or synced
the video (video) and the number of questions answered af-
firmatively after an iteration of annotation (questions) as a
function of the number of questions in the interface.

with the video: i.e., the number of times they pause or seek
the video. We observe that the interactions with the video
generally increase with the question count, suggesting that
workers may be watching the video more carefully when
asked more questions. Interestingly, however, with only a
single question the users seem to hurry through the video.

Figure 8 additionally reports the average number of ques-
tions answered affirmatively by the workers after an iteration
of annotation. As the number of questions in the interface in-
creases, the average number of affirmative answers after 52
questions have been answered decreases from 5.36 to 3.62.
We hypothesize that when multiple questions are presented
to the workers simultaneously, they feel satisfied once they
are able to answer a handful of them positively; when faced
with only a small number of questions, they feel increased
pressure to find more positive answers. This contributes to
both the increase in recall and the drop in precision.

Worker feedback. Finally, we asked workers to report their
enjoyment of the task on a scale of 1 (lowest) to 7 (highest).
Average enjoyment ranged from 5.0 to 5.3 across the differ-
ent interfaces, indicating that workers were equally pleased
with both few-question and many-question tasks.3

Targeting the UI for different number of questions
So far we investigated the effect that number of questions
have on the accuracy and efficiency of annotation, while
keeping all other factors constant. However, using the same
user interface and annotation workflow for different num-
bers of questions may not be optimal. For example workers
tend to worry when asked too many negative questions in a
row in an interface with a few questions, or may not read all
questions in detail in an interface with many questions.

In this section, we use the 3-question interface for the
few-questions setting, and the 26-question interface for the

3In our preliminary experiments we did not use Equation 2 to
control for the amount of work within each HIT; worker enjoyment
was then strongly inversely correlated with the amount of work.



many-questions setting. We run a series of experiments in-
vestigating strategies for improving the UI. We discover two
strategies for improving the few-questions interface and con-
clude that our many-questions interface is optimal.

Positive bias. When using the few-questions interface, most
answers within a HIT are expected to be negative since most
target activities are not present in the videos. This has two
undesirable effects: (1) workers may start paying less atten-
tion, and (2) workers may get nervous and provide erroneous
positive answers, lowering the annotation precision.

To overcome this, we duplicate questions known to be
positive and inject them such that approximately 33% of the
questions are expected to be positive. This forces the work-
ers to pay closer attention and be more active in the annota-
tion; on the downside, this increases the number of questions
per annotation from 52 to 78 including the duplicates.

In an experiment on 150 videos, injecting such positive
bias into the few-questions interface improves on all three
metrics: recall, precision and time of annotation. Recall in-
creases from 53.2% to 57.9% with positive bias,4 precision
increases slightly from 79.0% to 81.3% with positive bias,
and time for an iteration of annotation drops from 4.6 min-
utes to 3.6 minutes, likely because workers trust their work
more and thus are able to annotate faster. Workers also re-
port slightly higher enjoyment: on a scale of 1 (lowest) to 7
(highest), they report 5.8 enjoyment of the task with positive
bias versus 5.5 without. We incorporate positive bias into the
few-question interface in future experiments.

Grouping. Prior work such as (Deng et al. 2009) has demon-
strated that asking about the same visual concepts across
multiple images reduces the cognitive load on workers and
increases annotation accuracy. In our second experiment, we
apply the same intuition to videos: we randomly group ques-
tions together and make sure that all questions are the same
for all videos within a single HIT. Residual question not part
of the groups, and groups too small to fill a whole task were
discarded, but each question was presented both in the con-
text of grouping and not, for a fair comparison.

In the few-questions interface, grouping improves the pre-
cision and the time of annotation, albeit at a slight reduc-
tion in recall. Specifically, in an experiment on 100 videos,
precision increases from 77.7% to 81.4% when grouping is
added. Annotation time per iteration drops from 5.9 min-
utes to 5.1 minutes with grouping; however, recall also drops
from 70.4% to 67.2% with grouping. To determine if the
drop in recall is a concern, we refer back to Equation 1 to
compute the expected recall for a fixed time budget. In 5.9
minutes (enough for one iteration without grouping), we ex-
pect a recall of 72.3% with grouping, higher than 70.4%
recall without. Thus, we conclude that grouping is strictly
beneficial in the few-question setting as hypothesized, and
we use it in future experiments.

We also investigated the effect of grouping in the many-
question interface, but concluded it’s unhelpful. Recall with

4To maintain a fair comparison, answers to duplicate questions
are ignored during evaluation. Thus the time it takes to answer them
is also ignored when computing annotation time per iteration.

grouping is 55.2%, much lower than 62.0% without group-
ing. Even though annotation time is faster (1.4 minutes per
iteration with grouping compared to 1.6 minutes per itera-
tion without), this is not enough to compensate for the drop
in recall: the expected recall given a budget of 1.6 minutes
of annotation is still only 61.2% with grouping compared to
62.0% without. Further, precision is also lower with group-
ing: 79.0% with grouping compared to 80.2% without. We
hypothesize that this is because workers are not able to re-
member all 26 questions anyway, so grouping only provides
a false sense of security (as evidenced by the speedup in an-
notation time). We do not use grouping in the multi-question
interface in future experiments.

Video summary. Having discovered two strategies for im-
proving the few-question interface (positive bias and group-
ing), we turn our attention to strategies targetting the multi-
question setup. The main challenge in this setting is that
workers may be overwhelmed by the number of questions
and may not read them all carefully.

To better simulate a scenario where the worker has to pay
careful attention to the video, we add an additional prompt
to the many-questions interface. In an experiment on 100
videos, workers were asked to “please describe with ap-
proximately 20 words what the person/people are doing in
the video.” This adds on average 36 seconds per iteration,
yielding 2.1 minutes of annotation time with the additional
prompt versus 1.5 without. However, the extra time does not
translate to noticeable benefits in annotation accuracy: recall
drops slightly to 53.2% with the prompt compared to 54.2%
without, although precision increases slightly to 88.3% with
the prompt compared to 87.1% without. We conclude that
adding the prompt has no significant impact on the accuracy
of annotation despite a 1.4x increase in annotation time.

Forced responses. The final investigation into improving
the many-questions interface is asking workers to actively
select a yes/no response to every question rather than sim-
ply checking a box only if an action is present. Intuitively
this forces the workers to pay attention to every question.
However, this again produces no improvements in accuracy,
indicating that workers are already working hard to provide
the most accurate responses and are only confused by the
additional forced responses.

Concretely, we experimented on 100 videos and observed
a drop in recall to 55.7% with the forced responses com-
pared to 63.3% without as well as a drop in precision to
84.6% with forced responses compared to 88.8% without.
Further, annotation time increases to 2.2 minutes per video
with forced responses versus 1.6 minutes without. Thus
forcing workers to read every question is in fact appears
harmful: it is better for them to focus on watching the video
and only skim the questions.

Conclusions. We thoroughly examined the annotation inter-
face in the few-questions and many-questions setting. We
discover that positive bias and grouping are effective strate-
gies for improving the few-questions UI, and incorporate
them in future experiments. For the many-questions setting,
simply randomizing the questions and allowing the workers
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Figure 9: Recall (top) and precision (bottom) with multiple
iterations of annotation. Each square represents one itera-
tion. We can see that since each annotation iteration with the
52-question interface is much cheaper, it quickly matches
the performance of the more time-costly alternatives.

to select the actions that appear in the video is shown to be
more effective than any other baseline.

Multi-iteration video annotation
So far we established that (1) the many-questions interface
provides a more effective accuracy to annotation cost trade-
off on expectation than the few-questions interface when all
other factors are kept the same, (2) the few-questions inter-
face can be further improved by the addition of positive bias
and grouping, and (3) the many-questions interface we pro-
posed is optimal as is. In this section we bring all these find-
ings together and conclusively demonstrate that our many-
question annotation strategy is strictly better than the few-
questions alternatives for practical video annotation.

Advantages of asking multiple questions. In previous sec-
tions we computed the expected recall across multiple itera-
tions of annotations for a fixed time budget to compare dif-
ferent methods; here, we report the results in practice. We
run multiple iterations of annotation and consider a label
positive if at least one worker marks it as such. Thus, re-
call steadily increases with the number of iterations while
precision may drop as more false positives are added.

Figure 9 reports recall and precision as a function of anno-
tation time. For the few-question interfaces (5-questions and
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Figure 10: Statistics from the dataset. Histogram of the
lengths of the videos, where we can see that the videos have
various lengths enabling analysis based on content length.

1-question) we include the positive bias and grouping strate-
gies which have been found helpful. Nevertheless, we ob-
serve a clear advantage of the multi-question methods over
other alternatives.

For example, given 7.1 minutes required to annotate a
video with the 1-question interface, we are able to run two
iterations with the 5-question interface (taking up 6.2 min-
utes), and five iterations with 52-questions (taking up 6.3
minutes). With this annotation budget, the 52-question inter-
face obtains a recall of 85.3%, which is 10.5% higher than
the 74.8% recall with 5-questions and 18.6% higher than the
66.7% recall with 1-question. Further, the 52-question inter-
face obtains precision of 81.2%, which is 6.6% higher than
the 74.6% precision with 5-questions and slightly lower by
1.8% than the 83.0% precision with the 1-question interface.

In another example, in about half the annotation time (3.8
versus 7.1 minutes) we achieve a 10% improvement in recall
(76.7% with three iterations of 52-questions versus 66.7%
with one iteration of 1-question) at comparable precision
(83.8% with 52-questions versus 83.0% with 1-question).

We conclude that simultaneously asking multiple ques-
tions per video, as many as 26 or even 52, is significantly
more time-effective than asking only a handful of questions.
When comparing the 26-question with the 52-question in-
terface in Figure 9, the results are remarkably similar: re-
call per unit time is almost identical, although precision is
slightly higher for 26-questions. We conclude that asking
more questions per video is not harmful to annotation qual-
ity; we further verify this below by evaluating on videos of
different length.

Effect of video length. We investigate whether these con-
clusions hold for different video lengths – for example, an
image is just a zero-length video, so would our conclusions
still apply? Our dataset contains videos of varying length
as shown in Figure 10 and we group the videos into three
groups: 0-20 seconds, 20-40 seconds and 40-60 seconds
long.

Figure 11 reports the recall of the different methods for
each of the three groups, following the same experimental
design as before. For shorter videos that require little time
to process, the exact annotation interfaces make little differ-
ence. This suggests that in the case of images our method
would be as effective as the standard one-question baseline.

Importantly, as the content gets longer the benefit of our
method becomes more pronounced. For example, on 40-60
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Figure 11: Breakdown of Figure 9 for different video
lengths: (top) 0-20 second videos, (middle) 20-40 second
videos, (bottom) 40-60 second videos. The benefit of the
many-question interfaces is more prominent with increased
content length.

second videos for a fixed annotation budget of 4.4 minutes
(enough to run one iteration with the 5-question interface),
our 52-question method achieves 62.7% recall compared to
only 37.4% with the 5-question baseline (a 25.3% improve-
ment!) and 83.1% precision compared to only 79.4% preci-
sion of the 5-question baseline.

Annotated dataset
We used our annotation strategy to collect additional an-
notations for the video dataset of (Sigurdsson et al. 2016).
This amounted to 443,890 questions answered, resulting in
1,310,014 annotations for the 1,815 videos. This increased
the density of annotation on the dataset from 3.7 labels per
video on average (which were available apriori based on the
data collection procedure) to 9.0 labels per video. In addi-
tion, when evaluating the precision of annotation we also
collected temporal annotation of when the actions took place
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Figure 12: Annotation recall (y-axis) as a function of the av-
erage duration in the video (x-axis) for every one of the tar-
get 157 actions. Our method for multi-label video annotation
is effective for labeling both long- and short-duration events.

in the video. This yielded 66,963 action instances. We will
release all the annotations to enable future research in both
crowdsourcing and in computer vision.

Using these temporal annotations, we verify that using our
method we are able to successfully annotate both actions that
are long and short in the video. For every one of the 157 tar-
get actions, we compute the average (median) length of its
instances in the videos as well as the recall of our annota-
tions. Figure 12 plots recall as a function of action duration.
As expected, recall tends to be slightly higher for actions
that are longer in the video but not significantly (Pearson
correlation of 0.178). We conclude our method is effective
at annotating both long and short events.

Discussion & Conclusions
We explored the challenging problem of multi-label video
annotation. In contrast to insights obtained from studying
crowdsourcing of video annotation, we demonstrated that
asking multiple questions simultaneously about a video pro-
vides the most effective tradeoff between annotation time
and accuracy. While we observed that accuracy decreases
with additional questions for each video, this drop was not
sufficient to warrant the significant cost of only a few ques-
tions per video. Furthermore, we observed that the perfor-
mance gap between cheap fast methods over slow careful
methods grows with increasing content length. In conclu-
sion, our results suggest that optimal strategy of annotating
data involving time is to minimize the cost in each iteration
through sufficiently many questions, and simply run multi-
ple iterations of annotation.
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Appendix
Below we present the hierarchy of concepts used in our multi-label
annotation interface. The 157 human actions are organized into a
hierarchy according to the object the human is interacting with.
This hierarchy is used to simplify the interface.

clothes: Holding some clothes, Putting clothes somewhere, Taking some clothes
from somewhere, Throwing clothes somewhere, Tidying some clothes.

door: Closing a door, Fixing a door, Opening a door .
table: Putting something on a table, Tidying up a table, Washing a table, Sitting at

a table, Working at a table, Sitting on a table.
phone/camera: Holding a phone/camera, Playing with a phone/camera, Putting

a phone/camera somewhere, Taking a phone/camera from somewhere, Talking on a
phone/camera.

bag: Holding a bag, Opening a bag, Putting a bag somewhere, Taking a bag from
somewhere, Throwing a bag somewhere.

book: Closing a book, Holding a book, Opening a book, Putting a book some-
where, Taking a book from somewhere, Throwing a book somewhere, Watch-
ing/Reading/Looking at a book.

towel: Holding a towel/s, Putting a towel/s somewhere, Taking a towel/s from
somewhere, Throwing a towel/s somewhere, Tidying up a towel/s, Washing something
with a towel.

box: Closing a box, Holding a box, Opening a box, Putting a box somewhere, Tak-
ing a box from somewhere, Taking something from a box, Throwing a box somewhere.

laptop: Closing a laptop, Holding a laptop, Opening a laptop, Putting a laptop
somewhere, Taking a laptop from somewhere, Watching a laptop or something on a
laptop, Working/Playing on a laptop.

shoe/shoes: Holding a shoe/shoes, Putting shoes somewhere, Putting on
shoe/shoes, Taking shoes from somewhere, Taking off some shoes, Throwing shoes
somewhere.

chair: Sitting in a chair, Standing on a chair.
food: Holding some food, Putting some food somewhere, Taking food from some-

where, Throwing food somewhere.
sandwich: Eating a sandwich, Holding a sandwich, Putting a sandwich somewhere,

Taking a sandwich from somewhere.
blanket: Holding a blanket, Putting a blanket somewhere, Snuggling with a blan-

ket, Taking a blanket from somewhere, Throwing a blanket somewhere, Tidying up a
blanket/s.

pillow: Holding a pillow, Putting a pillow somewhere, Snuggling with a pillow,
Taking a pillow from somewhere, Throwing a pillow somewhere.

shelf : Putting something on a shelf, Tidying a shelf or something on a shelf.
picture: Reaching for and grabbing a picture, Holding a picture, Laughing at a

picture, Putting a picture somewhere, Watching/looking at a picture.
window: Closing a window, Opening a window, Washing a window, Watch-

ing/Looking outside of a window.
mirrow: Holding a mirror, Smiling in a mirror, Washing a mirror, Watching some-

thing/someone/themselves in a mirror.
broom: Holding a broom, Putting a broom somewhere, Taking a broom from some-

where, Throwing a broom somewhere, Tidying up with a broom.

light: Fixing a light, Turning on a light, Turning off a light.
cup/glass/bottle: Drinking from a cup/glass/bottle, Holding a cup/glass/bottle of

something, Pouring something into a cup/glass/bottle, Putting a cup/glass/bottle some-
where, Taking a cup/glass/bottle from somewhere, Washing a cup/glass/bottle.

closet/cabinet: Closing a closet/cabinet, Opening a closet/cabinet, Tidying up a
closet/cabinet.

paper/notebook: Someone is holding a paper/notebook, Putting their pa-
per/notebook somewhere, Taking paper/notebook from somewhere, Working on pa-
per/notebook.

dish/dishes: Holding a dish, Putting a dish/es somewhere, Taking a dish/es from
somewhere, Wash a dish/dishes.

sofa/couch: Lying on a sofa/couch, Sitting on sofa/couch.
floor: Lying on the floor, Sitting on the floor, Throwing something on the floor,

Tidying something on the floor.
medicine: Holding some medicine, Taking/consuming some medicine.
television: Laughing at television, Watching television.
bed: Someone is awakening in bed, Lying on a bed, Sitting in a bed.
vacuum: Fixing a vacuum, Holding a vacuum, Taking a vacuum from somewhere.
doorknob: Fixing a doorknob, Grasping onto a doorknob.
refrigerator: Closing a refrigerator, Opening a refrigerator.
misc: Someone is awakening somewhere, Someone is cooking something, Some-

one is dressing, Someone is laughing, Someone is running somewhere, Someone is
going from standing to sitting, Someone is smiling, Someone is sneezing, Someone is
standing up from somewhere, Someone is undressing, Someone is eating something,
Washing some clothes, Smiling at a book, Making a sandwich, Taking a picture of
something, Walking through a doorway, Putting groceries somewhere, Washing their
hands, Fixing their hair


