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Abstract

In this paper, we shall introduce a special structure for graphs and show
that a graph G is hamiltonian if and only if G has such a special structure.
Using this result, we can prove a new weakened version of Fan’s condition
for hamiltonian graphs, which generalizes a recent result of Bedrossian,
Chen and Schelp (1993).

1 Preliminaries and Main Results

We consider only finite undirected graphs without loops or multiple edges. The
set of vertices of a graph G is denoted by V(G) or just by V', the set of edges by
E(G) or just by E. We use |(G] as a symbol for the cardinality of V(G). If H and S
are subsets of V{G) or subgraphs of G, we denote by Ny (S) the set of vertices in H
which are adjacent to some vertex in S, and set dg(S) = [Ng(S)]. If S = {u} and
H = G, then let Ng(u) = N(u) and set dg(u) = d(u). For D C V(G), G[D] denotes
the subgraph of G induced by D. For basic graph-theoretic terminology, we refer the
reader to [3].

Definition 1. Let H be a subgraph of G and z,y € V(G) \ V(H). {z,y} is called a
pair of useful vertices of H if G{H U {z,y}] contains a hamiltonian path connecting
z and y.
Definition 2. A graph G is call L-decomposable if G can be separated into £ + 1
pairwise disjoint subgraphs (7o, Gy, - - -, Gk such that the following four conditions are
satisfied: N

1) Gy is complete.

2) For any | < i <k, there exists a subset S; C Ng, (G;) with at least two vertices
which contains a vertex z such that for every y (# 2) € Si, {2,¥} is a pair of useful
vertices of (.

3) For any three distinct S5;,5;,5), we have $;NS; NS = 0.
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4) For any positive integer 7 < k, [U, .., Si,| = rif and only if [V(Go)| = k = r.

If G is L-decomposable, then we say the partition Go, G, - G which satisfies
the four conditions above a L-decomposition of G. In Section 2, we shall prove the

following structural theorem.
Theorem 1. A graph G is hamiltonian if and only if G has a L-decomposition.

Theorem 1 has some applications. We shall give some examples here. In order to
do this, we need some additional terminology and notations.
In Figure 1, we define four kinds of graphs, C-graph, ¥-graph. B-graph and
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N-—graph.

Figure 1.

Let ST be two induced subgraphs of G with max{|S|.|[T|} < |G|. A graph G of
order n 1s said to satisfy property ST(n) if for any pair of vertices z and y at distance
two in S or T, max{d(z),d(y)} > n/2. If @ contains no S as an induced subgraph.
we call G S-free. If (G contains neither S nor T as an induced subgraph. we call G
ST-free.

The closure of a graph (G denoted by G, is the graph obtained from G by recursively
joining pairs of nonadjacent vertices whose degree sum is at least [17(G)] untill no such
pair remains. Let Vy = {z : d(z) > n/2.z € V(G)}.

The following result is due to Bondy and Chvatal.
Theorem 2[2]. A graph G is hamiltonian if and only if G is hamiltonian.

Now. using Theorems 1 and 2, we can easily prove the following two theorem

known before.

Theorem 3[4]. Let (G be a 2-connected graph of order n. If each pair of vertices z
and y at distance 2 satisties max{d(z).d(y)} > n/2. then G is hamiltonian.

Theorem 4[1]. Let G be a 2-connected graph of order n. If G satisfies property
CF(n). then ( 1s hamiltonian.

To prove Theorems 3 and 4. we assume. by contradiction. that'G is a counterex-
ample with as many as possible edges. By Theorem 2, G[Vy] is a complete subgraph
of G. Let Gg be a induced complete subgraph of G with as many as possible vertices
and Vo C V(Gy). Let G1.Ga.---. Gy be the components of G \ Gg. We can easily




verify that Go, G, -+, Gi is a L-decomposition of G under conditions of Theorem 3
or Theorem 4, which leads to a contradiction by Theorem 1.

In section 3, we shall prove the following more general theorem by using Theorems
1 and 2.

Theorem 5. Let G be a 2-connected graph of order n. If G satisfies property CB(n),
then G 1s hamiltonian. '

2 The Proof of Theorem 1

If G 1s a hamiltonian graph, let C = ¢yc¢9 - - ¢y be a hamiltonian cycle of G. Set
Go = Gl{ey, c2}] and Gy = G[{c3, -, ¢n}]. Then Gg, G, satisfy the four conditions
of Definition 2. Thus & has a L-decomposition.

Conversely, let Go, Gy, -, G be a L-decomposition of G. By Definition 2. Gg
is a complete subgraph with |Go|] > 2 and for any 1 < ¢ < k, there exists some
Si € Ng,o(G;) which satisfies the conditions 2)—4) of Definition 2. By condition 2), 5;
contains a vertex z; such that for any y € S; \ {z:}, {z:,y} is a pair of useful vertices
of G; for all 1 < ¢ < k. Using the following Claim we will give a structural proof of
the sufficiency.

Claim. Go contains either a cycle C = ui ui, - - g ug, with |V(C)| = {Go| (when
|Go| = 2, C is just an edge.) such that

) . i .
{ulj‘ui;'+1}:{mi,)yi,’}»yzlf"vk> j mod k (*)

or g pairwise disjoint paths P; = wy,ui, -t ,,, 1= 1,2,---¢
{Utj\uirn}:{xi_,)yii}\j:1~2*"'7ri! (**)

and
u"x"”‘uir,-n gU]’g{il,—,i,,}Sj (***)

where yi, € Si] \ {Z%J}

In fact, let P = u;, ---u;__, be alongest path satisfying the equation (**). Then
Uiy, o Ui, €& Uje{i,,~~~.ir‘} S; by condition 3). Ifu;,, ui ,, & U]' @iy i) Sj. then P
is desired. Otherwise, there exists a subset, say S;, ,,, such that {w;, , u; ,}NS; ,, #
¢. By the maximality of P and |S;, ,,| > 2, we have that S;_,, = {u,. ui, ,, }. Since

i<« Sil > 7 for any r < k, we need only to consider the following two cases.

Case 1. 1U15j§r.+1 Sit=ri+ 1

Then |V(Go)| = k = r; + 1 by condition 4). Thus €' = w;, - - us, |, ug, is a cycle
of Gy with |V(C)| = |Gol satisfying (¥).
Case 2. [{Ui¢jcr 1 Sil >mi+ 1

By condition 3), thereis al € {1,---,r;} such that |S;,| > 3. We assume without
loss of generality that {z;,v;,.2,} C S;, satisfying z;, = u;,, y;, = ;49 and z;, &
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V(P). Then we can construct a new path P’ = z u; ;-1 Ui Ui, Ur, U4
which is longer than P and satisfies (**) when the subscripts are rewritten. This
contradiction completes the proof of the Claim.

Now, from the Claim above, if G contains a cycle C with V(C) = |Gg| satisfying
(*), then it is easy to check that G is hamiltonian. Otherwise, by the Claim above,
Go contains ¢ pairwise disjoint paths Py = u; ug, -~ w;,,,, ¢ = 1, 2, - ¢ which satisfy
both (**) and (***), and we have ) ./_, r; = k. Since Gy is a complete subgraph of
G, we can easily check that G has a hamiltonian cycle. :

Therefore, Theorem 1 is true. &

Theorem 1 has the following consequence.

Corollary 1. Let Gg be a complete subgraph of G with |Go| > 2. If Gg contains a
pair of useful vertices of each component of G \ G and G[N(Go)] is C-free, then &

1s hamiltonian.

Proof. Let Gi,---,Gy be all the components of G\ Gy and set G* = G[N(Go)].
By Theorem 1, it is sufficient to show that Gg. Gy, -, Gy 1s a L-decomposition of G.

By the hypothesis. we can choose S, C V5, (Gy) such that 5; satisfies 2) of Defini-
tion 2 and |S;] is as large as possible. Since G™ 1s C~free. 3) of Definition 2 is satished.
Thus we only need to show that 4) of Definition 2 is also satisfied. :

In fact, lét » < k be any positive integer. Since 7 is C-free. we have |V(Go)} >
k> If|V(Go)| = k = r, then [Uigjer Syl = r. Conversely. if tUicjer Sisl =7
then |5, =2 (5 = 1,2.--,r) and each vertex z € Uigjgr S;, is a common vertex
of some two pairs of useful vertices. Let £ € S, NSy, and y € Ng, (z), € Ng, (z).
When |Go| > . then there exists some w € V(Go) \ (U, ¢j<- Si;)- Since G7 is Cefree.
we have wy € E or wr € E. Therefore. either S;, U{w} or S;, U {w} still satisfies
2) of Definition 2, which contrary to the choice of S;, or S;,. Thus |V(Go)l=k=r.
This completes the proof of Corollary 1. &

3  The Proof of Theorem 5

In order to prove Theorem 5. we need the following theorem.

Theorem 6[5]. If G is 3-connected and CN-free, then for any distinct vertices z,y

of G, there exists a hamiltonian path connecting = and y.

Now. set Vo = {z € V(G) : d(z) > n/2}. By Theorem 2. we may assume that
G[Vp) is a complete subgraph of G if Vy # B. Let G be a complete subgraph of G
such that Vg C V(Gy) and |V (Go)| is as large as possible. Let Gy.---, Gy be all the
components of G\ (. Then by the property CB(n). GIN(Gy)] is C~free and G, is
CB-free for any 1 < s < k. By Corollary 1, we need only to show that G contains a

pair of useful vertices of G, for 1 <s < k.
Assume that there is a component G, of G\ Go such that Gy does not contain
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any pair of useful vertices of G,. Let S be a minimal cut vertex set of G, and
v € S. Then by the assumption and Theorem 6, |[S| < 2. Since G, is C-free,
G, \ S has only two components H;, Hy. Let H = G[V(H,) U V(H;) U {v}] and
S_i = {u € V(Hy) - dg(u,v) = i} and S; = {u € V(H,) : du(u,v) = 1} for
1> O Dencte m = max{i :S; # 0} and n = max{i : S_; # 0}. Clearly, we have

= SU(UL _,, Si), and G[S; US;] is complete if and only if |i — j| = 1 since G,
is CB»free.

If |S] = 1, then there exist some z € S, and y € S.,, such that neither z nor
y is a cut vertex of G, and Ng (z) # @ and Ng,(y) # 0. since G is 2-connected.
Because of the structure of G, there exists a path P connecting ¢ and y in G, with
V(P) = V(G,). Thus by the assumption, Ng,(z) = Ng,(y) and |Ng,(z)| = 1, which
contrar_v to the fact that G[N(Go)] is C—free.

If |S] = 2, let v/ € S and v’ # v. Since Gy is 2-connected, N(v')N.S; # 0 for some
1<i<mand N(')NS_; # 0 for some 1 < 7 < n. Let ig = max{7 : N(v')NS; # 0}
and jo = max{j : N(v')NS_;}. By the hypothesis of Theorem 5. we may assume
that there exists some ¢ with 0 < { < m such that Ng (S:) # 0.

Since G, is 2-connected, we have

(a) |Si| > 2 forany m — 1> 4> ip and |S_j| > 2 forany n— 1 > j 2 Jo-
By (a) and the structure of (. we have

(b) If |S;m| > 2, then for any two distinct vertices z and y in S, there exists a
path P in G, connecting z and y with V(P) = V(G ).

(c) For any z € S,_; and y € S; (1 <7 < m), there exists a path in G connecting
z and y with V(P) = V(Gy). ‘

Since |Ng,(Gs)| > 2. By the assumption, (¢) and the hypothesis of Theorem 5.
we have

(dyn+m>3.

Now. we distinguish the following two cases.

Case 1. 0 <t < m, that is there exists some z € S; and y € V(Gy) such that
zy € E.

Then by the hypothesis of Theorem 5 and 1 <t < m, there exists a vertex z € Sy
or z € S};H such that yz € E. Br the assumption and (c). for any v’ € V(Go) \ {y}
and w € Si—; U Sy, vw € E. Thus we can find a vertex set F = {z,y.z,v' . w}
such that G[F] is a B—graph and does not satisfy the condition of Theorem 5. a
contradiction. '

Case 2. Forany 0 <7< m—1. Ng,(S;) = 0. that is't = m.

Symmetrically, we may assume that for any 0 < j <n — 1. Ng (S-;) = 0.
If Ng,(v') # 0, let v € V(Gy) such that v'y € E. Then by the hypothesH of
Theorem o., we have y € Ng (Si;) or v € Ng (S-j,). Thus ip = m or jo = n.
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Without loss of generality. let y € Vg (S;,). When y ¢ Ng,(5_;,). then by the
hypothsis of Theorern 5. there exists a vertex y' € V(Go) \ {y} such that vy € E
ot iy € N (Sm) oty € Noo(5-;,) whenever jo = n. By the structure of &, we
can derive that {y, '} 1s a pair of useful vertices of G,, contrary to the assumption.
When y € Ng, (Si,) N Ng, (S_j,). that is ig = m and jo = n. Since ¢ is 2-connected.
there exists a vertex ¥ € V(Go) such that y' € V5, (Sm) U NG (S_n)or vy € E.
Also by the structure of G, we can derive that {y, y'} is a pair of useful vertices of
(. contrary to the assumption. Hence in rest proof we suppose that Ng,{(v') = 0.

Since (G is 2-connected, there exist = 3% 2’ € S, US_, and y # ¢y € V(Gy)
such that zy € £ and 2y’ € E. By the assumption and (b), {z.1'} € S, and
{z, 2’} € S, Let £ € S, and £’ € S_,. By (d), let m > 2. then 5, € V(y) by the
hypothesis of Theorem 5. )

If ig = m, then S,,_, € N(v') by the hypothesis of Theorem 5. Thus by the
structure of G, we can derive that {y, ¥/} is a pair of useful vertices of (J,. contrary to
the assumption. If ig < m, then S;,-1 € N(v'). Thus we can also get a contradiction
as before.

Therefore, Theorem 5 is true.
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