NEW RESULTS ON THE COSTS OF HUFFMAN TREES

Xiaoji Wang
Department of Computer Science, The Australian National University,

GPO Boz 4, Canberra, ACT 2601, Australia

Abstract.

We determine some explicit expressions for the costs of Huffman trees with several

classes of weight sequences.

1. Introduction.

A binary tree consists of a root and two disjoint subtrees; either of which, or both,
could be empty. We will deal with extended binary trees. An estended binary tree
is obtained from a binary tree by adding square nodes to a binary tree whenever a
null subtree was present. Thus, in an extended binary tree, an internal node has
two sons and a square node (called a leaf of the tree) has no sons.

If we consider the arcs of a binary tree as directed downward, then there is a
unique directed path from the root to every node. The number of arcs in the path
to a node is called the path length of the node.

" Let wy, wy,...,w, are all positive real numbers, which is called weight sequence.

Let T denote an extended binary tree with leaves vy, vq, ..., vy where v; is associated
with weight w; (1 <4 < n) and let [; denote the path length of v;. We will call
Son o wili the weighted path length. For a given weight sequence, an extended binary
tree with the minimal weighted path length is called a Huffman tree for the weight
sequence and the minimal weighted path length is referred to as the cost of the
Huffman tree. As we know, Huffman tree can be constructed by the Huffman
algorithm described below.
Huffman algorithm: We begin with n nodes whose weights are wy,ws,...,w, re-
spectively. Create a new node which is the father of the two nodes with the smallest
weights. Do this recursively for the n — 1 nodes other than the two sons of the new
node. The final single node with weight w; + wy + -+ + w, is the root of a bi-
nary tree. This binary tree will be a Huffman tree defined by the weight sequence
Wi, Way ..., Whe

Since Huffman trees do not in general possess explicit expressions for their

costs, it is of great value to find the formulations of the costs for the Huffman
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trees with special kinds of weight sequences. Some progress has been made by
A. C. Tucker [5], F. K. Hwang [2], [3] and M. Sandelius [4]. In this paper, explicit
expressions of costs of the Huffman trees for several new classes of weight sequences
are obtained.

Let Wi wy Swy < -+ < wy (wy > 0) denote a weight sequence, H(W) be a
Huffman tree defined by weight sequence W, I; (1 <7 < n) be the path length of
the leaf of H(WW) associated with the weight w;, C(W) be the cost of H(W). We
call [; (1 €4 < n) the path length of w; for convenience. For other terminology and
notation, we follow [1].

2. Main results.

Lemma 1. (Lemma in [2]) w; < w; implies that I; < 1; for 1 <i < j <n. w; = w;
implies that |l; — I;| <1 in a Huffiman tree.

Theorem 2. Ifw; +wy > wy, n =2 4¢,0 < ¢ < 2P, then

2q n
CW)=(+1)D> wi+p » wi
i=1

1=2g+1

Proof. Because wy + wa > wy, as an immediate consequence of Lemma 1 we have
that the path lengths of any two leaves can differ by at most one. Hence, there exist
25 leaves of H(W') whose path lengths are all equal to t + 1, and the path lengths
of the other 2! — s leaves are all equal to # and it is obvious that 0 < s < 2¢. Since
each integer n has unique expression as n = 2? 4+ g where 0 < ¢ < 2P, we have t = p
and s = ¢. Since H(W) is a binary tree with the minimal weighted path length

among all the binary trees with the weight sequence W, the theorem follows.

Corollary 3. Letw;=2,1<i<n,n=27+¢q,0< q< 2P, then
C(W) =nap+ 2¢z.

Theorem 4. If wy +wy < w3, w1 +wz +w3 > wp,n—1=2P4¢,0< q< 27,
then

cor) = (p+ 1wy +w2) + p Y7y wi, q=0;
(p+2)(wr +w2) + (p+1) 2w, + PYimagra Wiy ¢>0.
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Proof. Let W be the weight sequence w; +1ws, w3, -+, w,. By Huffman algorithm,
we know that H(W) can be obtained by adding two sons with weight w; and w,
at the leaf with weight wy + wq in H(W).

If ¢ = 0, by the proof of Theorem 2, we have that the path length of every leaf
is p in H(W). Thus the path length of w; and wy are p 4+ 1 while the others are p
in H(W).

If ¢ > 0, by the proof of Theorem 2, we have that there exist 2¢ leaves with
path lengths p 4 1 and the other 27 — ¢ leaves have their path lengths p in H(W).
Thus by Lemma 1, we have that the path length of w; +wy must be p+ 1 in H(W).
Therefore, w; and wy have their path lengths p + 2 and among the n — 2 other
weights, 2qg — 1 of them have their path lengths p + 1 while the others have their
path lengths p in H(W).

Because H(W) is the binary tree with the weight sequence W which minimizes

the weighted path length, the theorem follows.

Theorem 5. Suppose that W can be divided into t segments as follows: w;, < wq <
e Swy, Swigr £ Swi oy Swy, 41 o0 S wy,, where wyy = 1w;, = n.
For 0 <k <t-—1,let

Pt = 1k + 1= 2P0 g, 0 < < 2P,

T

s = wa,

f=1
Sk + Wiy 41 > Wiggrs
0, =0,
Ge=14
1, g >0,
and for 1 <k <t —1, sp < wiq1. Then C(W) is

t—1 {- i +2qr—1 t-—1 t—1 Tl

i(;)i+6i)11>1+2( (pi + &) Z Wj+(zpi+ Zé}') Z w]-).
1=0 k

k=0 i= J=ip+1 1=k ikl J=t+2qk

Proof. Let W} be the weight sequence sg,w;, 41, ... s Wig,, . By Lemma 1 and the
proof of Theorem 2, we have that s; has its path length pg + 8 for (1 <k <t —1)
in H(W}). By Huffman algorithm, H(W') can be obtained by connecting the root
of H(Wji_1) at the leaf s; of H(Wj) for 1 < k < t— 1. By applying the proof of

Theorem 2 and analyzing the path length of each leaf, the theorem follows.
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Theorem 6. Suppose that W can be divided into t segments as in Theorem 5. For
0<k<t—1,let
i1 — ik = 2PF 4, 0 < gqp < 2%,

ip
Sk = Z wy,
f=1

Sk Wi+1 < Wip42,

Sk Wig41 + Wiy2 > Wikt

{0, qr > 0,
o =
1, g =0,

TE =tk + 2qk,

and for 1 <k <t —1, sx —w;, < wiy+1. Then C(W) is

t—1 t—1 -1 thgn T kg1
Z(p«i+2~0i)w1+Z(Z(pi+2—m) Yoowi— Y wit(or—2) Y wj)~
i=0 k=0 i=k J=ikt1 J=ik+2 J=rrt+1

Proof. Let Wj be the weight sequence s, w,, 41,-..,Wi,,,, then the path lengths
of leaves s and w;, +1 are py +2 — o for 0 < k <t —1in H(Wy). By the proof
of Theorem 4 and analyzing the path lengths of the leaves and simple calculating,
the theorem follows.

As metioned before, we can obtain H(IV) by executing the Huffman algorithm
on W. We start with weight sequence W of n weights. Just before the ith step
(i > 1), we have a weight sequence of n —1 + 1 weights which is obtained from the
weight sequence with n — i + 2 weights by combining the two smallest weights into
one (their sum is the new weight). Let W (i) be the weight sequence just before the
ith step and |W(2)| the cardinality of W(i). If s is the smallest number such that
the sum of the two smallest weights exceeds the largest weight in W(s), then, for
any m (1 <m < n—1), define

[V (s)] = 27 +¢,0 < g < 27,

u = min(m, 2P - ¢),

T tlogz ((n - m,)/(l —~uf2P — (m — u)/2”+1))J ,
and
g =2 (1 — /2P — (m — u)/?p'H) —n 4 m,
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then we refer to (p, ¢,u,r,g) as (W, n,m)-critical parameters.

Corollary 3 shows the cost of a Huffman tree in which all the weights are the
same. If W can be divided into two segments such that the weights in each segment
are the same, an explicit expression for the cost of H(W) was obtained in [2]. For
the case where W can be divided into three such segments, we have the following

results.

Theorem 7. Let W be

a b c

s s et ez, | oot o,
Ty T Yy Y2, 2

If2z >y, 2 <y <z v=min(a+b-—g,a), a, b, ¢ are positive integers and
(pyq,u,7,9) are (W,a + b + ¢, c)-critical parameters, then

C(W) = (ar +v)z + (b(r +1)+a—g- v)y + (up+ (c—u)(p+ 1))z

Proof. As in [2], we can prove that there exist u leaves associated with weight
z with path length p and the other ¢ — u leaves associated with weight z have all
their path lengthes p+ 1. By Lemma 1, we know that the path length of y is less or
equal to that of z. As mentioned above, W (|a/2] 4+ 1) denotes the weight sequence
after |a/2] combinations by Huffman algorithm. Since 2z > y, the path length of
2z is less or equal to that of y in H(W(|a/2] +1)). By Huffman algorithm, we
know that we can obtain the H(W) by choosing some |a/2| leaves with weights 2z
in H(W(la/2] +1)) and making each of them as the father of two leaves with the
same weight z. Therefore, there exists an integer r such that the path length of
any z or y is equal to either r or r + 1 in H(W). Let ¢ be the number of z and
y which have their path lengths r, then the a + b — g other z or y have their path
lengths r + 1. We can prove that r and g are (W,a + b+ ¢, ¢)-critical parameters in
a similar manner to [2]. Let ¢ be the number of & which has path length r, hence,
the a—1 other z have path lengths r + 1 and the number of y which has path length
7 is g —t and the number of y which has path length r+1is b— (g —t) = b+t —g.
Thus, C(W) is

tre+(g—t)ry+(a—t)(r+z+ b+t —g)r+ Dy + (up+ (e —u)(p+ 1))z

=a(r+ 1z +b(r+1)y —gy+t(y —z)+ (up+ (c — u)(p + 1))z

Because the minimal possible value of ¢ is a — v and H(W) is the binary tree with

minimal weighted path length, we have

CW)=alr+1)z+br+ 1)y —gy+(a—v)(y—2)+ (up+(c—u)(p+1))z
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=(ar+v)z+ (Br+1) +a—g—v)y+ (up+(c—u)(p+1))=.

Theorem 8. Let W be ,

N, et
T, Yy Y2y, 2

Ifx <y < 2, b, c are positive integers, (p.q,u,r,g) are (W,b+ ¢ + 1, ¢)-critical
parameters, and
1, b+41-¢g>0,
- {0, b41-g=0
Then

CW) = (up+(c—uw)(p+1))z+ (z+ (b~ g)y)(r + o) + gry.

Proof. When we execute the Huffman algorithm on W, the first step is combining
the r and a y. Thus, z and the y have equal path length. By Lemma 1, I, —1,| < 1
for any y. We can prove the Theorem by the similar method used in [2].

Theorem 9. (1) Let W and W' be as follows:

2a, by 51
1‘7.
N T RS
ar+hy €y

W'
Y, Y2, 2

Ify =2z, y <z, a1, by, ¢ are positive integers, and (p1, q1,u1,71,91) are (W' a1 +
by + ¢y, ¢y )-critical parameters, then

C(W) = (Ulpl + (a1 —w)(p1 + 1))2 + (al(rl +2)+bi(r +1) — 91>y~

(2) Let W and W7 be as follows:

2a3+1 by cy
T T Yy Yy Ry, 2,
az+by 2

TR . — e
w ST Yy YRy, 7

Ify =2z, y < z, ag, by, ¢; are positive integers, (py, g2, Uz, r2,92) are (W7, agy + by +
cp + 1, ¢g)-critical parameters, and

a—{l’ az +b +1—g3 >0,
0, as+by+1—gy,=0.
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Then

C(W) = (uapz + (c2 — up)(p2 + 1))z + (¢ + (bp — 92)y)(r2 + 0) + garay + azy.

Proof. (1). By the result in [2], we know that the cost of H(W') is

(uipr + (er —wr)(pr + 1))z + giriy + (a1 + by — g1)(r1 + 1)y.

When we execute the Huffman algorithm on W, we can get W' after a; combina-
tions, and these combinations produce a1 internal nodes with weight 2z = y. As we
know, the cost of a Huffman tree is equal to the sum of its internal nodes. The ax
internal nodes and the internal nodes of H(W"') are all the internal nodes in H (W).
Therefore, C(W) = a1y + C(W'), and (1) follows.

(2). By the result of Theorem 8 and similar method used in the proof of (1),
we can get (2).

3. Remark.

For monotonically increasing weight sequence, Huffman algorithm for Huffman tree
coincides with the T-C algorithm for optimal alphabetic binary tree. Thus, all

above results are also valid for optimal alphabetic binary trees.
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