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Abstract— Accurate localization in indoor environments is
widely regarded as a key opener for various location-based
services. Despite tremendous advancements in the development
of innovative sensor concepts, the most effective and accurate
solutions to this problem make use of a map computed from
sensory data. In this paper, we present an efficient approach to
localize an RGB-D smartphone or tablet that only makes use of
a two-dimensional outline of the environment as a map as it is
typically available from architectural drawings. Our technique
employs a particle filter to estimate the 6DoF pose. We
propose a sensor model that robustly estimates the likelihood
of measurements and accommodates the disagreements between
floor plans and real world data. In extensive experiments, we
demonstrate that our approach is able to globally localize a
user in a given 2D floor plan using a Google Tango device and
to accurately track the user in such an environment.

I. INTRODUCTION

Accurate localization of people in indoor environments is
widely regarded as a key opener for various services that
require location awareness. This includes user localization,
robot navigation and search and rescue. During the previ-
ous decades, the robotics and computer vision community
proposed a set of accurate, robust and efficient localization
methods. Despite all these efforts, accurate and metric local-
ization has been mainly achieved by phrasing the problem as
a pose estimation task in a map that is computed beforehand
from sensor data. This implies that the robot or the person
have to visit the environment before the localization run.

In this paper, we present an approach to estimate the 6DoF
position of a smartphone or tablet that is equipped with an
RGB-D camera, such as a Google Tango device. As map we
only require a two-dimensional outline of the environment,
like a floor plan. A floor plan is the depiction of the “naked”
environment, without furniture, fixtures, windows, or clutter.
It contains no data actually measured in the environment,
which makes visual or existing range-based techniques diffi-
cult to apply directly. Such floor plans are readily available
for most buildings in the form of their original blueprint
from the time they were designed. Fig. 1 depicts an example
application scenario for our approach.

Our system uses a Monte-Carlo particle filter localization
approach that runs online while the user is walking through
the environment. The calculation is done off-board by trans-
mitting the sensor data to a server. Note that the idea to use
the cloud for time-consuming processes is a quite common
approach for various smartphone services including such
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Fig. 1. Localization in 6DoF using only a 2D outline of the environment
and an RGB-D Google Tango device. The computer screen shows the floor
plan in white and the particle cloud representing the current pose estimate
in red.

requiring speech understanding, route planning or image
processing. The odometry information needed for the filter
is computed onboard the device, using the RGB-D and IMU
data. For the implementation of the particle filter we designed
a sensor model that handles the special case of localizing
with six degrees of freedom in a two-dimensional map. Our
likelihood model assigns a probability to the measurement,
using a function of the distance between the measurement
and the floor plan, also taking into account measurements
generated from floor and ceiling or obstacles not present in
the map. It also considers physical constraints, i.e., the user
cannot move through walls.

We evaluate our approach with respect to three different
use cases: global localization, position tracking and coarsely
initialized position tracking. The latter is an initialization
that is typical for coarse WiFi position estimates from
access point signal magnitude or a user manually marking
the starting position in the floor plan. We demonstrate the
applicability of our approach in two real-world settings using
two busy office buildings during working hours. Additionally,
we provide a precise quantification of the accuracy of our
approach using a custom-built indoor environment set up
in a motion capture studio. All results demonstrate that our
approach robustly converges to the correct solution and pro-
vides accurate position estimates. Our system is applicable
for online use, even when performing global localization.
Please refer to the attached video for a demonstration of the
latter.

We imagine our system to be of relevance, e.g., in search
and rescue scenarios. A person entering an unknown building



can wear the necessary device on a helmet or on the back of
a jacket. A team on the outside can then track the progress of
the person on the floor plan and give directions. While floor
plans are available for most buildings, in such a scenario,
other indoor localization methods like WiFi-based systems
might not be available due to power outages or a lack
of knowledge about the access points in the building. In
this case, the filter can be approximately initialized at the
entrance door without the need for global localization.

II. RELATED WORK

Mobile localization is a well studied field in robotics.
Especially probabilistic approaches for estimating the pose
of a mobile robot given a map have proven to be robust in
practice. Successful techniques rely on the extended Kalman
filter (EKF) [18], histogram filters [14], or particle filters,
often referred to as Monte-Carlo localization (MCL) [7].
There are also approaches combining ideas of MCL and
histogram-based methods [17]. Commonly used sensors for
vehicle localization are laser range scanners [7, 23], cam-
eras [1, 2, 9, 20], RFID or wireless receivers using radio
signal strength [8, 11], or GPS receivers. Vision-based MCL
for mobile robots was first introduced by Dellaert et al. [6].

Fallon et al. [10] propose a very efficient RGB-D 6DoF
Monte-Carlo localization approach for indoor environments.
Their technique requires a preliminary mapping phase, where
only major plane segments are recorded. For evaluating the
likelihood, the algorithm synthesizes RGB-D camera views
at the location of particle poses. Similar to our work, they
make use of visual odometry to estimate the motion between
two poses. Paton and Kosecka [19] propose a global local-
ization approach that makes use of SIFT correspondences
and scan matching in depth data to obtain a correct pose.
Shotton et al. [21] tackle the problem of localizing an RGB-D
camera relative to a previously recorded 3D scene, given only
a single acquired image. For this, they develop regression
forests that are able to infer the correspondence of the camera
frame to the scene world coordinate frame.

A very common approach to indoor localization is to make
use of WiFi or bluetooth sources in the environment [3,
4, 12]. These techniques tend to be sensitive to the WiFi
source placement, the accuracy of the signal strength map
and the amount of clutter and dynamics in the environment.
Additionally, the number of WiFi sources in the environment
plays an important role.

Grzonka et al. [15] present an approach to keep track
of the position of a person by employing an IMU-based
motion capture suit and detecting specific motion patterns
as landmarks to avoid the accumulation of drift.

Localization in floor plans has received very little attention
from the scientific community. Ito et al. [16] address this
problem by using RGB-D data and an additional map of WiFi
signal strengths. The latter is computed by using data from
a previous mapping run. Spasso [22] obtains the trajectory
of a pedestrian using an inertial navigation system, which
provides information about the user’s position, heading and
velocity. The system then uses a map-matching technique

to associate a user’s trajectory with a 2D or 3D floor plan.
Comblet et al. [5] additionally use knowledge of accessible
positions in the vicinity of the previous position to improve
the estimate of the user’s trajectory.

The main advantage of our method is that we do not
require an initial mapping phase with the device used for
localization and that we acquire full 6DoF poses. The meth-
ods described above require the user to map the environment
either in advance or online during the run, to acquire range
data, visual information, or signal strength distributions. In
contrast, our method relies only on prior information given
by a floor plan, which is typically available from the time
the building was constructed, for example in the form of an
architectural drawing.

III. 6DOF LOCALIZATION IN 2D FLOOR PLANS

In this section, we describe how we apply the Monte-Carlo
localization (MCL) algorithm to achieve accurate 6DoF
localization on a 2D floor plan using a mobile RGB-D
camera. To achieve this, we propose a dense-depth sensor
model that is able to handle floor plans as maps. Furthermore,
we present a motion model that leverages the typically high
accuracy of the onboard visual-inertial odometry.

A. Monte-Carlo Localization with KLD Sampling

We estimate the 6DoF pose xt of the device at time t using
the Monte-Carlo localization (MCL) as proposed by Dellaert
et al. [7]. This approach estimates a posterior about the pose
in the following recursive fashion:

p(xt | z1:t, u1:t,m) ∝ p(zt | xt,m)· (1)∫
xt−1

p(xt | xt−1, ut)p(xt−1 | z1:t−1, u1:t−1,m) dxt−1.

Here, u1:t is the sequence of the executed motions, z1:t is
the sequence of observations, and m is the provided map
of the environment. The motion model p(xt | xt−1, ut)
denotes the probability to end up in state xt given the motion
command ut in state xt−1. The sensor model p(zt | xt,m)
denotes the likelihood of making the observation zt given
the pose xt and the map m.

MCL uses a set of random samples, also called particles,
to represent the belief about the system state and updates the
belief by sampling from the motion model when receiving
odometry information. MCL computes an importance weight
for each particle, which is proportional to the observation
likelihood of the measurement given the corresponding state
of the particle. In the so-called resampling operation particles
survive with a probability proportional to the importance
weight.

To optimize the performance of the MCL, we apply the
KLD sampling approach by Fox [13], which adjusts the
number of particles by limiting the error introduced by the
sample-based representation. It computes this error using the
Kullback-Leibler divergence between the sampled distribu-
tion and a discrete distribution computed over the whole
map. Thus, particles are generated on demand. For example,
during global localization or in areas where localization is
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Fig. 2. The likelihood function of the sensor model, depending on the
distance from a measured endpoint to the closest wall in meters (x-axis)
and the scalar product of the measured and the expected normal at that
endpoint (y-axis).

difficult, it creates new particles, whereas it keeps the particle
set small when tracking the pose.

B. Sparse Depth-Beams Sensor Model

The task of the sensor model is to determine the likelihood
p(z | x,m) of a measurement z, given the pose x in the
map m. In our approach, the measurements are range data
extracted from a dense-depth image. The map is internally
represented as a 3D environment, generated from a 2D floor
plan and a given ceiling height: we model all walls from the
floor plan as vertical planes and represent the floor and the
ceiling as two horizontal planes, whose distance is assumed
to be given.

Each time a new image arrives, K range measurements are
randomly sampled from the dense-depth image and converted
into a 3D point cloud Z . Let zj be the j-th measurement of
Z . In our system, we apply the endpoint model [24]. The
endpoint model computes the likelihood of zj based on the
scan point z′j corresponding to zj transformed into the map
coordinate frame according to the pose x and on the closest
corresponding point in the map mj ∈ m:

p(z | x,m) = f((z′1,m1), . . . , (z′K ,mK)). (2)

Under the assumption that the beams are independent, we
can rewrite this as

f((z′1,m1), . . . , (z′K ,mK)) ∝
K∏
j=1

f(z′j ,mj). (3)

Please note that we use a log-likelihood representation in our
implementation to circumvent problems with floating point
precision. We model the likelihood for each observed point
as a mixture of two Gaussians, each combined with a uniform
distribution:

f(z′j ,mj) = (N (z′j ,mj , σd) + cd) ·
(N (|nz · nm|, 1, σs) + cs),

(4)

where σd, σs ∈ R+ are the standard deviations and cd, cs ∈
R+ are constants representing the uniform distributions.
The term nz is the normal vector corresponding to the
measurement z′ and nm is the one computed from the map
at position mj . The dot product of the two is the cosine
of the included angle and therefore |nz · nm| is 1 if the
normal vectors are identical and 0 if they are orthogonal.

This favors measurements that are oriented with the floor
plan. The constants cd and cs keep the filter from becoming
overconfident in situations in which there is little or no over-
lap between the map and the observation. This is typically
caused by objects not present in the map blocking the view
of the sensor. This sensor model allows for comparatively
low correspondence between measured endpoints and wall-
points, given high similarity for the normals, and vice versa
(see Fig. 2). This makes the particle filter more robust to
errors regarding the estimated orientation, thereby facilitating
global localization. We determined the parameters σd, σs, cd
and cs experimentally by evaluating the measurement error
on a dataset with ground truth sensor poses in an office
environment. In such an environment, where the view of
the sensor is often blocked by furniture, we determined
σd ' 0.52 m, σs ' 0.18, cd ' 80, and cs ' 800.

Another measure we take for an improved estimate of the
particle weights is to take into account physical constraints
and the potential inaccuracy of the map. More precisely, we
penalize every particle that moves through a wall. For this
we check the movement of every individual particle in every
timestep and compare it to the map. When the movement
traverses an occupied cell in the map, we multiply the particle
weight with an ε ∈ [0, 1], thereby enforcing physical world
constraints and feasible position estimates (see also Thrun
et al. [24]).

C. Visual Odometry Motion Model

In the prediction step of MCL it is of key importance to
compute an accurate estimate of the motion between xt−1
and xt, especially as we cannot rely on accurate odometry
information as it would be available on a mobile robot. On
an RGB-D device, one can use 3D scan matching, RGB-
based visual odometry, or make use of the RGB and depth
sensors together, e.g., by adding the range measurements into
a visual odometry framework, thereby not purely relying
on structure from motion. In addition, most smartphones
or tablets include IMUs that can be used to substantially
reduce the orientation uncertainty. The Google Tango de-
vice comes with a natively integrated, high performance
6DoF motion estimation software that makes use of all
the integrated sensors. This visual-inertial odometry system
computes robust and accurate motion estimates in realtime.
Unfortunately, no uncertainty measure for the odometry
estimate is provided. We therefore determined the scaling
factors Σo and the standard deviations σo empirically in
an offline calibration experiment. We corrupt the estimated
motion ∆x with the determined noise for each dimension:
xt = xt−1 +N (∆x,Σo ·∆x) +N (0, σo).

IV. EXPERIMENTS

We evaluated the performance of our approach in two
settings. First, a metric accuracy quantification in a motion
capture studio and second, a real world localization scenario.
For all the experiments, we used a Google Tango device and
employed its depth camera for acquiring range measurements
from the environment.



Fig. 3. For accurate metric evaluation, we built an L-shaped and furnished
indoor environment in a motion capture hall. Left: a photo of the setup.
Right: the corresponding floor plan with the walked ground truth trajectory
in blue.
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Fig. 4. Accuracy evaluation in the motion capture hall of the 6DoF
localization. The top plot shows the error in the x/y plane and the bottom
plot the error in orientation.

A. Accuracy Quantification using a Motion Capture Studio

This experiment is designed to quantify the localization
accuracy of our technique. For this, we prepared an experi-
mental L-shaped indoor environment within a motion capture
hall. We used wooden panels as walls and furnished the
environment with tables, chairs and cupboards (see Fig. 3(a)).
The idea is to create an environment that is similar to typical
indoor scenes. The motion capture system consists of 10
high-framerate infrared cameras that provide submillimeter
localization accuracy of dedicated passive infrared markers.
We created the floor plan of this environment by taking
measurements from reflective markers installed on the top
of the walls and corners. The resulting 2D floor plan (see
Fig. 3(b)) was the only information given to our algorithm.
In the experiment, a user walked through the environment
carrying the Google Tango device with attached reflective
markers while other people were also present in the environ-
ment.

For evaluating the accuracy we performed three different
experiments: position tracking, coarse pose initialization, and
global localization. For each of these scenarios we performed
10 runs and determined the weighted mean pose estimate
over all particles, which we compared to the ground truth
position given by the motion capture system. Fig. 4 shows
the corresponding results. As can be seen from the figure, the
error of the odometry, initialized at the ground-truth position,
tends to increase steadily over time, which is the expected
behavior.

In the position tracking experiment, we initialized the filter
with 5k particles at the ground truth position so that the filter
started with zero error. At first the particle cloud spread out
because of the noise in the motion model and then stayed
at an error around 0.2− 0.5 m in x/y and around 5◦ − 20◦

in orientation. The orientation error is very similar to the
results of the odometry. The value is relatively high, most
likely because of a slight misalignment of the coordinate
frame of the motion capture studio and the local frame of
the device. Regarding the translation, our filter has a higher
error than the odometry in the very beginning (because of
a conservative motion model and the noise (furniture etc.)
in the environment) but does not diverge over time. The
error in z (which is not plotted) is between 0.2 and 0.4 m.
This error is not well restricted because the experimental
setup does not include a ceiling and the floor was not
visible in the range measurements most of the time. For
the second part of the experiment we assumed to have a
method to coarsely determine the initial x/y position of the
track. This represents additional information, e.g., from a
WiFi-based localization system or an approximate starting
position provided by the user by clicking on a point in the
map. The filter started with 10k particles. We sampled the
particle positions with a normal distribution (3 m standard
deviation), centered around a point randomly determined
within a 1 m distance from the ground truth. The yaw angle
is uniformly sampled between −180◦ and 180◦. Pitch and
roll were sampled with low noise around the values provided
by the IMU of the device. After the initially poor accuracy,
the filter reached a low error, similar to the tracking scenario,
after about 10− 15 s. For global localization, we initialized
the particle filter with 200k particles, uniformly distributed
over the whole floor plan in x and y. The z-value is uniformly
sampled between floor and ceiling. Roll, pitch, and yaw were
sampled in the same way as described above. In this scenario,
the filter converged approximately at the same time as in
the scenario above, which can be explained by the small
environment.

B. Localization using Real Floor Plans

To estimate the performance of our approach in real-world
settings, we ran experiments in two office buildings on our
university campus. We refer to them as geb74 and geb79.
They have different footprints and sizes and are furnished
differently. We captured the data during typical office hours
with people and clutter present in the environment. During
the trials a user held the device and walked through the
environment as shown in Fig. 1. Dataset geb74 is 240 s long,
while dataset geb79 is 85 s long. We fixed the ceiling-to-floor
distance in both environments to 3 m.

Unfortunately, no ground truth trajectory is available for
these datasets. We therefore computed a reference trajec-
tory in the environment by initializing our method with a
manually determined, highly accurate starting position and
performed tracking on this. Even though it is not a real
ground truth, it closely represents the real trajectory while
providing useful information to metrically evaluate all the



Fig. 5. Floor plans of geb74 (top) and geb79 (bottom) with reference
trajectories in blue.

other methods. We checked the correctness of this trajectory
by careful visual inspection of individual scans projected
onto the map. Fig. 5 shows the corresponding floor plans
overlaid with the reference trajectories.

For both datasets, we evaluated the approximate initial-
ization scenario with 10k particles and global localization
with 200k. We initialized the filter as described in IV-A.
The resulting errors compared to the reference trajectory are
plotted in Fig. 6 (geb74) and Fig. 7 (geb79). Fig. 8 depicts a
qualitative view of the global localization process. In geb74
the user first walked along the long corridor, which shows
repetitive and ambiguous range appearance. The particles
therefore first spread out along the corridor and developed
into a multimodal distribution (see Fig. 8 top middle), with
two blocks going into opposite directions. Eventually, when
the ambiguity was resolved, the filter rapidly converged to
a solution similar to the reference trajectory. In geb79 the
user started in the corridor and quickly moved into different
offices. Therefore the particles start to form clusters inside
the similarly structured rooms (see Fig. 8 bottom middle).
The global localization was very close to convergence after
40 s. Yet, until 75 s the distribution stayed bimodal, because
of a small cloud of particles representing an alternative
pose estimate. The behavior of the filter is similar for both
considered scenarios (approximate initialization and global
localization), even though the global localization naturally
has higher errors and needs longer to converge.

In the experiments above, we performed multiple runs for
each scenario. The standard deviation for the translation over
these runs was always around 0.03 m for the translational
error and around 0.08◦ for the orientation error.

Our approach initially requires a large set of particles for
two reasons. First, there is a large disagreement between the
floor plan and the sensor data; second, the state space to be
explored is substantially larger than in typical applications
with robots navigating in a plane. Nevertheless, our technique
is able to converge and yields a steady-state error. It is
important to notice that, when this happens, the filter uses
less particles, with a minimum amount of 5, 000. A situation
where our system might fail is when the environment does
not provide enough unique features, as for example in a
perfectly symmetrical, rectangular environment.
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Fig. 6. Development of the error compared to the reference trajectory for
geb74. The top plot shows the error in the x/y plane and the bottom plot
the error in orientation.

0 10 20 30 40 50 60 70 80

2

4

6

8

10

Elapsed time in s

M
ea
n
er
ro
r
in

m

Global Localization
Coarse Initialization

0 10 20 30 40 50 60 70 80

0.5

1

1.5

Elapsed time in s

M
ea
n
er
ro
r
in

ra
d
ia
n
s

Global Localization
Coarse Initialization

Fig. 7. Development of the error compared to the reference trajectory for
geb79. The top plot shows the error in the x/y plane and the bottom plot
the error in orientation.

To enable other researchers to compare their methods with
ours, we will make the datasets used in our experiments
publicly available [25].

V. RUNTIME

The off-board processing for the filter was carried out on
an Intel i7 laptop computer. All experiments were performed
in online settings and the filter was allowed to drop frames
when necessary. The time for the integration of a new range
image varied between 1.3 s for global localization (200k
particles) and 0.04 s for tracking (5k particles). Dropping
frames for online processing did not influence the filters
ability to converge to the correct solution, since the visual
odometry information is good enough to bridge these small
gaps.

VI. CONCLUSIONS

This paper presents a 6DoF localization approach for
RGB-D smartphones that takes as input RGB-D data and
only uses a 2D outline of the environment, such as a floor
plan, as the map. In contrast to alternative methods, our
approach does not require a dedicated mapping phase and



Fig. 8. Global localization for geb74 (top) and geb79 (bottom), view from above. These environments contain furniture and we recorded the datasets
during office hours. Even though there is a large disagreement between the floor plan and the sensor data, the particle filter converges. From left to right:
the filter is initialized (left), shows a multimodal distribution (middle) and then focuses the particles onto the correct position (right).

rather relies on 2D outlines typically available as architec-
tural drawings. We introduce a novel and specific sensor
model to deal with the lack of information in the floor
plans compared to the real world. Our approach has been
implemented and can be executed online on a remote server
wirelessly connected to the smartphone. We present the
results of extensive experiments carried out in two office
buildings and in a motion capture studio. We evaluate our
approach in different use cases, which are position tracking,
localization with a coarse initial position estimate, and global
localization. We show that our approach can be used online
and yields accurate results. Furthermore, the filter converges
quickly even in environments with long corridors or ambigu-
ous locations.
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